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a b s t r a c t 

Countering cyber threats, especially attack detection, is a challenging area of research in 

the field of information assurance. Intruders use polymorphic mechanisms to masquer- 

ade the attack payload and evade the detection techniques. Many supervised and unsu- 

pervised learning approaches from the field of machine learning and pattern recognition 

have been used to increase the efficacy of intrusion detection systems (IDSs). Supervised 

learning approaches use only labeled samples to train a classifier, but obtaining sufficient 

labeled samples is cumbersome, and requires the efforts of domain experts. However, un- 

labeled samples can easily be obtained in many real world problems. Compared to super- 

vised learning approaches, semi-supervised learning (SSL) addresses this issue by consider- 

ing large amount of unlabeled samples together with the labeled samples to build a better 

classifier. This paper proposes a novel fuzziness based semi-supervised learning approach 

by utilizing unlabeled samples assisted with supervised learning algorithm to improve the 

classifier’s performance for the IDSs. A single hidden layer feed-forward neural network 

(SLFN) is trained to output a fuzzy membership vector, and the sample categorization (low, 

mid, and high fuzziness categories) on unlabeled samples is performed using the fuzzy 

quantity. The classifier is retrained after incorporating each category separately into the 

original training set. The experimental results using this technique of intrusion detection 

on the NSL-KDD dataset show that unlabeled samples belonging to low and high fuzzi- 

ness groups make major contributions to improve the classifier’s performance compared 

to existing classifiers e.g., naive bayes, support vector machine, random forests, etc. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

Intrusion detection (ID) is a process of monitoring, detecting, and analyzing the events that are considered as violation

to the security policies of a networked environment [45] . Denning [12] introduced the concept of detecting cyber-based

attacks on computer networks by providing a framework for intrusion detection system (IDS), which is based on the hy-

pothesis that security violations can be detected by monitoring system audit records for abnormal patterns of system usage.

Organizations deploy their own access controls to grant or restrict the level of access for their assets but this approach
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does not guarantee the appropriate assurance and protection level for a particular resource [10] . This problem is evident

through various security incidents around the world, for example, the compromise of Yahoo’s and Amazon’s websites after

some sophisticated persistent attacks [6] . Intruders and attackers are always seeking to disrupt network traffic and degrade

network performance with different types of attacks or intrusions. A network intrusion refers to a suspicious and sudden

deviation from the normal behavior of the system, which destabilizes the security of the network system. According to Qui

et al. [40] , Hernndez-Pereira et al. [16] and Yan and Yu [56] , intrusion can be depicted as the set of actions that attempt

to compromise the confidentiality, integrity, or availability (CIA) of information resources; therefore, it is necessary to take

different measures to minimize such risks. 

The Internet has turned into an indispensable wellspring for exchanging information among users and organizations;

therefore, security has become an essential aspect in this type of communication. IDSs are often used to sniff network

packets by providing a better understanding of what is happening in a particular network. Two mainstream preferences for

IDSs are (1) host-based IDSs, and (2) network-based IDSs. Correspondingly, the detection methods used in IDS are anomaly

based and misuse based (also called signature or knowledge based), each having their own advantages and restrictions. In

misuse-based detection, data gathered from the system is compared to a set of rules or patterns, also known as signatures,

to describe network attacks. The core difference between these two techniques is that anomaly-based IDS uses collections of

data containing examples of normal behavior and builds a model of familiarity, therefore, any action that deviates from the

model is considered suspicious and is classified as an intrusion [20] . According to Mukkamala et al. [31] , in misuse-based

detection, attacks are represented by signatures or patterns. However, this approach does not contribute much in terms of

zero-day attack detection. The main issue is how to build permanent signatures that have all the possible variations and

non-intrusive activities to lower the false-negative and false-positive alarms. 

The KDDCUP’99 [18] was derived in 1999 from the DARPA98 network traffic dataset and a very popular benchmark

dataset used in the International Knowledge Discovery in Databases (KDD) competition. From the literature, one can study

that this dataset is widely used for the evaluation of anomaly based IDS. Many machine learning techniques, which may

be either supervised or unsupervised, have been used to increase the efficacy of IDSs. Supervised learning techniques are

applied to obtain the training data in which instances are tagged with labels and each label indicates the class of a particular

instance. Many supervised algorithms, such as k -nearest neighbor (KNN) [24] , neural network (NN) [29] , and support vector

machine (SVM) [30] have been extensively used to detect the intrusions. These algorithms build the model that separates a

new unseen example or instance with the correct label. Many advantages and disadvantages related to supervised learning

with IDS have been reported by many researchers. One of the shortcomings of supervised learning is the need for labeled

instances. The only dataset is available for ID is the KDDCUP’99 dataset [18] , and many new types of attacks have been

developed. Therefore, this dataset is considered as obsolete, and for new types of examples its accuracy drops [22] . Many

researchers are widely using the KDDCUP’99 dataset because it is the only dataset that is publically available for ID problem

and useful information can still be extracted from it. Apart from its disadvantage, supervised learning has the advantage

to achieve better accuracy to classify similar examples [22] . Unsupervised learning techniques deal with the learning tasks

with unlabeled or untagged data. Clustering is the most popular unsupervised learning technique [25] . In clustering, the

learning algorithm finds similarities among instances to build the clusters (i.e. group of instances). Instances that belong to

the same cluster are assumed to having similar characteristics or properties and then are assembled into the same class.

The disadvantage of unsupervised learning is the manually assignment of cluster numbers, which results in low accuracy

in predictions. However, it has the advantage of detecting new examples better than supervised learning techniques, and

considered to be more robust in IDSs. According to Laskov et al. [22] , many new attacks have been developed, and the

improper labeling of examples could make the unsupervised learning and SSL techniques the best choices for improving the

accuracy of IDSs. 

Regarding the aforementioned development in this area, the main objective behind our work is not just to seek for the

smallest classification error but also to try to find a model that must be capable of incorporating new data that keeps

its good generalization ability. We compute the fuzziness of every unlabeled sample outputted by the classier, and try

to discover its relationship with misclassification. From literature, except for [51,53] , we have not found any studies on

generalization based on the fuzziness of a classifier. Therefore, based on our preliminary work [51] in which the sample

categorization is performed according to the fuzziness quantity, we propose a new algorithm for the IDS. The experimental

results demonstrate that samples belonging to the low and high fuzziness categories play an important role in improving

the accuracy of IDSs. 

The rest of the paper is organized as follows. Section 2 presents a prologue to the background of semi-supervised learning

(SSL). Section 3 details the proposed fuzziness based algorithm using the neural network with random weights ( NNR w 

). The

performance evaluation is presented in Section 4 . Finally, Section 5 ends this paper with concluding remarks, and provides

future directions for this research. 

2. Semi-supervised learning (SSL) 

SSL is an amalgamation of supervised and unsupervised learning techniques. The SSL technique deals with the learning

tasks by utilizing both labeled and unlabeled data [65] . Labeled instances are, however, expensive and time-consuming to

obtain and require the efforts of domain experts. Apart from this concern, unlabeled data can easily be obtained in many

real world applications. SSL methods assign labels by considering unlabeled instances, together with the labeled instances,
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and then build a better classifier. Many SSL methods such as self-training, co-training, transductive support vector machines

(TSVMs), expectation maximization (EM) with generative mixture models, and graph-based methods have attracted much 

attention from researchers. 

