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Feature Selection Based on Neighborhood
Discrimination Index

Changzhong Wang, Qinghua Hu, Xizhao Wang, Degang Chen, Yuhua Qian, and Zhe Dong

Abstract— Feature selection is viewed as an important pre-
processing step for pattern recognition, machine learning, and
data mining. Neighborhood is one of the most important concepts
in classification learning and can be used to distinguish samples
with different decisions. In this paper, a neighborhood discrimi-
nation index is proposed to characterize the distinguishing infor-
mation of a neighborhood relation. It reflects the distinguishing
ability of a feature subset. The proposed discrimination index
is computed by considering the cardinality of a neighborhood
relation rather than neighborhood similarity classes. Variants of
the discrimination index, including joint discrimination index,
conditional discrimination index, and mutual discrimination
index, are introduced to compute the change of distinguishing
information caused by the combination of multiple feature
subsets. They have the similar properties as Shannon entropy
and its variants. A parameter, named neighborhood radius,
is introduced in these discrimination measures to address the
analysis of real-valued data. Based on the proposed discrimina-
tion measures, the significance measure of a candidate feature is
defined and a greedy forward algorithm for feature selection is
designed. Data sets selected from public data sources are used
to compare the proposed algorithm with existing algorithms.
The experimental results confirm that the discrimination index-
based algorithm yields superior performance compared to other
classical algorithms.

Index Terms— Discrimination index, distinguishing informa-
tion, feature selection, neighborhood relation.

I. INTRODUCTION

W ITH the development of computer and database tech-
nology, the amount of data is growing exponentially.

Ideally, the information provided is useful; however, data
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frequently contains redundant information. Therefore, before
using a data set, it is necessary to preprocess the data to
remove redundant features. Feature selection is an important
tool to reduce redundant features. The majority of researchers
are committed to processing high-dimensional data with fea-
ture selection. The aim is to determine a subset of opti-
mal features with strong classification ability according to
evaluation criteria and obtain high-dimensional characteristics
by analyzing low-dimensional data. Feature selection is an
effective technique to simplify data analysis and acquire key
features of the data. Recently, this has attracted considerable
attention in pattern recognition, machine learning, and data
mining [5]–[28], [31]–[36], [44]–[50], [55].

Relations, produced by a subset of features, represent the
similarity or dissimilarity between samples. Similar samples
form a similarity class, dissimilar samples fall into different
classes. A relation can be used to reflect the ability of
features to distinguish samples. Relations have been applied to
discretize real-valued data [37], [47], clustering [41], attribute
reduction [4], [6], [19]–[21], [53], and uncertainty reasoning
and decision [29], [43], [62]. Furthermore, equivalence rela-
tions [31], [37], [57], similarity relations [22], [42], [59]–[61],
neighborhood relations [15], [38], [51]–[53], [56], and domi-
nance relations [9], [19], [54] are the foundations of a sequence
of rough set models.

Entropy, as an uncertainty measure, is a useful tool for
characterizing the distinguishing information of a subset of
features. The less likely the conditional entropy a feature
subset has with respect to decision attribute, the greater the
capability the feature subset has in distinguishing samples
with different decisions. Entropy has played an important role
in pattern recognition and feature selection. Since Shannon
first proposed information entropy to evaluate the uncertainty
of discrete sample spaces, entropy has been applied in diverse
fields [2], [6], [7], [16]–[18]. The extension of entropy and
its variants were adapted for feature selections in [1], [16],
[23], and [39]. To calculate the distinguishing information
of fuzzy or numerical features, Yager [58] introduced the
concept of entropy into fuzzy similarity relations. In fact,
Yager’s entropy is a generalization of Shannon entropy; it is
defined using equivalence classes or fuzzy similarity classes.
In 2002, Hernandez and Recasens [18] extended Yager’s work
and presented the formulae of joint entropy and conditional
entropy based on Yager’s entropy then, they used these
measures to learn fuzzy decision trees from a set of data
samples. Hu et al. [17] redefined joint entropy and conditional
entropy based on Yager’s work and used them to measure
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the uncertainty of the distinguishing ability of a set of fuzzy
similarity relations. In 2005, Mi et al. [30] introduced a
distinguishable measure of fuzzy equivalence relation based
on a fuzzy rough set model. In 2008, Qian and Liang [40] pro-
posed a combinational measure for evaluating the uncertainty
of the distinguishing ability of a subset of features. In 2011,
Hu et al. [16] introduced the concepts of neighborhood
entropy, neighborhood conditional entropy, and neighborhood
mutual information in numerical spaces for evaluating the
relevance between continuous features and discrete decision
attributes All these studies focused on extensions of Shannon
entropy or Yager’s entropy and their applications.

Neighborhood is one of the most important concepts in
classification learning [15], [51], [52], [63]. Neighborhood
can be used to generate similarity classes from the samples
described by numerical features and used to distinguish sam-
ples. The distinguishing information of a feature subset is
related to the neighborhood relations induced by the feature
subset. In this paper, we propose a new measure of distin-
guishing information, called the neighborhood discrimination
index, based on neighborhood relations. Compared to Yager’s
entropy [58] and its varieties [16], [17], the neighborhood dis-
crimination index has similar properties to Shannon entropy.
However, it is directly defined on neighborhood relations and
acquired by computing the cardinality of the neighborhood
relations rather than neighborhood similarity classes. Thus,
the computational complexity of the proposed discrimination
index is less. We define joint discrimination index, conditional
discrimination index, and mutual discrimination index and
discuss their basic properties. These measures are used to
calculate the change of distinguishing information caused by
the combination of multiple feature subsets. As with Shannon
conditional entropy, the conditional discrimination index can
be used to characterize the ability of a subset of features to
distinguish samples with different decisions; the smaller the
conditional discrimination index, the greater the distinguishing
ability of the feature subset. We also discuss the influence of
the neighborhood radius on the neighborhood discrimination
index. Then, we define attribute importance and propose a
feature selection algorithm based on the proposed discrimi-
nation measures. Finally, we use public standard data sets to
verify the validity and stability of the proposed method and
compare the proposed algorithm with existing methods. The
experimental results confirm that the proposed measures are
efficient and effective for feature selections.

This paper is organized as follows. In Section II,
we review the basic concepts of Shannon entropy in learning.
In Section III, we present the definitions of the neighborhood
discrimination index and its related discrimination measures,
and discuss their properties. In Section IV, we define the signif-
icance of a candidate feature and design a heuristic algorithm
for feature selection based on a mutual discrimination index.
In Section V, we verify the feasibility and stability of the
proposed algorithm. Section VI concludes the paper.

II. SHANNON ENTROPY IN LEARNING

Suppose that U is a nonempty set of samples, A is a set of
discrete attributes describing the samples, and D is a decision

attribute that partitions the sample space into r classes. Let
B ⊆ A, then an equivalence relation RB can be induced by
attribute subset B as follows:

RB = {(xi , x j ) ∈ U ×U |a(xi) = a(x j ),∀a ∈ B}. (1)

Suppose that the partition produced by RB is denoted by
U/B ={X1, X2, . . . Xm}, where a(x) is the attribute value of
sample x on a. The elements in Xi are not distinguished by the
attribute subset B as their feature values are the same. If we
consider B is a random variable on U and the value space for
B is {X1, X2, . . . Xm}, then the probability distribution of B
is described as follows:

B ∼
[

X1 X2 · · · Xm

p(X1) p(X2) · · · p(Xm)

]
(2)

where p(Xi ) = |Xi |/|U | and |Xi | is the cardinality of Xi ,
i = 1, 2, . . . , m.

