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Incorporating Diversity and Informativeness in
Multiple-Instance Active Learning

Ran Wang, Member, IEEE, Xi-Zhao Wang

Abstract—Multiple-instance active learning (MIAL) is a
paradigm to collect sufficient training bags for a multiple-instance
learning (MIL) problem, by selecting and querying the most valu-
able unlabeled bags iteratively. Existing works on MIAL evaluate
an unlabeled bag by its informativeness with regard to the cur-
rent classifier, but neglect the internal distribution of its instances,
which can reflect the diversity of the bag. In this paper, two di-
versity criteria, i.e., clustering-based diversity and fuzzy rough set
based diversity, are proposed for MIAL by utilizing a support vec-
tor machine (SVM) based MIL classifier. In the first criterion, a
kernel k-means clustering algorithm is used to explore the hidden
structure of the instances in the feature space of the SVM, and the
diversity degree of an unlabeled bag is measured by the number
of unique clusters covered by the bag. In the second criterion, the
lower approximations in fuzzy rough sets are used to define a new
concept named dissimilarity degree, which depicts the uniqueness
of an instance so as to measure the diversity degree of a bag. By
incorporating the proposed diversity criteria with existing infor-
mativeness measurements, new MIAL algorithms are developed,
which can select bags with both high informativeness and diversity.
Experimental comparisons demonstrate the feasibility and effec-
tiveness of the proposed methods.

Index Terms—Clustering, diversity, fuzzy rough set, multiple-
instance active learning (MIAL).

I. INTRODUCTION

ULTIPLE-INSTANCE learning (MIL) [1] is a su-
Mpervised learning problem that aims to construct a
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classification model on structured data. Different from tradi-
tional single-instance learning (SIL) that consists of individual
samples, MIL has samples grouped into bags. A bag is decided
as positive if at least one of its instances is positive, and is neg-
ative only if all of its instances are negative. The numbers of
instances in different bags may differ a lot, and the instance-level
labels are usually unknown. The objective of MIL is to learn a
classifier that can accurately predict labels of new bags. Many
real-world scenarios can be categorized as MIL problems. For
instance, in image recognition, we consider an image as con-
taining an object if any area of the image contains the object,
and in text classification, we consider a text file as positive if
any paragraph of the text file is positive.

Many solutions have been proposed for solving MIL prob-
lems, such as axis-parallel rectangles [2], k-nearest neighbor
(kKNN) based algorithms (i.e., Bayesian-kNN and Citation-
kNN) [3], problem transformation method (i.e., MILES) [4],
random walk process [5], graph kernel based method (i.e., MI-
Graph) [6], genetic programming algorithm (i.e., G3P-MI) [7],
combinatorial margin maximization formulation [8], random set
framework [9], similarity-based framework [10], query-adaptive
approach [11], and others [12], [13]. In this paper, we only focus
on the learning methods based on the support vector machine
(SVM) [14], whose idea is to generate an optimal separating
hyperplane that can maximize the margin between two classes.
Two SVM-based MIL algorithms have been proposed in [15]
(i.e., mi-SVM and MI-SVM), which construct an SVM classi-
fier by maximizing the margin between instances or between
bags, and get the decision of a new bag by predicting the labels
of its instances. Due to a simple implementation procedure and
a high generalization capability, SVM-based MIL algorithms
have been utilized in many application domains, such as mu-
sic information retrieval [16], image annotation [17], [18], and
human detection [19].

On the other hand, in many real-world problems, label acqui-
sition is expensive due to the involvement of human efforts.
Thus, active learning (AL) [20] becomes a commonly used
scheme for collecting a sufficiently large labeled set by query-
ing the informative unlabeled samples in an iterative manner.
AL has been achieved for traditional single-instance settings
with many successful sample selection criteria (e.g., inconsis-
tency [21], fuzzy rough set [22], ambiguity [23], etc.), and it
has been applied to many application domains (e.g., multilabel
image classification [24], video instance retrieval [25], target
ranking [25], imbalanced data classification [26], [27], etc.).
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However, in multiple-instance environments, AL is much less
studied. Multiple-instance AL (MIAL) aims to make as few
queries as possible for training bags, and constructs an MIL
classifier to achieve high prediction accuracy on the labels of
testing bags.

By taking mi-SVM or MI-SVM as the base classifier, margin-
based MIAL strategy was first proposed in [28], which evalu-
ates the informativeness of an unlabeled bag by aggregating
the margin information of its instances. Later, the softmax
model was proposed in [29], which transforms the output of
an SVM into probabilistic form, and evaluates the informa-
tiveness of an unlabeled bag by its label uncertainty. Further-
more, the combinU [30] model and noisy-or model [31] were
also used in a similar framework. Besides, Fisher information
was used to evaluate the amount of information carried by
a bag [32], and a multicriteria decision making system was
proposed to select bags by making use of multiple conflicting
criteria [33].

It is obvious that all the above-mentioned strategies try to
select and query the most informative bags with regard to the
current classifier. This is consistent with the central idea of tra-
ditional AL, however, is insufficient for MIAL, since it neglects
the internal distribution and the relationship among different
instances in a bag. For example, assume that two bags have ob-
tained very similar uncertainty according to the current classi-
fier, but the instances are located sparsely in one bag and densely
in the other. Traditional methods will treat them as equally in-
formative and select one randomly. However, intuitively, the
bag with sparse distribution should be queried, since it can span
the feature space and force the hyperplane to converge to the
optimal one faster. This kind of information can be reflected
by the diversity of a bag, which relies on the characteristics of
the instance distribution, while it is independent of the current
classifier. To the best of our knowledge, incorporating diversity
to MIAL has not been investigated yet. Motivated by this fact,
in this paper, we will propose two diversity criteria, and ap-
ply them to develop new MIAL schemes. The innovations and
contributions of this paper are listed as follows.