2.1. Self-training 

Self-training is one of the earliest SSL techniques. A classifier C is used to classify the unlabeled data U and the most

confident unlabeled samples with their predicted labels are incorporated into the training set Tr . The classifier C is again

retrained, and the process is repeated. In the whole process, C uses its own prediction to learn or teach itself; hence, the

process is named as self-teaching or bootstrapping. Yarowsky [57] used the self-training algorithm for the word sense dis-

ambiguation in which the decision was made regarding either the word “plant” represents a living organism or a factory .

Riloff et al. [41] used the self-training algorithm to recognize the subjective nouns. Rosenberg et al. [42] utilized the self-

training algorithm for object detection from the images, and also proved that, the SSL technique compares favorably with a

state-of-the-art detector. 

2.2. Co-training 

Another well-known SSL technique is co-training [5] , which assumes that input features can be split into two dissimilar

views, V 1 and V 2 , respectively. In other words, co-training deals with the task whose input space has two independent views.

It works in an iterative manner, where two separate classifiers, C1 and C2 , are trained with Tr on V 1 and V 2 , respectively

and classify the U . Co-training starts its process at using a weak initial hypothesis over one feature set and labeling samples.

These examples may be randomly distributed to the other classifier under the assumption of conditional independence, and

the classification noise from the weak hypothesis would be brought to the other classifier. Thus, the algorithm can learn

from labeled samples by an iterative manner between the two classifiers. 

2.3. Generative models 

Generative models are the oldest SSL methods, which assumes a model where p ( x | y ) is an identifiable mixture distri-

butions [64] . Nigam et al. [34] applied the EM algorithm to a mixture of multinomial for the text classification. EM is a

generative model and uses the likelihood-based approach. Baluja [3] used the same algorithm in a face orientation discrimi-

nation task. Nigam and Ghani [33] conducted an experiment to compare co-training and the EM algorithm. They proposed a

new algorithm called co-EM, which combines the characteristics of both co-training and EM. Fujino et al. [13] extended

generative mixture models by adding the term bias correction and discriminative training using the maximum entropy

principle. 

From the literature [21] , we can find that the earliest work on ID was based on SSL in which a partially observable

Markov decision-making process (POMDM) was modeled in order to classify user behavior in Unix terminal and used the

SSL mechanism called “Expectation-Maximization to learn conditional probability distribution”. 

2.4. Graph based methods 

Graph based SSL methods define a graph on which nodes represent labeled and unlabeled examples and edges reflect

the similarity among the examples. These types of methods are non-parametric, discriminative, and transductive [64] . Ac-

cording to Blum and Chawla [4] , SSL can be portrayed as a graph mincut or st-cut. In a two-class problem, positive and

negative examples act as sources and sinks, respectively. Hence, the nodes connecting to sources are labeled as positive,

and those connecting to sinks are labeled as negative. The main problem with mincut is that, it provides only hard classi-

fication without confidence because it does not compute marginal probabilities but rather computes the mode. Pan et al.

[37] proposed a novel SSL method for visual objects classification. In their proposed method they simultaneously maximize

the separability between different classes and estimate the intrinsic geometric structure of the data by using both the la-

beled and unlabeled instances. Zhou et al. [63] proposed a general framework for SSL on a directed graph, and the structure

of the graph along with the direction of the edges is considered. Their algorithm takes the directed graph and the label set

as input, and a function is computed using the labeled vertices to classify the unlabeled vertices. Therefore, in the absence

of labeled instances, this function can be used as a spectral clustering for the directed graph. 

Recently, Pan et al. [36] presented a new type of SSL mechanism based on regularization term that utilizes the label

information of a dataset for various kernel learning algorithms. Their proposed method provides an efficient use of label in-

formation by adding a new regularization term to the objective functions of the optimization problems. Chen et al. [8] pro-

posed a novel SSL method for clustering, where they evaluated the application of spectral graph transduction and Gauss

random fields for the detection of unknown attacks. One can study in the literature [14,26,52,62] that many SSL methods

related to clustering have been proposed. In [14] , the authors proposed a novel SSL technique called stable semi-supervised

discriminant learning (SSDL) for dimensionality reduction. In this approach, they constructed two adjacency graphs to learn

the intrinsic structure that characterizes the local topology, and geometrical properties of the similarity and the diversity of

the data. They incorporated it into an objective function of linear discriminant analysis (LDA). 
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2.5. Transductive support vector machines (TSVMs) 

TSVM originated from the intention to work only on observed data that builds the connection between p ( x ) and the dis-

criminative decision boundary by not putting the density in the high density region. TSVM is an extension of the SVM but

with unlabeled data aiming to find labels for unlabeled examples so that the linear boundary has the maximum margin on

both the original labeled examples and the newly labeled examples [64] . Vapnik in [50] introduced the notion of transduc-

tive inference, which is regarded as an approach of SSL. Many success rates have been reported in these studies, but the

method has faced some criticism because it cannot perform well under some circumstances. 

From the literature [28,47] , one can find that many SSL techniques have been proposed for improving the accuracy of a

classifier. Chen et al. [9] proposed a variant of Laplacian smooth twin SVM (Lap-STSVM) and experimentally demonstrated

the accuracy level comparable to that of Lap-SVM at less computational cost. Recently Qi et al. [39] proposed a new SSL

method called semi-supervised learning using privileged information (Semi-LUPI). Their method improves the classifier per-

formance by utilizing the geometry information of the marginal distribution embedded in unlabeled data and the privileged

information to improve the efficiency of the learning. Maulik and Chakaraborty [27] proposed a novel semi-supervised SVM

classification technique that exploits both labeled and unlabeled data points by considering the problem of pixel classifi-

cation of remote sensing images and applied the marginal maximization principle to both labeled and unlabeled patterns.

They experimentally confirmed that their learning scheme removes unnecessary points to a great extent from the unlabeled

data and increases the accuracy level. 

In the next section, we present our proposed algorithm, which relies on fuzziness outputted by the classifier on a group

of samples (unlabeled). Our algorithm can be utilized in an effective way for the improvement of classifier performance and

to have lower computational cost. 

3. Proposed fuzziness based algorithm using NNR w 

for IDS 

In this section, we first discuss the fuzziness and introduce a fast learning mechanism for a single hidden layer feed-

forward neural network (SLFN), i.e., neural network with random weights ( NNR w 

), and then propose an algorithm for IDS. 

3.1. Fuzziness 

The term fuzziness refers to the unclear boundary between two linguistic terms and is based on the membership function

of fuzzy sets. It was first mentioned by Zadeh [60] in 1965. Zadeh also generalized the probability measure of an event to

a fuzzy event and suggested using entropy in information theory to interpret the uncertainty associated with a fuzzy event.