The Shannon entropy of attribute subset B is defined as
follows:

H (B) =
m∑

i=1

−p(Xi ) log p(Xi ). (3)

Let C be another attribute subset of A and the partition
induced by C be denoted by U/C ={Y1, Y2, . . . , Yn}, then the
joint entropy of B and C is defined as

H (B ∪ C) = −
m∑

i=1

n∑
j=1

p(Xi ∩ Y j ) log p(Xi ∩ Y j ) (4)

and the conditional entropy of B on C is computed by

H (B|C) = −
m∑

i=1

n∑
j=1

p(Xi ∩ Y j ) log p(Xi |Y j ) (5)

where p(Xi |Y j ) = |X j ∩ Yi |/|Yi |.
H (B|C) describes the uncertainty of B in the case that C is

given. Obviously, H (B|C) ≥ 0. If there exists Xi ∈ U/B such
that p(Xi |Y j ) = 1 for any Y j ∈ U/C , then H (B|C) = 0. This
means that the distinguishing ability of the attribute subset B
is completely contained in C .

The mutual information of B and C is defined as

I (B;C) =
m∑

i=1

n∑
j=1

p(Xi ∩ Y j ) log
p(Xi ∩ Y j )

p(Xi )p(Y j )
. (6)

Mutual information describes the statistical correlation
between B and C . It is easily proved that I (B;C) ≥ 0. When
B and C are independent, then I (B;C) = 0. In this case,
B and C do not provide any forecast information. Further,
we know that mutual information has the following properties:

I (B;C) = I (C; B)

I (B;C) = H (B)+ H (C)− H (B ∪ C)

I (B;C) = H (B)− H (B|C) = H (C)− H (C|B). (7)

We consider the decision attribute D as a random variable
on U and suppose the value space for D is {ω1, ω2, . . . , ωr },
where ωi denotes the i th decision class. Then, the conditional
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entropy of decision D on attribute subset B can be computed
by

H (D|B) = −
m∑

i=1

r∑
j=1

p(ω j ∩ Xi ) log p(ω j |Xi ). (8)

H (D|B) is used to characterize the ability of B to dis-
tinguish samples with different class labels; the smaller the
H (D|B), the greater the distinguishing ability of B . When
the attribute subset B completely divides all samples into
their respective categories, then H (D|B) = 0. According to
the relationship between the conditional entropy and mutual
information, we can clearly know that the mutual information
increases with an increase of the distinguishing ability of an
attribute subset.

III. NEIGHBORHOOD DISCRIMINATION INDEX AND ITS

VARIANTS

In the following discussions, a data set used for classifica-
tion learning will be written as a decision table and denoted
by 〈U, A, D〉, where U = {x1, x2, . . . , xn} is a nonempty set
of samples, called a universe, A = {a1, a2, . . . , am} is a set
of conditional attributes to characterize the samples, and D
is a decision attribute and partitions the universe into r crisp
equivalence classes U/D ={D1, D2, . . . Dr }. The sign | · | is
used to denote the cardinality of a set or relation.

In this section, a new measure, called neighborhood dis-
crimination index, is proposed to compute the distinguishing
ability of a feature subset. We begin by introducing the notion
of neighborhood relations based on distance functions.

Given a feature subset B ⊆ A, RB is a binary relation
generated by B . We say RB is a crisp similarity relation on
U if RB satisfies

1) Reflexivity: (x, x) ∈ RB , ∀x ∈ U .
2) Symmetry: (x, y) ∈ RB ⇒ (y, x) ∈ RB for any x, y ∈

U .

A crisp similarity relation RB on the universe can be
represented by a similarity matrix, generally denoted as RB =
(ri j )n×n , where ri j ∈ {0, 1}, i, j = 1, 2, . . . , n. There are many
methods to calculate ri j ; we use the following measures:

ri j =
{

1, �B
p (xi , x j ) ≤ ε

0, �B
p (xi , x j ) > ε

(9)

where xl = [xl1, xl2, . . . , xls ]T , l = i, j are two samples, T
represents the transpose operation of a vector, B is a subset
of attributes with |B| = s and

�B
p (xi , x j ) = p

√√√√ s∑
k=1

‖xik − x jk‖p. (10)

In this case, ‖ · ‖ represents the absolute value. �B
p is called

the Manhattan distance if p = 1, Euclidean distance if p =
2, and Chebychev distance if p = ∞. ε is a threshold that
is used to control sample similarity. We call threshold ε the
radius of the neighborhood. A similarity relation induced by
distance function �B

p and neighborhood radius ε is called a
neighborhood similarity relation and denoted as Rε

B . Let Rε1
B1

and Rε2
B2

be two neighborhood similarity relations, we say Rε1
B1

is finer than Rε2
B2

if Rε1
B1
⊆ Rε2

B2
.

According to the above definition, we know that samples
xi and x j are distinguishable if their distance is more than
the neighborhood radius ε with respect to feature subset B ,
i.e., �B

p (xi , x j ) > ε; otherwise, they are indistinguishable;
the finer a neighborhood similarity relation, the greater its
distinguishing ability. There are two factors that influence
a neighborhood similarity relation. One is the neighborhood
radius ε, the other is the feature subset B . For a given
parameter ε, the neighborhood relation becomes finer as the
number of features in B increases. This property can be
formulated as follows.

Property 1: Let B ⊆ A, then Rε
A ⊆ Rε

B .
A neighborhood similarity relation characterizes the distin-

guishing ability of a feature subset. Property 1 demonstrates
that the greater the number of features, the finer the neighbor-
hood relation and the greater the distinguishing ability of the
feature subset.

In the following, we introduce a new concept to measure
the distinguishing ability of a feature subset.

Definition 1: Given a decision table 〈U, A, D〉, where U =
{x1, x2, . . . , xn}, B ⊆ A, ε is a neighborhood radius, and
Rε

B is the neighborhood similarity relation induced by B . The
neighborhood discrimination index of B is defined as

H ε(B) = log
n2∣∣Rε

B

∣∣ . (11)

It is clearly seen that H ε(B) ≥ 0 by the fact that |Rε
B | ≤ n2.

It follows from the reflexivity of Rε
B that H ε(B) ≤ log n.

In particular, H ε(B) = log n if |Rε
B | = n, and H ε(B) = 0 if

|Rε
B | = n2.
The neighborhood discrimination index measures the uncer-

tainty quantity of the distinguishing ability of a feature subset.
It is a mapping from a feature space to the real space:
H : (B, ε) → R+, where R+ is the domain of nonnegative
real numbers. With this mapping, the distinguishing abilities
of different feature subsets can be compared.

Compared with neighborhood entropy [16], the neighbor-
hood discrimination index has two main differences.

1) The concept of neighborhood discrimination index is
based on neighborhood relations. It can be directly
obtained by computing the cardinality of the neighbor-
hood relations, whereas neighborhood entropy is defined
on the neighborhood similarity classes and accumula-
tively obtained by considering the cardinality of the
similarity classes. Thus, the computational complexity
of the neighborhood discrimination index is somewhat
less than the neighborhood entropy.