1) We propose a clustering-based diversity (CBD) criterion
for MIAL. A kernel k-means clustering algorithm is con-
ducted on the instances of the candidate bags to explore the
hidden structure of the instances in feature space. Then, a
diversity index is calculated for each bag as the number of
unique clusters it covers. The adoption of a fixed kernel
guarantees that the clustering process is conducted in the
same feature space of an SVM.

2) We propose a fuzzy rough set based diversity (FBD) crite-
rion for MIAL. A new concept named dissimilarity degree
is proposed based on the lower approximations in fuzzy
rough sets, which measures the uniqueness of an instance
in a bag. Then, the diversity degree of a bag is calculated
by aggregating the dissimilarity degrees of its instances.
Similarly, the adoption of kernel-based similarity relation
makes it intrinsically compatible with the SVM.

3) We develop new MIAL strategies by incorporating the
proposed diversity criteria. First, the informativeness of
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unlabeled bags are evaluated by the output decisions of
the current classifier. Then, the most informative bags are
retained as the selective candidates. Afterward, the diver-
sity values of the candidate bags are computed according
to the proposed criteria. Finally, the unlabeled bag with
the highest diversity value is selected for manual labeling,
it is then used to update the MIL classifier.

4) We generate new MIL datasets from the MNIST hand-
written digits image recognition problem, and conduct
extensive experimental comparisons on both existing MIL
datasets and the generated datasets to validate the perfor-
mance of the proposed MIAL strategies.

The remainder of this paper is organized as follows. In
Section II, we introduce some background knowledge. In
Section III, we present our motivation, then propose two diver-
sity criteria and apply them to SVM-based MIAL. In Section IV,
we conduct extensive experimental comparisons to show the
feasibility and effectiveness of the proposed methods. Finally,
conclusions are given in Section V.

II. BACKGROUND KNOWLEDGE

In this section, we will introduce SVM-based MIL algorithms
and present some preliminaries on SVM-based MIAL.

A. SVM-Based MIL

The traditional SVM on single-instance training set {(x;,
Y)Yy C R x {+1,—1} is defined as f(x)=wTx+b,
where w is a d-dimensional vector and b is a constant. With
the Lagrange method, the solution (w,b) can be derived by
solving the following optimization problem:

) 1 ) n
my 3liwP+ 036,

w,b,¢

st y(wixi+b)>1-6&, &>0, i=1,...,n (1)

where C' is a tradeoff constant and &; is the slack variable
introduced to x; for a soft-margin SVM. By incorporating
kernel trick, the decision function is further represented as
f(x)=>"" yia;K(x,%;) + b, where o; is the Lagrange mul-
tiplier of x; and /C(-, -) is a kernel function.

Given a multiple-instance training set S = {(B;,v;)}7_,, we
denote B; = {B;; };-“:1 as the ith bag with n; instances, and
y; € {+1, —1} as the label of 13;, where the instance-level labels
v;; are unknown. The goal is to construct a classification model
that can accurately predict the labels of new bags. An illustration
of multiple-instance dataset is given in Fig. 1.

The SVM has been extended to MIL by maximizing the mar-
gin between instances or between bags [15]. More specifically,
mi-SVM is a maximum instance margin formulation inspired
by the idea that all the instances of the negative bags are located
in the negative half-space, and at least one instance of each pos-
itive bag is located in the positive half-space. The mi-SVM is
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Fig. 1. Instances and bags in MIL.
formulated as
min mianWH2 —l—CZZf
{yu} x,b,§ 2 7 i E
st Visg iy (W By b)) > 1 — &
st Vi, 5y (wo By +b) > &,

gij Z Oa Yij S {+1a 71}3

yij +1
: >
1 ZBZ,GBI 2 -

=-1

Vi s.t.y; 1,

Vi s.t. Yi —1: Yij (2)
where §;; is the slack variable introduced to 5;;.

On the other hand, MI-SVM is a maximum bag margin for-
mulation inspired by the idea that each positive bag can be
replaced by the most representative instance, which is defined
as the instance that has the maximum decision value in a positive

bag. The MI-SVM is formulated as

o1 9
min §||WH +02i:§¢,
s.t. Vi Yi I_naX(WTBM + b) > 1-— fi,
jeB; ’
& =0 3

where &; is the slack variable introduced to ;.
The heuristic algorithms of mi-SVM and MI-SVM are given
in Appendix A.