Authors in [11] considered fuzziness to be a type of uncertainty and also defined a quantitative measure of fuzziness with

non-probabilistic entropy analogous to Shannon’s information entropy. They also proposed three properties that fuzziness

should hold. These properties depict that, the fuzziness degree should attain its maximum when the membership degree of

every element is equal and its minimum when every element either belongs to the fuzzy set or absolutely not. In this study,

We consider fuzziness as a type of cognitive uncertainty, coming from the transition of uncertainty from one linguistic term

to another, where a linguistic term is a fuzzy set defined in a certain universe of discourse. As stated in the literature [43] ,

the fuzziness of a fuzzy set can be measured by a function F → [0, 1] X satisfying the following axioms. 

• 1 : F (μ) = 0 if and only if μ is a crisp set. 

• 2: F ( μ) gets its maximum value if and only if μ(x ) = 0 . 5 ∀ x ∈ X . 

• 3: if μ ≤ S σ then F ( μ) ≥ F ( σ ). 

• 4 : F (μ) = F (μ′ ) , where μ′ (x ) = 1 − μ(x ) for ∀ x ∈ X . 

• 5 : F (μ ∪ σ ) + F (μ ∩ σ ) = F (μ) + F (σ ) . 

Axioms (1–3) were already proposed by De Luca and Termini [11] . In order to measure the fuzziness, it is necessary to

know when a fuzzy set is less than another. The sharpened order ≤ S is proposed in [11] as 

• μ≤S σ ⇔ min (0 . 5 , μ(x )) ≥ min (0 . 5 , σ (x )) & max (0 . 5 , μ(x )) ≤ max (0 . 5 , σ (x )) . 

Definition 1. Let V = { μ1 , μ2 , . . . , μn } be a fuzzy set. According to De Luca and Termini [11] , the fuzziness of V can be

defined as 

F (V ) = −1 

n 

n ∑ 

i =1 

( μi log μi + (1 − μi ) log (1 − μi ) ) (1)

Many equations similar to Eq. (1) can be constructed, e.g., when n = 2 and V is normalized i.e., μ1 + μ2 = 1 , we can have 

F 1 (V ) = 1 − μ2 
1 − (1 − μ1 ) 

2 (2)

F 2 (V ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

μ1 

1 − μ1 

0 ≤ μ1 ≤ 0 . 5 

1 − μ1 

μ1 

0 . 5 ≤ μ1 ≤ 1 

(3)
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Fig. 1. Fuzziness equation for binary class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is easy to verify that Eqs. (1) –(3) satisfy the above mentioned axioms ( 1 − 5) . The fuzziness of fuzzy set defined by

Eq. (1) attains its maximum when the membership degree of every element is μi = 0 . 5 for every i = 1 , 2 , . . . , n and mini-

mum when every element belongs to the fuzzy set or absolutely not for every μi = 0 or μi = 1 , i (1 ≤ i ≤ n ). 

For a binary class problem, Eq. (1) can be plotted as Fig. 1 , where we can see that the fuzziness of V for a binary class

attains its maximum at (0.5, 0.5) and minimum at four points i.e., (0, 0), (1, 1), (0, 1) and (1, 0). 

Now we associate fuzziness with the output of a classifier. One can study in the literature [19,23,54,58,59] that many

classifiers have an output analogous to fuzzy vector in which each vector’s component represents the membership degree

of testing sample belongs to a particular class C . For a given training set { X i } N i =1 
, a fuzzy partition of these samples assigns

the membership degree of every sample to the C classes. Thus the partition can be denoted by the membership vector

U = (U i j ) (C×N) . The elements of the membership matrix U have to conform the following property. 

C ∑ 

i =1 

μi j = 1 , 0 < 

N ∑ 

j=1 

μi j < N, μi j ∈ [0 , 1] 

Where μi j = μi (x j ) represents the membership of the j th sample x j belongs to the i th class. When a classifier completes its

training process, its membership matrix U can be obtained. The classifier will give an output in the form of fuzzy vector for

every j th sample during the testing phase. Based on Eq. (1) , for every j th sample the fuzziness of every output vector can

be obtained by following Eq. (4) . 

F ( μ j ) = −1 

C 

C ∑ 

i =1 

( μi j log μi j + (1 − μi j ) log (1 − μi j )) (4) 

3.2. Neural network with random weights ( NNR w 

) 

Schmidt et al. [46] are the pioneers who earlier studied the impact of random initialization on generalization perfor-

mance of SLFN in 1992. They experimentally demonstrated that SLFN can obtain a better performance by choosing random

weights associated with the input layer and by analytically computing the weights of the output layer. This is the first

research regarding the non-iterative training of NN using randomization. The researchers also concluded that, in SLFN, the

weights of the output layer are significantly most important than the weights found in the hidden layer. Yam et al. [55] used

this approach for initializing the weights of NN before training it with back-propagation (BP). Similarly, in [7,15,49,61] ,

authors introduced NN with a randomly initialized hidden layer and trained using pseudo-inverse. From the literature

[2,17,38,44] , one can see that several ideas have been proposed for randomization of the hidden layer in NN, such as the

Random Vector Functional Link (RVFL) network, which incorporates random hidden-layer weights and biases, and the direct

connection between the input layer and the output layer. Schmidt et al. [46] did not propose a name for their proposed

SLFN; hence, to recognize their work, we use the neural network with random weights ( NNR w 

). The NNR w 

discussed in our

study has no direct connection between the nodes of the input layer and the output layer, and we consider only the biases

for the hidden layer nodes. The output of SLFN with L hidden layer nodes can be represented as 

f (x ) = 

L ∑ 

i =1 

˜ βi g(w i , b i , x ) , x ∈ R 

n (5) 
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In Eq. (5) , w i ∈ R 

n and b i ∈ R represent input weights and biases at hidden layer nodes respectively, ˜ βi ∈ R 

m is the output

weight and 

˜ βi g(w i , b i , x ) is the output of i th hidden node w.r.t input x . 

Therefore, for a given dataset { ( x i , t i ) } N i =1 
⊂ R 

n × R 

m , where x i is an input vector, and t i is corresponding observed vector.

SLFN with L hidden nodes approximating these N training samples with zero error means that their exist ˜ βi , w i , and b i
where i = 1 , . . . , L such that 

L ∑ 

i =1 

˜ βi g(w i , b i , x j ) = t j , j = 1 , . . . , N (6)

Hence the Eq. (6) can be written compactly as 

H ̃

 β = T (7)

where H N×L = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

g(w 1 , b 1 , x 1 ) g(w 2 , b 2 , x 1 ) · · · g(w L , b L , x 1 ) 

g(w 1 , b 1 , x 2 ) g(w 2 , b 2 , x 2 ) · · · g(w L , b L , x 2 ) 

. 

. 

. 
. 
. 
. 

. . . 
. 
. 
. 

g(w 1 , b 1 , x N ) g(w 2 , b 2 , x N ) · · · g(w L , b L , x N ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, ˜ βL ×m 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

˜ β1 

˜ β2 

. . 

. 

˜ βL 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

T 

and T N×m 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

t 1 

t 2 

. 

. 

. 

t N 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

T 

H is a hidden layer output matrix with respect to the input vectors x i , where i = 1 , . . . , N , and g(z) = 

1 
1+ e −z is sigmoid

activation function. Therefore, Eq. (7) becomes a system of linear equations, which in most cases can be transferred to a

regular system of linear equations. 