2) Neighborhood entropy is a variant of Yager’s entropy
and is degenerated into Shannon entropy when a neigh-
borhood relation degrades to an equivalence relation.
Hence, neighborhood entropy is a generalization of
Shannon entropy, whereas the neighborhood discrimi-
nation index is simply a measure of the distinguishing
ability of a feature subset. This is the essential difference
between these measures.
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Note that the neighborhood discrimination index is not only a
function of feature subset B but also related to the neigh-
borhood radius ε. Next, we discuss the influence of the
neighborhood radius and feature subset on the discrimination
index.

Proposition 1: If ε1 ≤ ε2, then H ε1(B) ≥ H ε2(B).
Proof: Let (xi , x j ) ∈ Rε1

B , then �B
p (xi , x j ) ≤ ε1. From

ε1 ≤ ε2, we have �B
p (xi , x j ) ≤ ε2, which implies (xi , x j ) ∈

Rε2
B . Hence, Rε1

B ⊆ Rε2
B and then, |Rε1

B | ≤ |Rε2
B |. It follows

that H ε1(B) ≥ H ε2(B) by the definition of the neighborhood
discrimination index.

This property indicates that the discrimination index of a
feature subset becomes smaller as the radius of the neighbor-
hood increases. A small neighborhood radius means that the
corresponding neighborhood relation is finer. Hence, the uncer-
tainty quantity of the distinguishing ability of the feature
subset is greater.

Proposition 2: If B1 ⊆ B2, then H ε(B1) ≤ H ε(B2).
Proof: Let (xi , x j ) ∈ Rε

B2
, then �B2

p (xi , x j ) ≤ ε. From

B1 ⊆ B2, we have �B1
p (xi , x j ) ≤ ε, which implies (xi , x j ) ∈

Rε
B1

. Hence, Rε
B2
⊆ Rε

B1
and then |Rε

B2
| ≤ |Rε

B1
|. It follows

H ε(B1) ≤ H ε(B2) by the definition of the neighborhood
discrimination index.

Proposition 2 demonstrates that the neighborhood dis-
crimination index is influenced by the number of features.
It increases monotonously with the size of the feature subset.

Definition 2: Let B1, B2 be two groups of features, ε be
a neighborhood radius, and Rε

B1
, Rε

B2
be two neighborhood

similarity relations induced by B1, B2, respectively. Then,
the joint discrimination index of B1 and B2 is defined as

H ε(B1, B2) = log
n2∣∣Rε

B1
∩ Rε

B2

∣∣ . (12)

The joint discrimination index represents the distinguishing
ability of a joint feature subset. It increases with the addition
of new features. Formally, the property can be expressed as
follows.

Proposition 3: H ε(B1, B2) ≥ H ε(B1), H ε(B1, B2) ≥
H ε(B2).

It is clear that the joint discrimination index of B1 and B2
is greater than any individual discrimination index. This is
interpreted as meaning the distinguishing ability of the joint
features strengthens with the addition of new features. This
is because we can obtain a finer neighborhood relation by
introducing new features.

Proposition 4: If B1 ⊆ B2, then H ε(B1, B2) = H ε(B2).
This property demonstrates that the addition of new features

does not increment the discrimination index if these features
are contained in other existing features. In this case, the distin-
guishing information has been implied in the existing feature
subset.

Definition 3: Let B1, B2 be two groups of features, ε be
a neighborhood radius, and Rε

B1
, Rε

B2
be two neighborhood

similarity relations induced by B1, B2, respectively. Then, the
conditional discrimination index of B1 on B2 is defined as

H ε(B1|B2) = log

∣∣Rε
B2

∣∣∣∣Rε
B1
∩ Rε

B2

∣∣ . (13)

Because |Rε
B1
∩ Rε

B2
| ≤ |Rε

B2
|, it is clearly seen that

H ε(B1|B2) ≥ 0. When B1 ⊆ B2, then Rε
B1
⊇ Rε

B2
. This

means H ε(B1|B2) = 0. When |Rε
B2
| = n2 and Rε

B1
is an

identity matrix, the conditional discrimination index attains
the maximum value. That is, H ε(B1|B2) = log n.

According to the above discussion, we obtain the following
property.

Proposition 5: Let B1, B2 be two groups of features. Then
1) H ε(B1 ∪ B2) ≥ max{H ε(B1), H ε(B2)}.
2) H ε(B1|B2) = 0 if B1 ⊆ B2.
The first item indicates that the discrimination index of the

union of two feature subsets will be no smaller than that of
any single subset. The last item indicates that feature subset
B1 will not introduce distinguishing information with respect
to B2 if B1 is contained in B2.

Proposition 6: Let B1, B2 be two groups of features. Then

H ε(B1|B2) = H ε(B1, B2)− H ε(B2). (14)

Proof:

H ε(B1, B2)− H ε(B2) = log
n2∣∣Rε

B1
∩ Rε

B2

∣∣ − log
n2∣∣Rε

B2

∣∣
= log

n2∣∣Rε
B1
∩ Rε

B2

∣∣ ·
∣∣Rε

B2

∣∣
n2

= log

∣∣Rε
B2

∣∣∣∣Rε
B1
∩ Rε

B2

∣∣ .
It is clearly observed that the conditional discrimination

index is the increment of the distinguishing information by
introducing a new feature subset after one feature subset is
known. This reflects the increment of the distinguishing ability
with the addition of a new feature subset.

Remark 1: Conditional discrimination index H ε(B1|B2) is
not monotonic with the size of attribute subset B2.

Definition 4: Let B1, B2 be two groups of features, ε be
a neighborhood radius, and Rε

B1
, Rε

B2
be two neighborhood

similarity relations induced by B1, B2, respectively. Then,
the mutual discrimination index of B1 and B2 is defined as

I ε(B1; B2) = log
n2

∣∣Rε
B1
∩ Rε

B2

∣∣∣∣Rε
B1

∣∣ · ∣∣Rε
B2

∣∣ . (15)

Proposition 7: Let B1, B2 be two groups of features, then
we have the following properties:
I ε(B1; B2) = I ε(B2; B1)

I ε(B1; B2) = H ε(B1)+ H ε(B2)− H ε(B1, B2)

I ε(B1; B2) = H ε(B1)− H ε(B1|B2) = H ε(B2)− H ε(B2|B1).

(16)

Proof:
1) Straightforward.
2) H ε(B1)+ H ε(B2)− H ε(B1,B2)

= log
|n2|∣∣Rε

B1

∣∣ + log
|n2|∣∣Rε

B2

∣∣ − log
|n2|∣∣Rε

B1
∩ Rε

B2

∣∣
= log

n2 · ∣∣Rε
B1
∩ Rε

B2

∣∣∣∣Rε
B1

∣∣ · ∣∣Rε
B2

∣∣ = I ε(B1; B2).
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Fig. 1. Relationship diagram of discrimination indexes.

3) H ε(B1)− H ε(B1|B2)

= log
|n2|∣∣Rε

B1

∣∣ − log

∣∣Rε
B2

∣∣∣∣Rε
B1
∩ Rε

B2

∣∣
= log

n2 · ∣∣Rε
B1
∩ Rε

B2

∣∣∣∣Rε
B1

∣∣ · ∣∣Rε
B2

∣∣ = I ε(B1; B2).