B. SVM-Based MIAL

In this paper, we only deal with pool-based AL. In the MIL
environment, pool-based AL starts by training a classifier with a
small number of labeled bags. Afterward, it evaluates all the un-
labeled bags in the selective pool, queries the most valuable bag,
adds the bag to the training set, and updates the current classi-
fier. This process repeats until a predefined stopping criterion is
satisfied. Obviously, the key issue is to design an effective eval-
uation criterion for bags. The basic framework for SVM-based
MIAL is described in Algorithm 1.
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Algorithm 1: Basic Framework for SVM-based MIAL

Input:
Labeled set L. = {(B;, yi)ﬂ:p
Unlabeled pool U = {B;}; "}, ;:
Parameters for training SVM.
Output:
SVM solution (w, b).
1 Train mi-SVM or MI-SVM on L to get SVM solution (w,b);

2 while U is not empty do

3 if stop criterion is met then

4 | return (w,b);

5 else

6 Calculate the informativeness of each B; € U, denoted
as Z(B;);

7 Select B* = argmax;. iy Z(B;);

8 Query the label of B*, denoted by y*;

9 Let U=U\B", and L=LU (B*,y");

10 Update SVM solution (w,b) based on new L;

11 end

12 end

13 return (w,b).

C. Informativeness Measurements for Unlabeled Bags

Existing solution to assessing an unlabeled bag for SVM-
based MIL algorithms is to aggregate the informativeness of its
instances. Assuming that 3;; is the jth instance in the ith un-
labeled bag. Given an SVM classifier f(x) = w' ¢(x) + b, the
decision value of B;; is calculated as f(B;;) = w'¢(B;;) + b,
and its conditional probabilities can be evaluated by the logistic
function [34]:

{P(yij = +1|B;;) = m )

Pyi; = —1Bi;) = 1 — P(yi; = +1|By;).

Furthermore, the uncertainty of 3;; can be computed as
u(Bij) = - Zyuzﬂ P(yi;1Bij)logP (yi;|Bij)-  (5)

1) Bag margin: According to Liu et al. [28], the most
straightforward way to evaluate the informativeness of B;
is the minimum instance margin Z,, (B;) or the average
instance margin Z, (5;):

I (BL) = 1/ mil’lgu €B; |f(Btl)|

(6)
ni/ g, e |f(Bij)*

Ia (Bz) =

2) Softmax model: A softmax model is proposed in [29]
to approximate the conditional probabilities of unlabeled
bags. For a given set of values zy,...,x,, the softmax

approximation is given as

n n
softmax, (z1,...,x,) = Z x; - et/ Z e (7)
i=1 i=1
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3)

4)

5)

where «v is a parameterized constant. Then, the conditional
probabilities of B; are evaluated as

P(y; = +1|B;) = softmax, (P(y;1 = +1|Bi1),
oo 7P(yin[ - +1|B[’/L[ ))

Py = —1B;) = 1 —P(y: = +1B:)
®)
where softmax,, is given in (7) to approximate the posi-
tive probability of the bag P(y; = +1|B;) by the condi-
tional probabilities of the instances P (y;1 = +1|B;;),j =
1,...,n;. Finally, the informativeness of B; is computed
as

1(B;) =— Z P(yi|Bi )logP (| B;).-

yi==+1

9

CombinU model: The combinU model [30] is an alterna-
tive to the softmax model by making the softmax approx-
imation of the instance uncertainties, which evaluates the
informativeness of B3; as

Z(B;) = softmax,, (u(B;1), ..., u(Bin,)) (10)

where softmax,, is given in (7) to approximate the uncer-
tainty of the bag Z (B3; ) by the uncertainties of the instances
U(BZ]),j = ]., ey Ny

Noisy-or model: The noisy-or model [31] is a nonparamet-
ric structure that can capture the nondeterministic interac-
tion between different causes of an effect. By utilizing this
model, the conditional probabilities of B; can be evaluated
as

{P(yi =+1Bi)=1-]lg,ep (1= Plyi; = +1[Bi)))

Py = =1Bi;) = llg, e5 (1 = Pyi; = +1[Bi;))
(11)
and the informativeness of 3; is computed by (9).
Fisher information: Fisher information [35] has been suc-
cessfully used to measure the amount of information that
a batch of samples carries with regard to a classification
model [36]. The Fisher information matrix of n i.i.d sam-
ples x1,...,x, with distribution ¢(x) and classification
model p(y|x, ) is defined as

82
T ®) == [ atyix [ plyix.6) 7 logplyix, 6)dx

12)
where 6 denotes the model parameters. This model has
been applied to MIAL [32], [33], [37] for measuring
the informativeness of unlabeled bag 5; by an effective
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approximation:
1(B:)
62
= —tr( Z p(yi|8i79)wIng(yi|Bi79))

fl/,j::tl

(P /P x> (P x o(By)™ Y (P x 6(Byj)

JEB; JEB;
= (P /P x> Y PhxPh xK(By,Biy) (13)
JEB; q€B;

where ¢ denotes a kernel mapping, K(-,-) is the ker-
nel function, P;", P, and P;; denote P(y; = +1|B;),

P(y; = —1|B;), and P(y;; = +1|B;;), respectively.

III. INCORPORATING DIVERSITY IN MIAL

In this section, we will present our motivation in detail, then
develop two diversity-based MIAL algorithms.

A. Motivation

The evaluation of bags in MIAL is more difficult than that of
samples in traditional AL due to the complex combinations of
instances in bags. In general, there are two basic characteristics
of the bags in MIAL: 1) the number of instances in different
bags may differ a lot; and 2) the instances in a bag may have
various distributions.