H 

T H ̃

 β = H 

T T (8)

Suppose that H 

T H is non-singular, the solution of system according to Eq. (8) can be expressed as 

˜ β = (H 

T H ) −1 H 

T T (9)

Algorithm NNR w 

: For a given dataset X = { (x i , t i ) | x i ∈ R 

n , t i ∈ R 

m , i = 1 , . . . , N} and a hidden node output function g ( w ,

b , x ), and number of hidden nodes L 

1. Randomly select the input parameters w i and b i where i = 1 , . . . , L 

2. Compute the hidden layer output matrix H . 

3. By using Eq. (9) , calculate the output weight ˜ β

The parameters w i and b i at the hidden layer of SLFNs are assigned randomly and independently according to Igelnik

and Pao [17] , where specified ranges of these random parameters are suggested. 

In this paper, we specify the ranges of the random parameters in the form of [0, θ ], where the scope parameter θ is data

dependent and should be adjusted to gain favorable performance for a given dataset. 

3.3. Fuzziness based divide-and-conquer strategy 

Recently Wang et al. [51] proposed a new algorithm based on a divide-and-conquer strategy. In their methodology, all

testing samples Ts were categorized into three groups according to the magnitude of fuzziness, and the group with highest

accuracy was incorporated into the original training set Tr . Retraining was performed with the new training set Tr ’. Their

proposed technique is regarded as an approach to SSL in which some samples with unknown labels having low fuzziness

participate in the training process. The key steps of the algorithm proposed by Wang et al. [51] are mentioned in Table 1 . 

3.4. Proposed algorithm 

Based on our previous work [51] , we extend the divide-and-conquer methodology and propose a new algorithm for IDSs

by using NNR w 

. The proposed algorithm used is described in Table 2 . For a given dataset Tr of labeled examples, a dataset
Table 1 

Fuzziness based divide-and-conquer methodology. 

For a given training set Tr , testing set Ts , and classifier C , 

1. Obtain the fuzzy membership vector output by the classifier C on Ts . 

2. Compute the fuzziness for every output vector and also obtain the training accuracy Tr Accuracy and testing accuracy Ts Accuracy , respectively. 

3. Group the output samples of Ts into low fuzziness group G low , mid fuzziness group G mid , and high fuzziness group G high . 

4. Add the group having the highest accuracy into Tr and obtain new training set Tr ′ . 
5. Retrain the classifier C on Tr ′ and get the training accuracy T r’ Accuracy and testing accuracy Ts Accuracy . 

6. Compare the accuracies obtained in steps 3 and 5. 
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Table 2 

Proposed algorithm using NNR w . 

Input: 

• T r : Labeled dataset (x i , y i | 1 ≤ i ≤ N ) . 

• U : Unlabeled dataset (u i , | 1 ≤ i ≤ U ) . 

• T s : Test dataset (t i , y i | 1 ≤ i ≤ K ) . 

• Classifier: C NNR w . 

• L : Number of hidden nodes. 

• Hidden-node output function: g(z) = 

1 
1+ e −z . 

Output: 

• Ts Accuracy : Testing accuracy. 

Process: 

• F’ = C NNR w ( T r ) . 

• Generate F’ ( U ) . 

• Obtain membership vector V of every unlabeled example from F’ ( U ) . 

• Compute fuzziness F( V ) of every sample in U . 

• Sample categorization FG low , FG mid , and FG high . 

• Tr new = T r + ( FG low + FG high ) . 

• F’ = C NNR w ( Tr new ) . 

• Generate F’ ( T s ) . 

Fig. 2. Flow chart of proposed methodology. 

 

 

 

 

 

 

 

U of unlabeled examples, and a testing dataset Ts . The algorithm first uses Tr to train the classifier NNR w 

by using L hidden

nodes. The hidden node output function used by the algorithm is the sigmoid activation function. Second, a membership

vector V is obtained on every unlabeled sample by examining U using classifier C NNR w . The membership vector of each

unlabeled sample that we get during this process is further utilized to obtain the fuzziness F( V ) by using Eq. (1) . Based

on the fuzziness value we categorize the samples into three groups, i.e., low fuzziness group FG low 

, mid fuzziness group

FG mid , and high fuzziness group FG high respectively, and extract those samples that belong to the FG low 

and FG high fuzziness

groups. These two groups are further incorporated with Tr to obtain an updated dataset Tr new 

for retraining the C NNR w . The

flow chart of the proposed algorithm is depicted in Fig. 2 . 



R.A.R. Ashfaq et al. / Information Sciences 378 (2017) 484–497 491 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Performance evaluation 

Tavallaee et al. [48] statistically discovered and figured out some shortcomings in the original KDDCUP’99 dataset that

adversely affect the performance of the evaluated system and provide inefficient anomaly detection schemes. They proposed

an enhanced dataset called NSL-KDD [35] to counter these issues and provided a more efficient scheme for comparing var-

ious ID models. They also mentioned some advantages of the new dataset over the original dataset: (1) non-availability of

redundant records in the training dataset so that a classifier has low bias toward frequent records and reduces the com-

plexity level, (2) no duplicate records in the testing datasets, and (3) the number of records in both training and testing

datasets are quite sensible, making it reasonable to run the experiment on a complete set without the need to randomly

select a small subset or portion. They also compared the performance of the NSL-KDD dataset on different classifiers i.e.,

naive bayes, SVM, and random forests etc., where they used KDDT rain _ 20 percent dataset for training and two datasets i.e.,

KDDT est + and KDDT est −21 , for testing. 

4.1. Data specification 

The NSL-KDD [35] dataset incorporates 41 input features as in original KDDCUP’99 [18] dataset and a class label. These

features are essentially classified into three different categories, (1) features that are extracted from TCP/IP connection with-

out inspecting the payload called basic features , (2) features for accessing the payload of TCP packet and necessary to observe

the suspicious behavior within the payload segment called content features , (3) traffic features utilize with 2 s temporal win-

dow ( time based traffic features ), and historical window instead of time ( host based traffic features ) that are designed to as-

sess attack within interval longer than 2 s. Features 1 − 9 represent the basic features, 10 − 22 illuminate contents features,

23 − 31 and 32 − 41 concentrate on time based traffic features and host based traffic features respectively. The description

and overall picture of the dataset according to the input features are listed in Table 3 . 

A class label, which specifies the status of an instance is either normal or attack, there are different types of attacks listed

in original KDDCUP’99 dataset. Detail of these attacks with their categories is listed in Table 4 . 
Table 3 

Description of input features. 