Similarly, we have H ε(B2)− H ε(B2|B1) = I ε(B1; B2).
The first item indicates that the mutual discrimination index

of B1 and B2 is symmetric. The second states that the mutual
discrimination index is the difference between the sum of
the discrimination indexes of two feature subsets and their
joint discrimination index. The last item demonstrates that
the mutual discrimination index is the difference between
the discrimination index of one of the two feature subsets
and their conditional discrimination index. It reflects that
the mutual discrimination index is the common part of the
distinguishing information of the two feature subsets. The
relationship between neighborhood, conditional, and mutual
discrimination indexes can be explained in Fig. 1.

Remark 2: Given a decision table 〈U, A, D〉, B ⊆ A and
neighborhood radius ε, Rε

B is a neighborhood relation induced
by B and ε, and RD is an equivalence relation induced by D.
Similar to Shannon conditional entropy, H (D|B) can be used
to characterize the ability of B to distinguish samples with dif-
ferent decisions. The smaller the value of H (D|B), the greater
the distinguishing ability of B . When all samples are rightly
grouped into their respective categories, then H (D|B) = 0.
According to the relationship between conditional and mutual
discrimination indexes, we can conclude that the mutual
discrimination index increases as the distinguishing ability of
a feature subset increases. Moreover, we know that H (D|B)
and I (D; B) are not monotonic with the size of feature subset
B from Remark 1.

In many practical problems, we assign a class label to a
sample according to other samples’ labels in its neighborhood.
If all samples in the neighborhood have the same label,
then the sample is called consistent; otherwise, the sample
is inconsistent. Let ε be a neighborhood radius, if all samples
are consistent, then 〈U, A, D〉 is called consistent; otherwise,
it is called inconsistent. It is clearly seen that 〈U, A, D〉 is
consistent with respect to A if and only if Rε

A ⊆ RD .
Proposition 8: If a decision table is consistent with respect

to B , i.e., Rε
B ⊆ RD , then

1) H ε(D|B) = 0.
2) I ε(D; B) = H ε(D).

TABLE I

DESCRIPTION OF DATA SETS

The first item reflects that the conditional discrimination
index equals zero if the classification is consistent. In this
case, all samples can be rightly classified into their respective
classes by feature subset B . The second item states that the
mutual discrimination index between B and D is equal to the
distinguishing information quantity of D if the classification
is consistent.

As we know, Shannon mutual information is widely used in
the feature selection algorithms for categorical data. An opti-
mal feature subset for classification learning should be suf-
ficient and necessary. Because conditional entropy is not
monotonic with the size of the feature subset, sufficiency
should guarantee that the selected features have the maximal
capability in distinguishing samples with different decisions.
Necessity requires no redundant features in the selected feature
subset. Inspired by this idea, we present an axiomatic approach
to feature selection as follows.

Axiom 1 (Maximum of Classification Information): Given
a decision table 〈U, A, D〉, the expected feature subset B
is sufficient if I ε(D; B) ≥ I ε(D; A) under neighborhood
radius ε.

Axiom 2 (Minimum Encoding Length): Given a decision
table 〈U, A, D〉, N is a set of sufficient feature subsets, and
B ∈ N. Then B is favored with respect to its predictive
capability if I ε(D, B) = maxC∈N I ε(D, C).

The proposed axiomatic system presents a multigranular
method to describe the classification ability of a set of
numerical features if neighborhood radius ε is considered as
a variable.

The axiomatic system also provides a goal for feature selec-
tion. It can be formally expressed as the following definition.

Definition 5: Given a decision table 〈U, A, D〉, B is a subset
of A and a ∈ B . a is called redundant in B relative to
D if I ε(D; B) ≤ I ε(D; B − {a}). Otherwise, we say a is
indispensable in B relative to D; B is called dependent if any
attribute in B is indispensable relative to D. B is called a
reduct of A relative to decision D if B satisfies

1) I ε(D; B) ≥ I ε(D; A).
2) I ε(D; B − {a}) < I ε(D; B), ∀a ∈ B .
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TABLE II

AVERAGE SIZE OF FEATURE SUBSETS SELECTED WITH TENFOLD CROSS VALIDATION

TABLE III

COMPARISON OF CLASSIFICATION ACCURACY OF REDUCED DATA WITH SVM (%)

Clearly, a reduct of A relative to D is the minimal feature
subset to retain or improve the mutual discrimination index
of A and D.

According to the relationships between the neighborhood,
conditional, and mutual discrimination indexes, we can clearly
know that the above two conditions for feature selection are
equivalent to the following conditions.

1) H ε(D|B) ≤ H ε(D|A).
2) H ε(D|B − {a}) > H ε(D|B)∀a ∈ B .

Example 1: Given a set X = {x1, x2, x3}, R1, R2, and R3
are relations defined on X , where

R1 =
⎡
⎣ 1 0 1

0 1 0
1 0 1

⎤
⎦ R2 =

⎡
⎣ 1 0 0

0 1 1
0 1 1

⎤
⎦

R3 =
⎡
⎣ 1 1 1

1 1 0
1 0 1

⎤
⎦.

We have

R1 ∩ R2 =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦, R1 ∩ R3 =

⎡
⎣ 1 0 1

0 1 0
1 0 1

⎤
⎦

R2 ∩ R3 =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦.

Suppose the decision equivalence relation

Rd =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦.
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TABLE IV

COMPARISON OF CLASSIFICATION ACCURACY OF REDUCED DATA WITH 3NN (%)

TABLE V

RUNNING TIME OF REDUCTION WITH DIFFERENT ALGORITHMS (s)

We compute

H (R1) = log
9

5
= 0.8480, H (R2) = log

9

3
= 1.5850

H (R3) = log
9

7
= 0.3626, H (R1 R2) = log

9

3
= 1.5850

H (R2 R3) = log
9

3
= 1.5850, H (R1 R3) = log

9

5
= 0.8480.

According to Proposition 6, we know

H (R1|R2) = H (R1 R2)− H (R2) = log
9

3
− log

9

3
= 0

H (R2|R1) = H (R1 R2)− H (R1) = log
9

3
− log

9

5
= log

5

3
= 0.7370.

We can determine H (Rd |R1 R2) = H (Rd |R2 R3) =
H (Rd |R1 R2 R3). Hence, {a1, a2} and {a2, a3} are two reducts.

Compared to neighborhood entropy [16], [17], the proposed
discrimination indexes have wider application. These indexes

can be not only used to compute the distinguishing ability of a
reflexive relation but also address a more general binary rela-
tion. Next, we provide an example to illustrate this statement.
We will discuss a more thorough analysis in the future.

Example 2: Given a set X = {x1, x2, x3}, R1, R2, and R3
are relations defined on X , where

R1 =
⎡
⎣ 1 1 1

0 1 1
0 0 0

⎤
⎦, R2 =

⎡
⎣ 1 1 1

0 1 1
0 0 1

⎤
⎦

R3 =
⎡
⎣ 1 0 0

0 1 1
0 1 1

⎤
⎦.