It is well known that in traditional SVM-based AL, the sam-
ples closer to the current decision boundary are more infor-
mative. In fact, all the measurements of bags introduced in
Section II-C are based on this criterion. Having this premise, in
Fig. 2, we further analyze the influence of the above-mentioned
two characteristics on measuring the informativeness of un-
labeled bags for an SVM classifier, which have not be well
addressed by existing measurements.
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1) In Fig. 2(a), it is obvious that Bag 1 and Bag 2 are more
informative than Bag 3 and Bag 4. Existing methods pre-
fer Bag 1 than Bag 2, since the instances in Bag | are
closer to the SVM hyperplane. However, Bag 2 might be
more valuable, since it contains much more information,
although the instances are less informative than those in
Bag 1.

2) InFig. 2(b), both Bag 1 and Bag 2 contain eight instances.
We use the same color to represent the same level of
informativeness. As a result, the informativeness of the
two bags are similar, and existing methods will select one
randomly. However, intuitively, Bag 1 is more valuable
than Bag 2, since the distribution of instances in Bag 1
is sparser, which can span the feature space and induce
a better SVM classifier. We give a further illustration in
Fig. 2(c) and (d). Suppose that during a learning iteration,
the selected bag is negative. In MIL, a bag is determined
as negative only if all the instances are negative. If the bag
has a dense distribution, as shown in Fig. 2(c), the updated
SVM hyperplane will be biased by this small area. In this
case, the negative instances located in other areas will
be wrongly classified with high probability [such as the
highlighted area in Fig. 2(c)], thus negative bags might
be wrongly classified. However, if the bag has a sparse
distribution, as shown in Fig. 2(d), this problem can be
avoided to some extent.

In order to evaluate unlabeled bags more effectively, we pro-
pose a new criterion named diversity. Different from the crite-
rion of informativeness, diversity is independent of the current
classifier, and is just decided by the properties of the bag. In
Sections III-B and III-C, we will develop two diversity mea-
surements by applying the techniques of kernel-based clustering
and fuzzy rough sets. It is noteworthy that these two techniques
have a common feature, which make them suitable for solving
the SVM problem. More specifically, a kernel function measures
the similarity between two samples in the feature space of an
SVM, it can also serve as the distance measurement in kernel-
based clustering and the fuzzy similarity relation in fuzzy rough
sets. The same kernel function guarantees that all the learning
processes are conducted in the same feature space. That is to
say, the kernel technique makes them intrinsically compatible
with the SVM.

B. MIAL with CBD

The kernel k-means algorithm performs the clustering in a
higher dimensional feature space instead of the original space.
It includes several key steps:

1) randomly initialize k clusters;

2) compute the distance of each sample to the center of each
cluster in kernel space, and assign it to the closest cluster; and

3) repeat step 2 until the clusters have no change.

Given an unlabeled sample set {x;}Y; C R?, we denote
¢(x;) as the data point of x; in kernel space, C, as the vth
cluster, where v = 1,..., k, u, as the center of cluster C,, and
C) as the cluster index of x;. Obviously, the center of cluster

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 6, DECEMBER 2017

Algorithm 2: Kernel k-mean Algorithm

Input:
Unlabeled data set {x;}~; C R?; Number of clusters k.
Output:

Cluster indices CV,...,Cc™),

1 Randomly assign the cluster indices CV, ..., C™) from
{17 EERE k}»

2 repeat

3 for each x; do

4 Compute D? ( (x4), ) by Eq. (15) where

v=1,...

5 Let () = argmln 1111 & D2 (B(xi), )

6 end

7 until C(i)7 L. ,C(N) have no change;

8 return CV, ... ¢V,

C, in kernel space can be computed as

v = (14)
: C.|

Since the concrete form of ¢ is unknown with regard to many
kernels, it is hard to get the explicit expression of either ¢(x;)
or . Similar to the SVM, the kernel trick can be used to
express the inner product of feature space as a kernel function
K :{(o(x;), ¢(x;)) = K(x;,%;). Thus, instead of getting the
absolute location of a sample in kernel space, we can directly
compute its distance to other samples. In this case, the distance
between ¢(x;) and cluster center y, can be computed as

DA(9(x) 1) = [6(x:) = |
1 2
= ll6(x) 17 3 ol

x;€C,

Z K(xi,x;)

x;€C,

Z Z K(x;,%,)

x;j€C, x,€Cy

=K Xi7XL
( |C|

oo (4

where || || is defined as the Euclidian norm, i.e., the length of a
vector.

As a result, kernel k-means clustering is described in
Algorithm 2. It probes the hidden structure of the data in fea-
ture space, explores the relative location information of the in-
stances, and groups together the similar instances from a spatial
perspective. Fig. 3 demonstrates a set of clustering results by the
k-means algorithm and kernel k-means algorithm. As shown in
Fig. 3(b), the kernel k-means algorithm has a higher capability
in handling nonlinearly separable case by transforming the in-
stances into kernel space. According to this investigation, the
kernel k-means algorithm might be more effective in handling
problems with the SVM.

It is noteworthy that the kernel k-means algorithm needs the
number of clusters k£ as an input. One solution is to set k as
the number of instances in a bag, which guarantees that the
instances in a bag will be grouped into different clusters if all of
the instances have low similarities.
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Algorithm 3: MIAL-CBD

Input:
Labeled set L = {(B;, yi)}i:ﬂ
Unlabeled pool U = {B:};*}, ;:
Number of clusters k;
Number of candidates m;
Parameters for training SVM.
Output:
SVM solution (w, b).