# Input feature Data type # Input feature Data type 

Basic features 1 duration Continuous Time based traffic features 23 Count Continuous 

2 protocol_type Symbolic 24 srv_count Continuous 

3 service Symbolic 25 serror_rate Continuous 

4 flag Symbolic 26 srv_error_rate Continuous 

5 src_bytes Continuous 27 rerror_rate Continuous 

6 dst_bytes Continuous 28 srv_rerror_rate Continuous 

7 land Symbolic 29 same_srv_rate Continuous 

8 wrong_fragment Continuous 30 diff_srv_rate Continuous 

9 urgent Continuous 31 srv_diff_host_rate Continuous 

10 hot Continuous 

Contents features 11 num_failed_logins Continuous Host based traffic features 32 dst_host_count Continuous 

12 logged_in Symbolic 33 dst_host_srv_count Continuous 

13 num_compromised Continuous 34 dst_host_same_srv_rate Continuous 

14 root_shell Continuous 35 dst_host_diff_srv_rate Continuous 

15 su_attempted Continuous 36 dst_host_same_src_port_rate Continuous 

16 num_root Continuous 37 dst_host_srv_diff_host_rate Continuous 

17 num_file_creations Continuous 38 dst_host_serror_rate Continuous 

18 num_shells Continuous 39 dst_host_srv_serror_rate Continuous 

19 num_access_files Continuous 40 dst_host_rerror_rate Continuous 

20 num_outbound_cmds Continuous 41 dst_host_srv_rerror_rate Continuous 

21 is_hot_login Symbolic 

22 is_guest_login Symbolic 

Table 4 

Attack types. 

Deniel of service (DoS) User to root (U2R) Remote to local (R2L) Probing (PROBE) 

Back Perl FTP write IP sweep 

Ping of death Buffer overflow Guess password NMAP 

Neptune Load module IMAP Port sweep 

Smurf Rootkit Multi HOP Satan 

Land Phf 

Teardrop SPY 

Wareclient 

Warezmaster 
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Table 5 

Symbolic features with values. 

Symbolic features Nominal values #. of distinct categories 

protocol_type tcp, udp, icmp 3 

service smtp, ntp_u, shell, kshell, imap4, urh_i, netbios_ssn, ftp_u, 

mtp, uucp, nnsp, echo, tim_i, ssh, iso_tsap, time, 

netbios_ns, systat, hostnames, login, efs, supdup, 

http_8001, courier, ctf, finger, nntp, ftp_data, red_i, ldap, 

http, ftp, pm_dump, exec, klogin, auth, netbios_dgm, ... 

66 

flag RSTR, S3, SF, RSTO, SH, OTH, S2, RSTOS0, S1, S0, REJ 11 

land 0 and 1 2 

logged_in 0 and 1 2 

is_host_login 0 and 1 2 

is_guest_login 0 and 1 2 

Table 6 

Clustering of flag feature. 

Flag cluster Flag category Description 

FG1 S0 Connection attempt seen, no reply 

REG Connection attempt rejected 

FG2 S1 Connection established but not terminated 

SF Regular establishment and termination 

OTH No SYN seen, midstream traffic 

FG3 S2 Connection established and closed attempt seen by originator 

RSTO Connection established, originator aborted 

FG4 S3 Connection established and close attempt seen by responder 

RSTR Connection established, responder aborted 

FG5 RSTOSO Originator sent a SYN followed by a RST, SYN ACK not seen by the responder 

SH Originator sent a SYN followed by a FIN, SYN ACK not seen by the responder 

FG6 RSTRH Responder sent a SYN ACK followed by a RST, SYN not seen by the originator 

SHR Responder sent a SYN ACK followed by a FIN, SYN not seen by the originator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Data preprocessing 

NNR w 

cannot process symbolic data or discrete data therefore, different techniques can be used to convert symbolic data

into continuous data without affecting the performance. One can see in Table 3 that several symbolic features exist in the

dataset. Some associated values of these features are listed in Table 5 . 

In Table 5 , some features like land, logged_in, is_host_login and is_guest_login have values 0 or 1, therefore, we can handle

these features in the same way as continuous features. Other features like protocol_type, service and flag have more than two

different values. The protocol_type feature has 3 distinct values, flag feature has 11 distinct values, and service feature has 66

distinct values. Many researchers considered different approaches that are Indicator/Dummy Variables [32] and Conditional

Probability [1] to handle symbolic features. We use the scheme proposed by Neter [32] in our experiment to handle such

type of features. There are many symbolic values of flag and service features. The scheme proposed by Neter [32] will

increase the dimensionality of dataset, therefore, based on domain knowledge, we also use clustering technique proposed by

Hernndez-Pereira et al. [16] to group similar categories for different symbolic features. Hence, the flag and service features

are further clustered to reduce the dimensionality before transforming these categories into indicator variable. The flag

feature describes the status of the connection. The values of flag feature used in dataset are mentioned in Table 5 . According

to Hernndez-Pereira et al. [16] , the categories of these features are further clustered into different groups as mentioned in

Table 6 . 

The service feature describes the availability of services for a connection. The values of service attribute used in dataset

are further clustered according to Hernndez-Pereira et al. [16] as mentioned in Table 7 . 

It is necessary to scale the data for NN. We performed necessary scaling to normalize the data. We used the

KDDT rain _ 20 percent dataset for training and KDDT est + and KDDT est −21 for testing. During the experimental phase, two

subsets are extracted from the training file, where Tr is a set of labeled examples used to train the classifier, and U is a set

of unlabeled examples used to predict the labels. For the purpose of this simulation, the size of Tr is taken much smaller

than that of U so that the efficiency of the proposed scheme can be tested properly. The division of training samples and

unlabeled samples is based on the ratio of 10:90, where 10% is labeled data Tr , and remaining 90% is unlabeled data U .

However, we used the testing datasets, KDDT est + and KDDT est −21 , as a whole to evaluate the performance of proposed

technique. 
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Table 7 

Clustering of service feature. 

Service cluster Service category Description 

SG1 telnet, ssh, … Services used to remotely access other machines 

SG2 ftp, tftp, … Services used for file transfer 

SG3 smtp, imap4, … Services used in mail transfer 

SG4 http, … Services used in web applications 

SG5 svstat, netstat, … Services used to get system parameters and statistics 

SG6 host name, domain, … Services used in names servers 

SG7 eco_i, tim_i, ecr_i, urp_i, … Services used in ICMP protocol 

SG8 Remaining services All other services 

Table 8 

List of experiments. 

#. of experiments Techniques for handling symbolic features 

Experiment-1 Indicator/dummy variable 

Experiment-2 Clustering technique + indicator variable 

Fig. 3. Flow chart of Experiment-1 by using proposed methodology. 

 

 

 

 

 

 

 

 

 

 

4.3. Experimental results 

After required data preprocessing and necessary data scaling, we conduct the experiment in two modes as mentioned in

Table 8 to evaluate the performance of the proposed methodology. 

Experiment-1: In the first experiment, we convert all symbolic attributes into indicator variables as discussed earlier.

The flow chart of experiment by using proposed strategy is depicted in Fig. 3 . 

We test our methodology and obtain the testing accuracy on both KDDT est + and KDDT est −21 dataset. In first phase, we

train the classifier NNR w 

with original training set Tr and obtain the three groups of samples i.e., low, mid, and high, which

are based on fuzzy quantity after utilizing the unlabeled set U . In second phase, we retrain the classifier with new training

set Tr ’, where the samples belonging to low and high fuzziness groups are also incorporated with Tr . Testing accuracies on

both datasets are depicted in Table 9 . During the experiment, we also tested the impact of different initialization intervals on

the overall performance of NNR w 

. The initialization interval in this experiment was [0, θ ], 1 ≤ θ ≤ 10. The input weights w i

and biases b i at the hidden layer of NNR w 

were the random variables that followed a uniform distribution over the interval

[0, θ ]. Hence, a smaller interval, i.e., [0,1], leads to better accuracy as shown in Fig. 5 (a). 