According to neighborhood entropy [16], [17]

H (R1) = −1

3

3∑
i=1

log
|[xi ]R1 |

3
= +∞
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TABLE VI

OPTIMAL FEATURES SELECTED BY NEIEN, FINEN, AND HANDI ALGORITHMS

H (R2) = −1

3

3∑
i=1

log
|[xi ]R2 |

3
= 0.5014

H (R3|R1) = −1

3

3∑
i=1

log
|[xi ]R1 ∩ [xi ]R3 |
|[xi ]R1 |

= − log
1

6
− log

0

0

where [xi ]R1 is the successor neighborhood of xi with respect
to R1 (see [16], [17]). According to the discrimination index,
we have

H (R1) = log
9

5
= 0.5878, H (R2) = log

9

6
= 0.4055

H (R3|R1) = H (R1 R3)− H (R1) = log
5

2
= 0.9163.

Although the differences between the distinguishing abilities
of R1 and R2 are considerably small, the neighborhood entropy
of R1 is an infinite value. The value of the discrimination
index of R1, conversely, is more reasonable. Further, the con-
ditional entropy of R3 relative to R1 is meaningless.

IV. FEATURE SELECTION ALGORITHM BASED ON

NEIGHBORHOOD DISCRIMINATION INDEX

As discussed above, the proposed discrimination indexes
can be used to measure the distinguishing ability of a rela-
tion or a feature subset. The smaller the conditional discrimi-
nation index of a feature subset, the greater the distinguishing
ability of the feature subset and hence, the more important the
feature subset. According to the definition of the conditional
discrimination index, adding a new feature to the selected
feature subset could increase or decrease the conditional
discrimination index. A feature can lead to a decrease of the
index only when it is irrelevant to the selected feature subset.
The decrement of the conditional discrimination index reflects
the increment of the distinguishing ability produced by a new

Fig. 2. Number of selected features and accuracy varying with neighborhood
radius ε (Wine).

feature subset. Hence, the significance of a feature can be
defined as follows.

Definition 6: Given decision table 〈U, A, D〉, B ⊆ A, a ∈
A− B , the significance degree of feature a with respect to B
and D is defined as

SIG(a, B, D) = H ε(D|B)− H ε(D|B ∪ {a}). (17)

When B = ∅, we define H ε(D|B) = H ε(D). The
significance of attribute a depends on the increment of the
distinguishing information after adding a into B . A large value
of SIG(a, B, D) indicates that attribute a is more important
for decision D.

Based on the above definition, a greedy algorithm for
computing an optimal feature subset can be designed as
Algorithm 1.

The parameter δ is used to terminate the main loop in
this algorithm. It must be set in advance. For a given data
set, generally speaking, the number of the selected fea-
tures increases if the value of the parameter δ decreases.
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Fig. 3. Number of selected features and accuracy varying with neighborhood
radius ε (Wdbc).

Fig. 4. Number of selected features and accuracy varying with neighborhood
radius ε (Wpbc).

The algorithm employs SIG(a, B, D) to determine the optimal
attribute is added into the current selected feature subset in
each loop. This algorithm terminates when the addition of any
remaining attribute does not decrease the evaluating function.
For a dimensionality of N , the time complexity for computing
the neighborhood similarity relation is N , the worst search
time for a reduct will result in (N2 + N)/2 evaluations of
the evaluation function. The overall time complexity of the
algorithm is O((N2 + N)/2).

V. EXPERIMENTAL ANALYSIS

To verify the feasibility and effectiveness of the proposed
algorithm, we compared the proposed algorithm with the
neighborhood rough set-based algorithm (NRS) [15], neigh-
borhood entropy-based algorithm (NEIEN) [16], fuzzy infor-
mation entropy-based algorithm (FINEN) [17], [58], and fuzzy
rough dependence constructed by intersection operations of
fuzzy similarity relations [20]. We employed the Chebychev
distance function to compute neighborhood similarity rela-
tions. We first compared: 1) the numbers of selected features;
2) the running time of reduction; and 3) the classification
accuracies based on these algorithms. Then, we discussed
the influence of the neighborhood radius ε on the proposed
algorithm. All the algorithms were executed in MATLAB
2013b and run in a hardware environment with a Intel (R)
Core (TM) i7-4790 CPU at 3.60 GHz, with 16-GB RAM.

We employed ten-fold cross validation and two classical
classifiers to evaluate these algorithms. The two classifiers

Algorithm 1 Heuristic Algorithm Based on Neighborhood
Discrimination Index (HANDI)

Input: decision table 〈U, A, D〉 and ε // ε is the neighbor-
hood radius.
Output: one reduct red .
1: Initialize: red = ∅, B = A − red , start = 1; // red is
the pool to contain the selected attributes and B is for the
remaining attributes.
2: while start
3: for each ai ∈ B
4: Compute neighborhood relation Rε

red∪{ai }.
5: Compute

SI G(ai , red, D) = H ε(D|red)− H ε(D|red ∪ {ai });
6: end for
7: Find ak with maximum value SI G(ak , red, D).
8: if SI G(ak, red, D) > δ
9: red ← red ∪ {ak};
10: B ← B − red;
11: else
12: start=0;
13: end if
14: end while
15: return red .

were support vector machine (RBF-SVM) and k-nearest neigh-
bor rule (K = 3). Because our main purpose was to compare
the performances of the different feature selection algorithms,
the parameter selection for RBF-SVM was not a concern.
Thus, in this experiment, we consistently set the control term
C as 100 and the Gaussian kernel parameter g as one. Such
parameter specifications can perform well on real-world prob-
lems [64]. The experimental comparison was conducted based
on a ten-fold cross validation. That is, the original data set was
randomly divided into ten subsets; one was used as the testing
data and the remaining nine were used for training. Feature
selection was performed on the training set; the reduced train-
ing and testing sets were then sent to a classifier to produce
the classification accuracy. After ten rounds, the average value
and variation of the classification accuracies were computed
as the final performance. Thirteen data sets were used in
the experimental analysis. They were selected from the UCI
Machine Learning Repository [3] and Keng Ridge Biomedical
Data set Repository [65]. The information regarding these data
sets is outlined in Table I. All the numerical attributes were
first normalized into the interval [0, 1].

There are two parameters in the HANDI algorithm, ε and δ.
The parameter ε is introduced to control sample similarity; it
has a significant influence on the performance of the algorithm.
In general, different values of the neighborhood radius can lead
to different classification accuracies; therefore, we selected
an optimal feature subset for each data set by adjusting the
value of the parameter to vary from zero to one with a step of
0.05. The parameter δ was set as 0.001 for low-dimensional
data and 0.01 for high-dimensional data. As different learning
algorithms may require different feature subsets to produce
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Fig. 5. Number of selected features and accuracy varying with neighborhood
radius ε (Sonar).

Fig. 6. Number of selected features and accuracy varying with neighborhood
radius ε (Credit).

the best classification accuracy, all the experimental results
reported in the following tables are presented at the highest
classification accuracy.

Table II presents a comparison of the average size of
the selected features with different algorithms. Because the
highest classification accuracy of each data set was searched
by adjusting the values of ε, the values of parameter ε were
different for the highest accuracies of the data sets. The last
column in Table II, labeled ε, indicates the value of the
neighborhood radius used in the HANDI algorithm, where
the best classification performances were produced on the
corresponding data sets.

From the Table II, we can determine that these reduction
methods can effectively reduce attributes. The number of
selected features with HANDI was less than the other four
algorithms in the majority of the cases. For the Sonar data
set, HANDI identified more features than the FRSINT algo-
rithm, yet less than the NRS, NEIEN, and FINEN algorithms.
For Tumors, HANDI identified more features than NRS and
FRSINT, yet less than NEIEN and FINEN. This implies that
the proposed algorithm is more effective in reducing redundant
attributes.