1 Train mi-SVM or MI-SVM on L to get SVM solution (w, b);

2 while U is not empty do

3 if stop criterion is met then

4 | return (w,b);

5 else

6 Calculate Z(B;) of each B; € U;

7 Let U* € U contain m most informative bags;

8 Let X = {B”‘BU S [U*};

9 Call Algorithm 2 on X, denote C*) € {1,...,k} as
the cluster index of B;;;

10 for each B; € U* do

i Let C(BB;) be the number of unique indices in

{c|Bi; € Bi}:

12 end

3 Select B* = argmaxg, cy+ C(Bi);

14 Query the label of B*, denoted by y*;

15 Let U=U\B", and L=LU (B*,y");

16 Update SVM solution (w,b) based on new L;

17 end

18 end

19 return (w,b).

In SVM-based MIAL, we can first rank the unlabeled
bags according to an informativeness criterion. Then, the top-
ranked bags are retained as the selective candidates. Afterward,
Algorithm 2 is conducted on the instances of the selective can-
didates, and the diversity of a candidate can be calculated as the
number of unique clusters it covers. Finally, the MIAL algorithm
with CBD is described in Algorithm 3.

C. MIAL with FBD

Fuzzy rough sets [38], as the generalizations of crisp rough
sets, are popular tools for handling data with vagueness and
uncertainty, with the ability of dealing with mixed types of
features [39]-[41]. A fuzzy rough set is defined by two fuzzy
sets, i.e., lower and upper approximations. In traditional classi-
fication problems, they can be used to describe the maximum
and minimum membership degrees of a sample belonging to
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different decision classes. In this section, we explore their po-
tentials for measuring the uniqueness of an instance in a bag in
the MIL environment.

Given I = [0,1],wedenote 7 : [? - Tand S : [*> — T asa
dual pair of triangular norm (¢-norm) and triangular conorm (%-
conorm). Assume that U is a nonempty universe of discourse,
D is a fuzzy subset of U, i.e., D C F(U), and R is a fuzzy
similarity relation on the cardinal product of U that is reflexive,
symmetric, and transitive. Then, the most general case of fuzzy
rough set is based on a pair of ¢-norm and ¢-conorm:

{ RrD(x) = sup,ep T (R(x, 1), D(u))
RsD(x) = infycy SNV (R(x,u)), D(u))

where N is a negator, i.e., a decreasing mapping [ — I that
satisfies A(0) =1 and N(1) = 0. In this paper, we always
adopt the standard negator N (o) =1 — .

A more commonly used fuzzy rough set is based on the
residual implication 6 and its dual o [40], which are defined as
follows:

(16)

{9(@, b) = sup{c € [0,1] : T(a,c) < b} an

o(a,b) =inf{c € [0,1] : S(a,c) > b}.

It is easy to prove that o(a,b) = 1 — (1 — a, 1 — b) relative to
the same t-norm. Accordingly, the fuzzy rough set based on 6
and o is defined as

{RaD(X) = sup, ey (N (R(x, 1)), D(u))

(18)
RyD(x) = infyer O(R(x,u), D(u)).

In a previous work [22], we have proposed a concept named
consistence degree based on (18) to depict the minimum re-
quirement of sample x belonging to its decision class. Assume
that FD = (U, C U D) is a fuzzy decision table, where U is a
nonempty universe of discourse, C is a set of conditional at-
tributes with at least one fuzzy attribute, and D is a decision
attribute. Given two samples x,y € FD, we let [x|p (y) = 1 if
x and y have the same decision attribute and [x]p (y) = 0, oth-
erwise. Then, the consistence degree of sample x is defined as
Definition 1.

Definition 1 ( [22]): (Consistence degree) Given a sample x
in the fuzzy decision table FD = {U, C'U D}, the consistence
degree of x in FD is defined as

Conc (D)(x) = infucr O(R(x,u), [x]p (w).  (19)

Suppose y is a sample distinct from x, it has been proved
in [22] that

1) if (R(x,y),0) < Conc(D)(x), then x and y always

have the same label;

2) if0(R(x,y),0) > Conc(D)(x), then x and y may have

different labels.

Given a value > Con¢ (D)(x). If (R(x,y),0) < n, it is
possible that ( R(x,y),0) > Con¢ (D)(x), which cannot guar-
antee x and y having the same label. This statement holds for
every sample in U. Thus, Con¢ (D)(x) can be treated as the
maximum value to guarantee x having the identical decision
with another sample in U. Borrowing this idea, we propose a
converse definition named dissimilarity degree, to measure the
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uniqueness of an instance in a bag in the MIL environment.
Suppose that U is the unlabeled pool of an MIAL problem, x
and y are two distinct instances in U, let

1 ifxandy belong to the same bag

Xlu(y) = { (20)

0 otherwise.
Then, the dissimilarity degree of an instance x in a bag B is
proposed as Definition 2.

Definition 2: (Dissimilarity degree) Given an instance X in
the unlabeled pool U of an MIAL problem, the dissimilarity
degree of x in any possible unlabeled bag B is defined as

Diss(x) = infyeqpx) O(R(x,y), N ([x]u(y)))-

From Definitions 1 and 2, we can find two distinctions be-
tween consistence degree and dissimilarity degree.

1) The consistence degree is defined for a labeled sample in

a decision table in the SIL environment, which contains
samples from different classes, whereas the dissimilarity
degree is defined for an instance in a bag in the MIL
environment, both the instance and the bag are unlabeled.