For further verification of the results, the accuracies are computed by incorporating other categories with Tr and obtain-

ing the following results as shown in Table 10 . 
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Table 9 

Testing accuracy on KDDTest + and KDDTest −21 . 

Datasets Proposed algorithm by incorporating T r + FG low + FG high 

Test acc (%) Test time (s) 

KDDTest + 82.41 0.012 

KDDTest −21 67.06 0.014 

Table 10 

Testing accuracy on KDDTest + and KDDTest −21 dataset af- 

ter incorporating other fuzziness groups into the training 

set. 

Fuzziness categories Test acc 

KDDTest + (%) KDDTest −21 (%) 

F G low 78.87 60.14 

FG mid 78.29 59.06 

FG high 78.81 59.99 

F G low + F G mid 78.65 59.97 

F G mid + F G high 78.79 59.75 

Fig. 4. Flow chart of Experiment-2 by using proposed methodology. 

Table 11 

Testing accuracy on KDDTest + and KDDTest −21 . 

Datasets Proposed Algorithm by incorporating T r + FG low + FG high 

Test acc (%) Test time (s) 

KDDTest + 84.12 0.010 

KDDTest −21 68.82 0.312 

 

 

 

 

 

Experiment-2: In the second experiment, we first apply the clustering technique (already discussed), which is proposed

by Hernndez-Pereira et al. [16] to clusters the flag and the service features, after that these symbolic clusters are converted

into dummy variables. The flow chart of Experiment-2 by using the proposed methodology is depicted in Fig. 4 . 

Again, we test the proposed methodology and obtain the following accuracies on both KDDT est + and KDDT est −21 datasets

as shown in Table 11 . During this experiment, We also tested the impact of different initialization intervals on the overall

performance of NNR w 

. Therefore, a smaller interval, i.e., [0,1], also leads to better accuracy as depicted in Fig. 5 (b). 

For further verification of the attained results, the accuracies are computed by incorporating other categories with the

original training set separately and obtaining the following results as shown in Table 12 . 
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Fig. 5. Impact of different initialization intervals on the performance of proposed methodology using KDDTest + and KDDTest −21 datasets. 

Table 12 

Testing accuracy on KDDTest + and KDDTest −21 dataset af- 

ter incorporating other fuzziness groups into the training 

set. 

Fuzziness categories Test acc 

KDDTest + (%) KDDTest −21 (%) 

F G low 81.01 64.50 

FG mid 78.63 56.99 

FG high 79.01 62.97 

F G low + F G mid 81.04 62.94 

F G mid + F G high 78.97 65.02 

Table 13 

Performance comparison between different classifiers and proposed algo- 

rithm. 

Classifiers Test acc 

KDDTest + (%) KDDTest −21 (%) 

J48 81.05 63.97 

Naive Bayes 76.56 55.77 

NB tree 82.02 66.16 

Random forests 80.67 63.25 

Random tree 81.59 58.51 

Multi-layer perceptron 77.41 57.34 

SVM 69.52 42.29 

Proposed algorithm-(Experiment-1) 82.41 67.06 

Proposed algorithm-(Experiment-2) 84.12 68.82 

 

 

 

 

 

 

 

 

 

 

4.4. Comparative analysis 

According to the results shown in Table 9 , the accuracies obtained by our proposed algorithm on KDDT est + and

KDDT est −21 dataset are maximum as compared to the accuracies obtained by Tavallaee et al. [48] , where they used dif-

ferent classifiers to obtain the accuracy on both testing datasets. Testing accuracies obtained by Tavallaee et al. [48] and our

proposed algorithm are depicted in Table 13 . 

We give some final remarks on both Experiment-1 and Experiment-2. In both experiments, training dataset includes

25 , 192 records and both KDDT est + and KDDT est −21 contain 22, 544 and 11, 850 records respectively, are used to test the

proposed methodology. We extract two subsets from training dataset, one subset having proportion of 10% is used to train

the classifier, and the second subset is used as unlabeled dataset having proportion of 90% of original training dataset. In the

first experiment we used the indicator variable technique, where the dimensionality of dataset increased from 41 features

to 122. While in the second experiment we used clustering methodology proposed by Hernndez-Pereira et al. [16] before

applying the indicator or dummy variable technique, which limits the dimensionality to 55 features. Tables 9 and 11 indicate
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that the accuracies obtained in both experiments are relatively high as compared to the accuracies on different classifiers as

mentioned in Table 13 . 

The essential part of this algorithm is to add the samples belonging to both low and high fuzziness groups with their

predicted labels into original training set, which enlarges the training set. It is also possible that the new training set may

include some misclassified samples. To make clear which fuzziness group plays an important role to the improvement in

classification accuracy, we conducted the experiment by adding each group separately. Hence, we conclude that the samples

belong to low and high fuzziness groups together with original training set effectively increase the classification accuracy.

Tables 10 and 12 list the classification accuracies by adding other fuzziness groups separately with the original training

set. The main contribution of this research study is to improve the classification accuracy by finding the relationship be-

tween classifier’s fuzziness and its misclassification on unlabeled samples. Hence, it is verified that the samples belonging

to low and high fuzziness groups play an important role for improving the classifier performance and the samples with mid

fuzziness exhibit higher risk of misclassification for ID dataset. 

5. Conclusion 

In this paper we have designed a new SSL algorithm for improving the classifier performance on ID datasets by inves-

tigating a divide-and-conquer strategy in which unlabeled samples with their predicted labels are categorized according

to the magnitude of fuzziness. We used the neural network with random weights ( NNR w 

) as a base classifier because it

is computationally efficient and has an excellent learning performance. The hidden-node parameters (i.e. weights and bi-

ases) in NNR w 

are selected randomly and independently. The study mentioned in this paper is limited to achieve the better

classification accuracy after finding the relationship between the fuzziness outputted by the classifier on a group of sam-

ples and their misclassification rate. It is experimentally observed that this methodology is an effective way to improve the

classification accuracy when we train the NNR w 

to get the fuzzy vector output and perform the sample categorization on

unlabeled samples according to their fuzziness quantity. The classifier is retrained after incorporating the unlabeled samples

with their predicted labels (that belong to the low and high fuzziness groups) into the original training set. This study also

verifies that samples belonging to the mid fuzziness group have a higher risk of misclassification for IDSs. In this paper, we

reported two-class problem, i.e., normal and anomaly. Our future research will be directed towards applying this strategy to

improve the effectiveness of IDSs for detecting multiple types of attacks. 

Acknowledgments 

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud Univer-

sity for its funding of this research through the Research Group Project no. RG-1435-048. This research is also supported by

China Postdoctoral Science Foundation ( 2015M572361 ), Basic Research Project of Knowledge Innovation Program in Shen-

zhen (JCYJ20150324140036825), and National Natural Science Foundations of China (61503252 and 71371063). 

References 

[1] D. Aha , D. Kibler , M. Albert , Instance-based learning algorithms, Mach. Learn. 6 (1) (1991) 37–66 . 

[2] M. Alhamdoosh , D.H. Wang , Fast decorrelated neural network ensembles with random weights, Inf. Sci. 264 (2014) 104–117 . 