The classification accuracies of the raw data and the
reduced data sets based on the five algorithms are presented
in Tables III and IV, where the underlined symbols highlight
the highest classification accuracy among the reduced data
sets. From the results of Tables III and IV, it is clear that

Fig. 7. Number of selected features and accuracy varying with neighborhood
radius ε (Sick).

Fig. 8. Number of selected features and accuracy varying with neighborhood
radius ε (Gearbox).

the classification accuracies based on the NRS method are
lower than the other four methods. Out of 26 cases of ten-fold
cross validation, the HANDI and FINEN methods achieved the
highest classification accuracy in 13 and 7 cases, whereas the
NRS, NEIEN, and FRSINT methods obtained the highest clas-
sification in 3, 5, and 2 cases, respectively. For SVM, HANDI
outperformed the raw data 12 times over the 13 classification
tasks; it outperformed the raw data 11 times with respect to
3NN. Moreover, the average accuracy of HANDI was superior
to all other feature selection algorithms in terms of the SVM
and 3NN learning algorithms.

From Table V, we can determine that the running time of
the reduction of the NRS algorithm was the least of the five
different algorithms. The HANDI algorithm executed more
slowly than the NRS algorithm, yet faster than the other three
algorithms. The running time of the FRSINT algorithm was
the greatest. As the NEIEN, FINEN, FRSINT, and HANDI
algorithms were based on similarity relations, they required
significant time to compute the similarity relations of the
attributes. The NRS algorithm does not compute similarity
relations; it just required some time to determine if the samples
in a neighborhood were similar. Hence, the NRS algorithm
executed the fastest. Because the NEIEN and FINEN algo-
rithms require additional time to compute the similarity class
of each sample based on similarity relations, they executed
more slowly than the HANDI algorithm. For the FRSINT
algorithm, it not only depends on similarity relations but
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Fig. 9. Number of selected features and accuracy varying with neighborhood
radius ε (Segmentation).

Fig. 10. Number of selected features and accuracy varying with neighborhood
radius ε (DLBCL).

Fig. 11. Number of selected features and accuracy varying with neighborhood
radius ε (Leukemia).

also requires time to compute the fuzzy-rough membership
of each sample to the different decision categories. Therefore,
the FRSINT algorithm executed the slowest. From Tables III
and IV, we can observe that the majority of the classification
accuracies of the HANDI algorithm are higher than those of
the other four algorithms. The complexity of HANDI is less
than the NEIEN, FINEN, and FRSINT algorithms. Therefore,
it can be concluded that the HANDI algorithm is both feasible
and effective.

To present the selected feature subset of a data set, in the
following we employ the NEIEN, FINEN, and HANDI

Fig. 12. Number of selected features and accuracy varying with neighborhood
radius ε (MLL).

Fig. 13. Number of selected features and accuracy varying with neighborhood
radius ε (Prostate).

algorithms to reduce the entire data set based on the
parameters where the classification accuracies were obtained
in the above experiments. The selected feature subsets are
listed in Table VI. It can be observed that the optimal features
selected by HANDI are virtually the subsets of the optimal
features selected by NEIEN or FINEN in the majority of cases.
For example, this is the case for the Wine data set if the effects
of the fourth feature (Alcalinity) and fifth feature (Magnesium)
are treated as equivalent. Other similar data sets include
Wpbc, Credit, Sick, Gearbox, Leukemia, and Prostate. This
result confirms that HANDI can reduce a greater number of
redundant features than the NEIEN or FINEN methods. For
other data sets, although the optimal features selected by these
three algorithms were different, there were always common
features in the selected feature subsets. The difference in the
feature subsets indicates that there are multiple subsets of
features that have acceptable classification power for a given
classification task. It should be noted that HANDI always
selected the optimal subsets having a fewer number of features.
For the Sick and Segmentation data sets, the selected feature
subsets were identical and the classification accuracies were
virtually the same for the NEIEN and FINEN algorithms. The
marginal differences for the Segmentation could be because
the selected feature subsets were presented by reducing the
entire data set, whereas the classification accuracies were
based on ten-fold cross validation.
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Finally, we present Figs. 2–13 to demonstrate the number of
selected features and classification accuracies varying with ε;
we only display the curves of some data sets with SVM.
The data curves drawn using 3NN were reasonably consistent
with SVM. From Figs. 2–13, it is clearly observed that the
parameter ε has significant influence on the performance of the
HANDI algorithm. The majority of the data sets obtain high
classification accuracies in a wide area. In particular, Wine,
Wdbc, Credit, Gearbox, Segmentation, and Leukemia exhibit
stability in their respective regions. These curves illustrate
that the classification performance is stable and can provide
a selection of an optimal subset of features. The optimal
positions of the classification accuracies are different among
these data sets. We recommend that ε should be set to values
in the interval [0.1, 0.6].

VI. CONCLUSION

Measures for computing the distinguishing ability of a
subset of features have an important role in classification learn-
ing and feature selection. A number of measures have been
developed for these tasks. Considering its effectiveness, infor-
mation entropy is widely used and discussed for evaluating
features. In this paper, we introduced basic ideas in Shannon
information theory into a neighborhood relation context and
proposed discrimination indexes to measure the distinguishing
ability of a subset of features. The proposed discrimination
indexes were directly defined on a neighborhood relation and
computed by considering the cardinality of the neighborhood
relations rather than neighborhood similarity classes. The
conditional discrimination index was used to measure the
increment of discrimination information caused by adding a
new feature, which is interpreted as the significance of an
attribute. Based on the proposed discrimination measures, we
proposed a new algorithm for feature selection. With thirteen
public data sets, a series of experiments were conducted for
evaluating the proposed method. The results confirm that the
algorithm selected fewer features, retained higher classification
accuracy, and required less time. Further, the majority of the
classification accuracies were improved. We also determined
that different parameters have an influence on the performance
of the feature selection algorithm. It is important to select a
suitable value for the threshold for each data set according to
the curves of the data set.

REFERENCES

[1] R. Battiti, “Using mutual information for selecting features in super-
vised neural net learning,” IEEE Trans. Neural Netw., vol. 5, no. 4,
pp. 537–550, Jul. 1994.

[2] T. Beaubouef, F. E. Petry, and G. Arora, “Information-theoretic measures
of uncertainty for rough sets and rough relational databases,” Inf. Sci.,
vol. 109, pp. 185–195, Aug. 1998.

[3] C. L. Blake and C. J. Merz. (1998). UCI Repository of Machine Learning
Databases. [Online]. Available: http://www.ics.uci.edu/~mlearn/MLR-
epository.html

[4] D. Chen, L. Zhang, S. Zhao, Q. Hu, and P. Zhu, “A novel algorithm for
finding reducts with fuzzy rough sets,” IEEE Trans. Fuzzy Syst., vol. 20,
no. 2, pp. 385–389, Apr. 2012.

[5] M. Dash and H. Liu, “Consistency-based search in feature selection,”
Artif. Intell., vol. 151, nos. 1–2, pp. 155–176, 2003.

[6] J. Dai, W. Wang, and Q. Xu, “An uncertainty measure for incomplete
decision tables and its applications,” IEEE Trans. Cybern., vol. 43, no. 4,
pp. 1277–1289, Aug. 2013.