2) The consistence degree is an operational result of the

similarity relation R(x,y) and the consistency [x]|p (y)
between two samples, which depicts the membership of
a sample in its decision class, whereas the dissimilarity
degree is an operational result of the similarity relation
R(x,y) and the inconsistency N ([x]y (y)) between two
instances, which is a converse concept that depicts the
uniqueness of an instance in a bag.

We further analyze the characteristics of the dissimilarity
degree by applying the most commonly used similarity relation,
i.e., Gaussian kernel based fuzzy similarity relation R¢ (x,y) =
exp(—||x — y||?/20?%). According to Hu et al. [42], R (x,y)
is reflexive, symmetric, and 7.s-transitive, where the pair of
residuated implicators is defined as

Teos(a,b) = max{ab — /1 — a2V/1 — b2,0}

@

1 ifa<b (22)
ecos (au b) =
ab++/(1—a?)(1 =0%)ifa > b.
Accordingly, the dissimilarity degree is derived as
Disp(x) = infy ez} Oeos (R (%, ), N (x|u(y))). (23)

By applying (22) to (23), we have the following:
1) whenx ¢ B

DiSB(X) = infyeB ecos(RG (X7 y)a ]-) = ]';
2) whenx € B
DiSB(X) = inny{B\x} 9(708 (RG (X, y)7 0)

= infyegmxg /1 — exp?(—[|x — y[[?/202).

From the above, it is concluded that the dissimilarity degree of
x in B is always 1 if x ¢ B. However, the dissimilarity degree of
x in B is decided by its closest neighbor if x € B, furthermore,
the closer the closest neighbor is, the smaller the dissimilarity
degree will be.
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Fig. 4. Computing the dissimilarity degree of instances in a bag. (a) Bag 1,
(b) Bag 2, and (c) Bag 3.

We further assume that x = B3;; is the jth instance in the ith
unlabeled bag, and y is an instance without bag information,
then, we have the following theorem.

Theorem 1: Given two distinct instances B;; and y in
the unlabeled pool U, if (R(B;;,y),0) < Disg, (B;;), then
[Bijlu(y) = 0.

Proof: We prove it by contradiction. Assume [B;;]y (y) = 1,
then NV ([B;;]u(y)) = 0. We have

Disg, (Bj;) = inf,c (55,1 0(R(Bij,2), N ([Bi;lu(z)))
< O(R(Bij,y), N([Bi;lu(y)))
=0(R(Bij,y),0).

This contradicts the given condition of 6(R(B;;,y),0) <
Disp, (B;;), thus we get [B;;]u(y) = 0. |

According to Theorem 1, y is impossible to belong to B;
if 9(R(B;;,y),0) < Disg, (B;;), and may belong to 5;, other-
wise. That is to say, Disp, (B;;) is the maximum value to guar-
antee the uniqueness of instance B;; in bag B;. In other words,
B;; is highly different from other instances when the value
of Disg, (B;;) is large, and may be similar to other instances
when the value of Disg, (B8;;) is small. Holding this argument,
we propose a new concept named diversity degree as Defini-
tion 3 to measure the internal diversity among the instances in a
given bag.

Definition 3: (Diversity degree) Given an unlabeled bag
B; = {B;;};., € U, the diversity of B; is defined as

J
Div(B;) = Y Disg, (B;)/|Bil.
B,‘,‘} eB;

(24)

Fig. 4 shows some illustrations on measuring the dissimilarity
degree of instances and the diversity degree of bag. In this
figure, each arrow represents that the dissimilarity degree of
the start-point instance is decided by its distance to the end-
point instance. According to (23), a larger distance will lead to a
higher dissimilarity degree. Obviously, Bag 1 is the most diverse
bag, since all the instances in this bag have higher dissimilarity
degree. Finally, the MIAL algorithm with FBD is described in
Algorithm 4.

D. Relationship Between CBD and FBD

So far, it is difficult to give a theoretical proof on the rela-
tionship between CBD and FBD. However, it is possible to give
some intuitive explanations. Suppose that the same function is
adopted as the kernel function in the CBD and the fuzzy simi-
larity relation in the FBD. Then, the calculation of the CBD and
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TABLE I
COMPARATIVE METHODS

Index Method Algorithm Informativeness Measurement Diversity Measurement
1 Random 1 Random sampling None

2 SVMactive 1 Minimum instance margin [Z,,, in (6)] None

3 BagMargin 1 Average instance margin [Z, in (6)] None

4 SoftMax 1 Softmax model [see (8) and (9)] None

5 CombinU 1 CombinU model [see (10)] None

6 NoisyOr 1 Noisy-or model [see (11) and (9)] None

7 Fisher 1 Fisher information [see (13)] None

8 SVMactive + CBD 3 Minimum instance margin [Z,,, in (6)] Clustering based

9 SVMactive + FBD 4 Minimum instance margin [Z,, in (6)] Fuzzy rough set based
10 NoisyOr + CBD 3 Noisy-or model [see (11) and (9)] Clustering based

11 NoisyOr+FBD 4 Noisy-or model [see (11) and (9)] Fuzzy rough set based
12 Fisher + CBD 3 Fisher information [ see (13)] Clustering based
13 Fisher + FBD 4 Fisher information [see (13)] Fuzzy rough set based

Algorithm 4: MIAL-FBD

Input:
Labeled set L = {(B;, yi)}izl;
Unlabeled pool U = {B:};*}, ;:
Number of candidates m;
Parameters for training SVM.
Output:
SVM solution (w, b).