[3] S. Baluja , Using labeled and unlabeled data for probabilistic modeling of face orientation, Int. J. Pattern Recognit. Artif. Intell. 14 (08) (20 0 0) 1097–1107 .
[4] A. Blum , S. Chawla , Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the Eighteenth International Conference on

Machine Learning, 2001, pp. 19–26 . 
[5] A. Blum , T. Mitchell , Combining labeled and unlabeled data with co-training, in: Proceedings of the Eleventh Annual Conference on Computational

Learning Theory - COLT’ 98, 1998, pp. 92–100 . 
[6] S. Bosworth , M. Kabay , Computer Security Handbook, John Wiley & Sons, New York, 2002 . 

[7] F.L. Cao , H.L. Ye , D.H. Wang , A probabilistic learning algorithm for robust modeling using neural networks with random weights, Inf. Sci. 313 (2015)

62–78 . 
[8] C. Chen , Y. Gong , Y. Tian , Semi-supervised learning methods for network intrusion detection, in: Proceedings of the 2008 IEEE International Conference

on Systems, Man and Cybernetics, 2008, pp. 2603–2608 . 
[9] W. Chen , Y. Shao , N. Hong , Laplacian smooth twin support vector machine for semi-supervised classification, Int. J. Mach. Learn. Cybern. 5 (3) (2013)

459–468 . 
[10] J. Chen , Y. Wang , X. Wang , On-demand security architecture for cloud computing, Computer 45 (7) (2012) 73–78 . 

[11] A. De Luca , S. Termini , A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Inf. Control 20 (4) (1972) 301–312 . 

[12] D. Denning , An intrusion-detection model, IEEE Trans. Softw. Eng. 13 (2) (1987) 222–232 . 
[13] A. Fujino , N. Ueda , K. Saito , A hybrid generative/discriminative classifier design for semi-supervised learning, Trans. Jpn. Soc. Artif. Intell. 21 (2006)

301–309 . 
[14] Q. Gao , Y. Huang , X. Gao , W. Shen , H. Zhang , A novel semi-supervised learning for face recognition, Neurocomputing 152 (2015) 69–76 . 

[15] Y. He, X.Z. Wang, J.Z.X. Huang, Fuzzy nonlinear regression analysis using a random weight network, Inf. Sci. (2016) In press, doi: 10.1016/j.ins.2016.01.
037 . 

[16] E. Hernndez-Pereira , J. Surez-Romero , O. Fontenla-Romero , A. Alonso-Betanzos , Conversion methods for symbolic features: a comparison applied to an

intrusion detection problem, Expert Syst. Appl. 36 (7) (2009) 10612–10617 . 
[17] B. Igelnik , Y.-H. Pao , Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Trans. Neural Netw. 6

(6) (1995) 1320–1329 . 
[18] KDDCup 1999 Data, 2015. [Online]. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html . [Accessed: 23-06-15]. 

[19] J. Keller , M. Gray , J. Givens , A fuzzy k-nearest neighbor algorithm, IEEE Trans. Syst. Man Cybern. 15 (4) (1985) 580–585 . 
[20] C. Kruegel , F. Valeur , G. Vigna , Intrusion Detection and Correlation, Springer, New York, 2005 . 

http://dx.doi.org/10.13039/501100002858
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0014
http://dx.doi.org/10.1016/j.ins.2016.01.037
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0017
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0019


R.A.R. Ashfaq et al. / Information Sciences 378 (2017) 484–497 497 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[21] T. Lane, A decision-theoretic, semi-supervised model for intrusion detection, part of the series advanced information and knowledge process-
ing, Machine Learning and Data Mining for Computer Security: Methods and Applications, Springer, London, 2006, pp. 157–177, doi: 10.1007/

1- 84628- 253- 5 _ 10 . 
[22] P. Laskov , P. Dssel , C. Schfer , K. Rieck , Learning intrusion detection: Supervised or unsupervised? in: Proceedings of the Conference on Image Analysis

and Processing ICIAP 2005, 2005, pp. 50–57 . 
[23] C. Lee , D.A. Landgrebe , Decision boundary feature extraction for neural networks, IEEE Trans. Neural Netw. 8 (1) (1997) 75–83 . 

[24] Y. Liao , V. Vemuri , Use of k-nearest neighbor classifier for intrusion detection, Comput. Secur. 21 (5) (2002) 439–448 . 

[25] M. Luo, L. Wang, H. Zhang, J. Chen, A Research on intrusion detectionbased on unsupervised clustering and support vector machine, in: Proceedings
of Information and Communications Security: 5th International Conference, ICICS 2003, Huhehaote, China, October 10–13, 2003 (series Lecture Notes

in Computer Science), vol. 2836, Springer, Berlin Heidelberg, 2003, pp. 325–336, doi: 10.1007/978- 3- 540- 39927- 8 _ 30 . 
[26] A. Mahmood , T. Li , Y. Yang , H. Wang , M. Afzal , Semi-supervised evolutionary ensembles for web video categorization, Knowl. Based Syst. 76 (2015)

53–66 . 
[27] U. Maulik , D. Chakraborty , A novel semisupervised SVM for pixel classification of remote sensing imagery, Int. J. Mach. Learn. Cybern. 3 (3) (2011)

247–258 . 
[28] M. Meng, J. Wei, J. Wang, Q. Ma, X. Wang, Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph

optimizing, Int. J. Mach. Learn. Cybern. (2015) in press, doi: 10.1007/s13042-015-0380-3 (accessed 19.08.15) . 

[29] S. Mukkamala , G. Janoski , A. Sung , Intrusion detection using neural networks and support vector machines, in: Proceedings of the 2002 International
Joint Conference on Neural Networks. IJCNN02 (Cat. No.02CH37290), vol. 2, 2002, p. 17021707 . 

[30] S. Mukkamala , A. Sung , Detecting denial of service attacks using support vector machines, in: Proceedings of the Twelfth IEEE International Conference
on Fuzzy Systems, 2003 . 

[31] S. Mukkamala , A. Sung , A. Abraham , Intrusion detection using an ensemble of intelligent paradigms, J. Netw. Comput. Appl. 28 (2005) 167 . Science
Direct 

[32] J. Neter , Applied Linear Statistical Models, WCB/MacGraw-Hill, Boston, 1996 . 

[33] K. Nigam , R. Ghani , Analyzing the effectiveness and applicability of co-training, in: Proceeding of the Ninth International Conference on Information
and Knowledge (CIKM-20 0 0), 20 0 0 . 

[34] K. Nigam , A. Mccallum , S. Thrun , T. Mitchell , Text classification from labeled and unlabeled documents using EM, Mach. Learn. 39 (23) (20 0 0) 103–134 .
[35] NSL-KDD Data Set, [Online]. Available: http://nsl.cs.unb.ca/NSL-KDD/ . [Accessed: 23-06-15]. 

[36] B. Pan , J. Lai , L. Shen , Ideal regularization for learning kernels from labels, Neural Netw. 56 (2014) 22–34 . 
[37] F. Pan , J. Wang , X. Lin , Local margin based semi-supervised discriminant embedding for visual recognition, Neurocomputing 74 (5) (2011) 812–819 . 