[7] I. Düentsch and G. Gediga, “Uncertainty measures of rough set predic-
tion,” Artif. Intell., vol. 106, pp. 109–137, Nov. 1998.

[8] R. Gilad-Bachrachy, A. Navotz, and N. Tishbyy, “Margin-based feature
selection: Theory and algorithms,” in Proc. 21st Int. Conf. Mach. Learn.,
Banff, AB, Canada, Jul. 2004, pp. 43–50.

[9] S. Greco, B. Matarazzo, and R. Slowinski, “Rough approximation by
dominance relations,” Int. J. Intell. Syst., vol. 17, no. 2, pp. 153–171,
2002.

[10] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Jan. 2003.

[11] M. A. Hall, “Correlation-based feature selection for discrete and numeric
class machine learning,” in Proc. 17th Int. Conf. Mach. Learn., 2000,
pp. 359–366.

[12] S. Huang, C. Li, and Y. Liu, “Complex-valued filtering based on the
minimization of complex-error entropy,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 24, no. 5, pp. 695–708, May 2013.

[13] T. K. Ho and M. Basu, “Complexity measures of supervised classifica-
tion problems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3,
pp. 289–300, Mar. 2002.

[14] J. Hou, H. Gao, Q. Xia, and N. Qi, “Feature combination and the kNN
framework in object classification,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 27, no. 6, pp. 1368–1378, Jun. 2016.

[15] Q. Hu, D. Yu, J. Liu, and C. Wu, “Neighborhood rough set based
heterogeneous feature subset selection,” Inf. Sci., vol. 178, no. 18,
pp. 3577–3594, 2008.

[16] Q. Hu, L. Zhang, D. Zhang, W. Pan, S. An, and W. Pedrycz, “Measuring
relevance between discrete and continuous features based on neighbor-
hood mutual information,” Expert Syst. Appl., vol. 38, pp. 10737–10750,
Sep. 2011.

[17] Q. Hu, D. Yu, Z. Xie, and J. Liu, “Fuzzy probabilistic approximation
spaces and their information measures,” IEEE Trans. Fuzzy Syst., vol. 14,
no. 2, pp. 191–201, Apr. 2006.

[18] E. Hernández and J. Recasens, “A reformulation of entropy in the
presence of indistinguishability operators,” Fuzzy Sets Syst., vol. 128,
pp. 185–196, Jun. 2002.

[19] M. Inuiguchi, Y. Yoshioka, and Y. Kusunoki, “Variable-precision
dominance-based rough set approach and attribute reduction,” Int.
J. Approx. Reason., vol. 50, no. 8, pp. 1199–1214, 2009.

[20] R. Jensen and Q. Shen, “Semantics-preserving dimensionality reduction:
Rough and fuzzy-rough-based approaches,” IEEE Trans. Knowl. Data
Eng., vol. 16, no. 12, pp. 1457–1471, Dec. 2004.

[21] R. Jensen and Q. Shen, “Fuzzy-rough sets assisted attribute selection,”
IEEE Trans. Fuzzy Syst., vol. 15, no. 1, pp. 73–89, Feb. 2007.

[22] D. Kim, “Data classification based on tolerant rough set,” Pattern
Recognit., vol. 34, no. 8, pp. 1613–1624, 2001.

[23] N. Kwak and C.-H. Choi, “Input feature selection by mutual information
based on Parzen window,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 12, pp. 1667–1671, Dec. 2002.

[24] N. Kwak and C.-H. Choi, “Input feature selection for classification
problems,” IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 143–159,
Jan. 2002.

[25] J. Li, Y. Ren, C. Mei, Y. Qian, and X. Yang, “A comparative study of
multigranulation rough sets and concept lattices via rule acquisition,”
Knowl.-Based Syst., vol. 91, pp. 152–164, Jan. 2016.

[26] J. Liang, G. Yu, B. Chen, and M. Zhao, “Decentralized dimensionality
reduction for distributed tensor data across sensor networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2174–2186,
Nov. 2016.

[27] J. Liang, F. Wang, C. Dang, and Y. Qian, “A group incremental approach
to feature selection applying rough set technique,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 2, pp. 294–308, Feb. 2014.

[28] H. Liu and L. Yu, “Toward integrating feature selection algorithms for
classification and clustering,” IEEE Trans. Knowl. Data Eng., vol. 17,
no. 4, pp. 491–502, Apr. 2005.

[29] J.-S. Mi, Y. Leung, H.-Y. Zhao, and T. Feng, “Generalized fuzzy rough
sets determined by a triangular norm,” Inf. Sci., vol. 178, no. 16,
pp. 3203–3213, 2008.

[30] J.-S. Mi, Y. Leung, and W.-Z. Wu, “An uncertainty measure in partition-
based fuzzy rough sets,” Int. J. General Syst., vol. 34, no. 1, pp. 77–90,
2005.

[31] J.-S. Mi, W.-Z. Wu, and W.-X. Zhang, “Approaches to knowledge
reduction based on variable precision rough set model,” Inf. Sci.,
vol. 159, nos. 3–4, pp. 255–272, 2004.

[32] P. Mitra, C. A. Murthy, and S. K. Pal, “Unsupervised feature selection
using feature similarity,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 3, pp. 301–312, Mar. 2002.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: FEATURE SELECTION BASED ON NEIGHBORHOOD DISCRIMINATION INDEX 13

[33] D. P. Muni, N. R. Pal, and J. Das, “Genetic programming for simulta-
neous feature selection and classifier design,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 1, pp. 106–117, Feb. 2006.

[34] S. Nan, L. Sun, B. Chen, Z. Lin, and K.-A. Toh, “Density-dependent
quantized least squares support vector machine for large data sets,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 1, pp. 94–106, Jan. 2017.

[35] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust feature
selection via joint �2, 1-norms minimization,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2010, pp. 1813–1821.

[36] I.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms for
feature selection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26,
no. 11, pp. 1424–1437, Nov. 2004.

[37] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data.
Dordrecht, The Netherlands: Kluwer, 1991.

[38] N. Parthaláin, Q. Shen, and R. Jensen, “A distance measure approach to
exploring the rough set boundary region for attribute reduction,” IEEE
Trans. Knowl. Data Eng., vol. 22, no. 3, pp. 305–317, Mar. 2010.

[39] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8,
pp. 1226–1238, Aug. 2005.

[40] Y. Qian and J. Liang, “Combination entropy and combination granula-
tion in rough set theory,” Int. J. Uncertainty, Fuzziness Knowl.-Based
Syst., vol. 16, no. 2, pp. 179–193, 2008.

[41] Y. Qian, F. Li, J. Liang, B. Liu, and C. Dang, “Space structure and
clustering of categorical data,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 10, pp. 2047–2059, Oct. 2016.

[42] R. Slowinski and D. Vanderpooten, “A generalized definition of rough
approximations based on similarity,” IEEE Trans. Knowl. Data Eng.,
vol. 2, no. 2, pp. 331–336, Mar./Apr. 2000.

[43] Y. She and X. He, “Uncertainty measures in rough algebra with
applications to rough logic,” Int. J. Mach. Learn. Cybern., vol. 5, no. 5,
pp. 671–681, 2014.

[44] Y. Sun, S. Todorovic, and S. Goodison, “Local-learning-based feature
selection for high-dimensional data analysis,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 9, pp. 1610–1626, Sep. 2010.