1 Train mi-SVM or MI-SVM on L to get SVM solution (w, b);

2 while U is not empty do

3 if stop criterion is met then

4 | return (w,b);

5 else

6 Calculate Z(B;) of each B; € U;

7 Let U* € U contain m most informative bags;

8 for each B; € U* do

9 Calculate its diversity degree Div(B;) based on
Eq. (24);

10 end

11 Select B* = argmaxy, cyy« C(B:);

12 Query the label of B, denoted by y™;

13 Let U=U\B" and L =L U (B*,y");

14 Update SVM solution (w, b) based on new L;

15 end

16 end

17 return (w,b).

FBD will be in the same feature space. Given an unlabeled bag,
if the FBD of the bag is large, the dissimilarity degrees of the
instances in the bag are also large. This means that the instances
are located far away from each other in feature space. In this
case, the number of clusters covered by the bag will be large
with a high probability, which leads to a large CBD. On the
contrary, if the FBD of the bag is small, the CBD will also be
small with a high probability. To this end, it can be seen that the
CBD and FBD are generally consistent when the same kernel
function is adopted.

E. Complexity Analysis

We now give an analysis on the time complexity of selecting
one bag in Algorithms 3 and 4. Given an iteration, suppose the
numbers of labeled bags, unlabeled bags, selective candidates,
features, and instances per bag are [, u, m, d, and n, respectively.

S04 /9 2\ Z |\ ¥
5 0 4 1 9 2 1 3 1 4
3 D 6 7|08 6|5
3 5 3 6 1 7 2 8 6 9

Fig. 5. Training samples in MNIST dataset.

The complexity of Algorithm 3 is focused on the infor-
mativeness calculation and kernel k-means algorithm. Mak-
ing prediction for one testing sample by an SVM has the
complexity of O(sd), where s is the number of support vec-
tors (SVs). We assume that all the | X n training instances
are SVs, thus making predictions for instances in u unla-
beled bags and calculating informativeness have the highest
complexity of O(In?du). Suppose the number of clustering
iteration in Algorithm 2 is ITER, and each cluster has the
same number of instances, then the kernel k-means algorithm
has the complexity of O(ITER x mn x (%2)? x d). Finally,
the complexity for selecting one bag in Algorithm 3 is com-
puted as Oy = O(In*du) + O(ITER x mn x (52)? x d). If
m ~ k, then O ~ O(In’du) + O(ITER x n3dm)

The complexity of Algorithm 4 is focused on the infor-
mativeness calculation and dissimilarity degree computation.
The informativeness calculation has the same complexity as
Algorithm 3, i.e, O(In?du). Computing the dissimilarity degree
for one instance based on (23) has the complexity of O(nd).
Thus, the complexity for selecting one bag in Algorithm 3 is
computed as O, = O(In*du) + O(n?dm). In general, the com-
plexity of Algorithm 4, i.e., MIAL with FBD, is lower than that
of Algorithm 3, i.e., MIAL with CBD.

IV. EXPERIMENTAL COMPARISONS

In this section, we will conduct experimental comparisons
to show the feasibility and effectiveness of the proposed algo-
rithms.

A. Learning Strategies for Performance Comparison

A total of 13 learning strategies are listed in Table I for per-
formance comparison. Among them, method 1 is a baseline that
randomly selects a bag for query during each iteration. Methods
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TABLE II
DETAILED DESCRIPTION OF THE MNIST MIL DATASETS AND COREL MIL DATASETS

Datasets #Features #Bags #Instances #Instances Per Bag
positive  negative  positive  negative min  max avg std
Digit “0” 65 100 100 1329 3827 10 40 25.780  8.694
Digit “1” 65 100 100 1298 3620 10 40 24590 8.934
Digit *“2” 65 100 100 1309 3727 10 40 25.180  9.079
Digit “3” 65 100 100 1249 3657 10 40 24530  9.208
Digit “4” 65 100 100 1311 3708 10 40 25.095  9.209
Digit “5” 65 100 100 1301 3695 10 40 24980  8.795
Digit “6” 65 100 100 1450 3710 10 40 25.800  8.940
Digit “7” 65 100 100 1330 3818 10 40 25.740  8.929
Digit “8” 65 100 100 1146 3845 10 40 24955  8.672
Digit “9” 65 100 100 1216 4002 10 40 26.090 9.339
Multi-digit 65 1000 1000 3327 7778 1 10 5.553 2.845
Elephant 230 100 100 762 629 2 13 6.96 2.49
Fox 230 100 100 647 673 2 13 6.60 2.32
Tiger 230 100 100 544 676 1 13 6.10 241

2-7 implement Algorithm 1 and query the most valuable
bags according to different informativeness measurements, as
introduced in Section II-C. The proposed diversity criteria are
incorporated with three well-performing informativeness mea-
surements, i.e., minimum instance margin, Noisy-Or model,
and Fisher information. As a result, methods 8, 10, and 12
implement Algorithm 3 by incorporating the CBD, and methods
9, 11, and 13 implement Algorithm 4 by incorporating the FBD.

B. Datasets

We conduct experimental comparisons on two groups of
datasets, i.e., newly generated MIL datasets from MNIST hand-
written digit image recognition problem and existing MIL
datasets from Corel content-based image retrieval problem.