[38] Y. Pao , G. Park , D. Sobajic , Learning and generalization characteristics of the random vector functional-link net, Neurocomputing 6 (2) (1994) 163–180 .

[39] Z. Qi , Y. Tian , L. Niu , B. Wang , Semi-supervised classification with privileged information, Int. J. Mach. Learn. Cybern. 6 (4) (2015) 667–676 . 
[40] M. Qiu , L. Zhang , Z. Ming , Z. Chen , X. Qin , L. Yang , Security-aware optimization for ubiquitous computing systems with SEAT graph approach, J. Comput.

Syst. Sci. vol. 79 (5) (2013) 518–529 . 
[41] E. Riloff, J. Wiebe , T. Wilson , Learning subjective nouns using extraction pattern bootstrapping, in: Proceedings of the Seventh conference on Natural

language learning at HLT-NAACL 2003, vol. 4, 2003, pp. 25–32 . 
[42] C. Rosenberg , M. Hebert , H. Schneiderman , Semi-supervised self-training of object detection models, in: Proceedings of the 2005 Seventh IEEE Work-

shops on Applications of Computer Vision (WACV/MOTION’05), 1, 2005, pp. 29–36 . 

[43] D. Sanchez , E. Trillas , Measures of fuzziness under different uses of fuzzy sets, Commun. Comput. Inf. Sci. 298 (2012) 25–34 . 
[44] S. Scardapane , D.H. Wang , M. Panella , A. Uncini , Distributed learning for random vector functional-link networks, Inf. Sci. 301 (2015) 271–284 . 

[45] K. Scarfone, P. Mell, 20 07, SP 80 0–94. Guide to Intrusion Detection and Prevention Systems (IDPS). National Institute of Standards & Technology,
Gaithersburg, MD, United States. 

[46] W. Schmidt , M. Kraaijveld , R. Duin , Feedforward neural networks with random weights, in: Proceedings of the Eleventh IAPR International Conference
on Pattern Recognition, Conference B: Pattern recognition Methodology and Systems, 1992, pp. 1–4 . 

[47] C. Shang, S. Feng, Z. Zhao, J. Fan, Efficiently detecting overlapping communities using seeding and semi-supervised learning, Int. J. Mach. Learn. Cybern.

(2015) in press, doi: 10.1007/s13042- 015- 0338- 5 (accessed 19.08.15) . 
[48] M. Tavallaee , E. Bagheri , W. Lu , A. Ghorbani , A detailed analysis of the KDD CUP 99 data set, in: Proceedings of the 2009 IEEE Symposium on Compu-

tational Intelligence for Security and Defense Applications, 2009 . 
[49] H.T. Braake , G.V. Straten , Random activation weight neural net (RAWN) for east non-iterative training, Eng. Appl. Artif. Intell. 8 (1) (1995) 71–80 . 

[50] V. Vapnik , Statistical Learning Theory, Wiley, New York, 1998 . 
[51] X. Wang , R.A.R. Ashfaq , A. Fu , Fuzziness based sample categorization for classifier performance improvement, J. Intell. Fuzzy Syst. 29 (3) (2015)

1185–1196 . 

[52] H. Wang , R. Nie , X. Liu , T. Li , Constraint projections for semi-supervised affinity propagation, Knowl. Based Syst. 36 (2012) 315–321 . 
[53] X. Wang , H.J. Xing , Y. Li , Q. Hua , C.R. Dong , W. Pedrycz , A study on relationship between generalization abilities and fuzziness of base classifiers in

ensemble learning, IEEE Trans. Fuzzy Syst. 23 (5) (2015) 1638–1654 . 
[54] J. Xie , K. Hone , W. Xie , X. Gao , Y. Shi , X. Liu , Extending twin support vector machine classifier for multi-category classification problems, Intell. Data

Anal. 17 (4) (2013) 649–664 . 
[55] Y. Yam , T. Chow , C. Leung , A new method in determining initial weights of feedforward neural networks for training enhancement, Neurocomputing

16 (1) (1997) 23–32 . 
[56] Q. Yan , F. Yu , Distributed denial of service attacks in software-defined networking with cloud computing, IEEE Commun. Mag. 53 (4) (2015) 52–59 . 

[57] D. Yarowsky , Unsupervised word sense disambiguation rivaling supervised methods, in: Proceedings of the Thirty Third Annual Meeting on Association

for Computational Linguistics, 1995, pp. 189–196 . 
[58] Z. You , J.Z. Yu , L. Zhu , S. Li , Z.K. Wen , A mapreduce based parallel SVM for large-scale predicting proteinprotein interactions, Neurocomputing 145

(2014) 37–43 . 
[59] Y. Yuan , M.J. Shaw , Induction of fuzzy decision trees, Fuzzy Sets Syst. 69 (1995) 125–139 . 

[60] L. Zadeh , Probability measures of fuzzy events, J. Math. Anal. Appl. 23 (2) (1968) 421–427 . 
[61] J.W. Zhao , Z.H. Wang , F.L. Cao , D.H. Wang , A local learning algorithm for random weights networks, Knowl. Based Syst. 74 (2015) 159–166 . 

[62] M. Zhao , T. Chow , Z. Wu , Z. Zhang , B. Li , Learning from normalized local and global discriminative information for semi-supervised regression and

dimensionality reduction, Inf. Sci. 324 (2015) 286–309 . 
[63] D. Zhou , J. Huang , B. Schlkopf , Learning from labeled and unlabeled data on a directed graph, in: Proceedings of the Twenty Second International

Conference on Machine Learning - ICML ’05, 2005, pp. 1036–1043 . 
[64] X. Zhu , Semi-Supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of WisconsinMadison, 2005 . 

[65] X. Zhu , A. Goldberg , Introduction to semi-supervised learning, Synth. Lect. Artif. Intell. Mach. Learn. 3 (1) (2009) 1–130 . 

http://dx.doi.org/10.1007/1-84628-253-5_10
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0023
http://dx.doi.org/10.1007/978-3-540-39927-8_30
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0026
http://dx.doi.org/10.1007/s13042-015-0380-3
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0033
http://nsl.cs.unb.ca/NSL-KDD/
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0043
http://dx.doi.org/10.1007/s13042-015-0338-5
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0054
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0054
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0056
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0056
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0056
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0060
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0060
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0060
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0060
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0061
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0061
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0062
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0062
http://refhub.elsevier.com/S0020-0255(16)30254-7/sbref0062

	Fuzziness based semi-supervised learning approach for intrusion detection system
	1 Introduction
	2 Semi-supervised learning (SSL)
	2.1 Self-training
	2.2 Co-training
	2.3 Generative models
	2.4 Graph based methods
	2.5 Transductive support vector machines (TSVMs)

	3 Proposed fuzziness based algorithm using  for IDS
	3.1 Fuzziness
	3.2 Neural network with random weights ()
	3.3 Fuzziness based divide-and-conquer strategy
	3.4 Proposed algorithm

	4 Performance evaluation
	4.1 Data specification
	4.2 Data preprocessing
	4.3 Experimental results
	4.4 Comparative analysis

	5 Conclusion
	 Acknowledgments
	 References