[45] H. Tao, C. Hou, F. Nie, Y. Jiao, and D. Yi, “Effective discriminative
feature selection with nontrivial solution,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 27, no. 4, pp. 796–808, Apr. 2016.

[46] K. Torkkola, “Feature extraction by non-parametric mutual information
maximization,” J. Mach. Learn. Res., vol. 3, nos. 7–8, pp. 1415–1438,
2003.

[47] X.-Z. Wang, L.-C. Dong, and J.-H. Yan, “Maximum ambiguity-based
sample selection in fuzzy decision tree induction,” IEEE Trans. Knowl.
Data Eng., vol. 24, no. 8, pp. 1491–1505, Aug. 2012.

[48] C. Wang, M. Shao, Q. He, Y. Qian, and Y. Qi, “Feature subset selection
based on fuzzy neighborhood rough sets,” Knowl.-Based Syst., vol. 111,
no. 1, pp. 173–179, 2016.

[49] C. Wang et al., “A fitting model for feature selection with
fuzzy rough sets,” IEEE Trans. Fuzzy Syst., to be published,
doi: 10.1109/TFUZZ.2016.2574918.

[50] D. Wang, F. Nie, and H. Huang, “Feature selection via global redun-
dancy minimization,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 10,
pp. 2743–2755, Oct. 2015.

[51] H. Wang, “Nearest neighbors by neighborhood counting,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 942–953, Jun. 2006.

[52] W.-Z. Wu and W.-X. Zhang, “Neighborhood operator systems and
approximation,” Inf. Sci., vol. 144, nos. 1–4, pp. 201–217, 2002.

[53] W.-Z. Wu, “Knowledge reduction in random incomplete decision tables
via evidence theory,” Fundam. Inf., vol. 115, nos. 2–3, pp. 203–218,
2012.

[54] W.-H. Xu, X.-Y. Zhang, and W.-X. Zhang, “Knowledge granulation,
knowledge entropy and knowledge uncertainty measure in ordered
information systems,” Appl. Soft Comput., vol. 9, no. 4, pp. 1244–1251,
2009.

[55] S. Xiang, F. Nie, G. Meng, C. Pan, and C. Zhang, “Discriminative least
squares regression for multiclass classification and feature selection,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1738–1754,
Nov. 2012.

[56] Y. Y. Yao, “Relational interpretations of neighborhood operators and
rough set approximation operators,” Inf. Sci., vol. 111, nos. 1–4,
pp. 239–259, 1998.

[57] Y. Yao and Y. She, “Rough set models in multigranulation spaces,” Inf.
Sci., vol. 327, pp. 40–56, Jan. 2016.

[58] R. R. Yager, “Entropy measures under similarity relations,” Int.
J. General Syst., vol. 20, no. 4, pp. 341–358, 1992.

[59] S. Zhao, H. Chen, C. Li, M. Zhai, and X. Du, “RFRR: Robust fuzzy
rough reduction,” IEEE Trans. Fuzzy Syst., vol. 21, no. 5, pp. 825–841,
Oct. 2013.

[60] S. Zhao, E. C. C. Tsang, D. Chen, and X. Wang, “Building a rule-based
classifier—A fuzzy-rough set approach,” IEEE Trans. Knowl. Data Eng.,
vol. 22, no. 5, pp. 624–638, May 2010.

[61] S. Zhao and E. C. C. Tsang, “On fuzzy approximation operators in
attribute reduction with fuzzy rough sets,” Inf. Sci., vol. 178, no. 16,
pp. 3162–3176, 2008.

[62] X. Zhang, B. Zhou, and P. Li, “A general frame for intuitionistic fuzzy
rough sets,” Inf. Sci., vol. 216, no. 24, pp. 34–49, 2012.

[63] P. Zhu and Q. H. Hu, “Adaptive neighborhood granularity selection
and combination based on margin distribution optimization,” Inf. Sci.,
vol. 249, pp. 1–12, Nov. 2013.

[64] S. S. Ho and H. Wechsler, “Query by transduction,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 30, no. 9, pp. 1557–1571, Sep. 2008.

[65] Kent Ridge Bio-Medical Dataset, accessed on Apr. 2015. [Online].
Available: http://datam.i2r.a-tar.edu.sg/datasets/krbd/index.html

Changzhong Wang received the M.S. degree from
Bohai University, Jinzhou, China, and the Ph.D.
degree from the Harbin Institute of Technology,
Harbin, China, in 2005 and 2008, respectively.

He is currently a Professor with Bohai University.
He has authored or co-authored more than 40 journal
and conference papers in the areas of machine learn-
ing, data mining, and rough set theory. His current
research interests include fuzzy sets, rough sets, data
mining, pattern recognition, and statistical analysis.

Qinghua Hu received the B.Eng. and M.Eng.
degrees in power engineering and the Ph.D. degree
in control science and engineering from the Harbin
Institute of Technology, Harbin, China, in 1999,
2002, and 2008, respectively.

He is currently a Professor with Tianjin University,
Tianjin, China. He has authored or co-authored more
than 60 journal papers and conference proceedings
in machine learning and data mining. His current
research interests include data mining and knowl-
edge discovery with fuzzy and rough techniques.

Xizhao Wang received the Ph.D. degree in
computer science from the Harbin Institute of
Technology, Harbin, China, in 1998.

He is currently a Professor with the Big Data
Institute, Shenzhen University, Shenzhen, China.
His current research interests include uncertainty
modeling and machine learning for big data. He has
edited more than ten special issues and published
three monographs, two textbooks, and more than
200 peer-reviewed research papers. By the Google
scholar, the total number of citations is over 5000.

He is on the list of Elsevier 2015/2016 most cited Chinese authors.
Dr. Wang is the Chair of the IEEE SMC Technical Committee on Computa-

tional Intelligence, the Editor-in-Chief of Machine Learning and Cybernetics
Journal, and Associate Editor for a couple of journals in the related areas.
He was a recipient of the IEEE SMCS Outstanding Contribution Award in
2004 and a recipient of the IEEE SMCS Best Associate Editor Award in 2006.

Degang Chen received the M.S. degree from
Northeast Normal University, Changchun, China,
in 1994, and the Ph.D. degree from the Harbin
Institute of Technology, Harbin, China, in 2000.

He was a Post-Doctoral Fellow with Xi’an
Jiaotong University, Xi’an, China, from 2000 to
2002, and with Tsinghua University, Beijing,
China, from 2002 to 2004. Since 2006, he has
been a Professor with North China Electric Power
University, Beijing. His current research interests
include fuzzy groups, fuzzy analysis, rough sets,

and support vector machines.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Yuhua Qian received the M.S. and Ph.D. degrees in
computers with applications, from Shanxi Univer-
sity, Taiyuan, China, in 2005 and 2011, respectively.

He is currently a Professor with the Key
Laboratory of Computational Intelligence and
Chinese Information Processing, Ministry of
Education, China. He has authored more than
50 articles in international journals. His current
research interests include pattern recognition,
feature selection, rough set theory, granular
computing, and artificial intelligence.

Zhe Dong received the B.Sc. degree in mathematics
from Bohai University, Jinzhou, China, in 2012. She
is currently pursuing the master’s degree.

Her current research interests include fuzzy sets,
rough sets, pattern recognition, and knowledge
discovery.