1) Handwritten Digit Image Datasets: The MNIST hand-
written digit image recognition problem' is a task that aims
to distinguish 0-9 handwritten digits from approximately
250 writers, as shown in Fig. 5. This problem contains
60 000 training samples and 10 000 testing samples. The raw
information of each sample is composed of 28 x 28 = 784
gray level pixels with each pixel value € {0,...,255}. We
use the gradient-based method® presented in [43] and [44]
to extract the gradient histogram features, and construct a
2172-dimensional feature vector. Furthermore, in order to
generate a compact dataset, we perform a feature selection
(FS) process. Since it is time-consuming to conduct FS on a
2172-dimensional feature vector for 60 000 training samples,
we divide the features into 22 subsets with the first 21 subsets
containing 100 features and the last subset containing 72
features. Then, sequential forward FS (SFES) [45] is performed
on each subset separately. In general, SFFS is a state-of-
the-art FS method based on a bottom-up greedy approach.
It first initializes an empty feature set F; = {0}, = 0; then,
it iteratively selects the feature that results in the highest
objective function, i.e., f*= argmax;cz [obj(F; Uf)] and

"http://yann.lecun.com/exdb/mnist
Zhttp://www.cs.berkeley.edu/~smaji/projects/digits

update F;; = F; Uf*, 7 = ¢ + 1, until the stopping criterion is
satisfied. In this paper, we utilize the function sequentialfs in the
Statistics and Machine Learning Toolbox of MATLAB with de-
fault settings. Finally, the selection results of the 22 subsets are
combined and a 65-dimensional feature vector is constructed.

For each class, we generate a single-digit MIL dataset with
100 positive bags and 100 negative bags. We randomly assign
the number of instances in a bag from [10, 40]. Take digit 0
as an example, and assume the number of instances in the ith
bag is n;. If the bag is negative, the instances are randomly
selected from samples of digits 1-9; if the bag is positive, an
integer nf (1< nj < n;) is first generated as the number of
positive instances, then the positive and negative instances are,
respectively, selected from samples of digit 0 and digits 1-9
randomly.

In addition, we generate a multidigit MIL dataset with 1000
positive bags and 1000 negative bags. The positive and nega-
tive instances are selected from samples of digits 0—4 and 5-9,
respectively. The number of instances in a bag is chosen from
[1,10]. Finally, the detailed descriptions of the generated MIL
datasets are listed in Table II. The task is to identify whether
some specific digits exist in a set of handwritten digits.

2) Content-Based Image Retrieval Datasets: The Corel MIL
image datasets® simulate some content-based image retrieval
tasks that aim to distinguish a specific kind of content from
other background pictures. Three datasets, i.e., elephant, fox,
and tiger, are used. Detailed descriptions of these datasets are
listed in Table II. The task is to identify whether a specific animal
exists in a set of images.

C. Experimental Settings

For the MNIST MIL datasets, 50% bags are randomly se-
lected as the training set, and the remaining 50% bags are taken
as the testing set. The learning starts with two positive bags and
two negative bags. For the Corel MIL datasets, the number of

3http://www.cs.columbia.edu/~andrews/mil/datasets.html
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Fig. 6.

Performance comparison of different learning strategies on MNIST MIL datasets. (Base-learner: mi-SVM). (a) Digit“0” (50 trials), (b) digit “1” (50

trials), (c) digit “2” (50 trials), (d) digit “3” (50 trials), (e) digit “4” (50 trials), (f) digit 5" (50 trials), (g) digit “6” (50 trials), (h) digit “7” (50 trials), (i) digit “8”

(50 trials), (j) digit “9” (50 trials), (k) average result for ten digits, and (1) legend.

instances in the bags is much smaller. Thus, 70% bags are ran-
domly selected as the training set, and the remaining 30% bags
are taken as the testing set. The learning starts with ten positive
bags and ten negative bags.

In diversity-based strategies, the learner retains m = 10 in-
formative unlabeled bags as the candidates during each iteration,

and selects the most diverse one to query. Besides, for the kernel
k-means clustering algorithm, the number of clusters & is fixed
as the average number of instances in the unlabeled bags, and
for the softmax model, the parameter « is set as 1. The learning
stops after 20 unlabeled bags have been queried or the selective
pool becomes empty.
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TABLE III
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0.7, 100
INFORMATIVENESS VALUES OF DIFFERENT UNLABELED BAGS IN N
A LEARNING ITERATION 206 < 90f---a=2
s S v 0=3
>05 5 80[—q=4
() Q
Criterion SVMactive BagMargin SoftMax CombinU NoisyOr Fisher H g =5 v
ghlarg Y go4 ;) po g A2 A
Bag | 475.6868  0.7348  0.6480  0.5555  0.0000 0.0007 =g3 3 60l5chy v TV v ]
Bag 2 4.6145 0.9586 0.6864 0.5960 0.0001  0.0138 2 A )4 g 2T **
Bag 3 14.0880 0.6534 0.6931 0.5400 0.0000  0.0000 0-41 50! 10 15 20
Bag 4 4.6145 0.9586 0.6864 0.5960 0.0001 0.0138 Number of Queries (Bag-level)
Bag 5 10.8069 0.5376 0.5948 0.4941 0.0820 3.2402 (b)
Bag 6 4.7218 0.5451 0.5841 0.4796 0.0747  3.3281
80 -
. S . . . - N = y v
Note: For each criterion, the highest informativeness value is in bold face. 9 E ;V'@r
G 870 X
. . . . . ?-’ 3 ¥ vvgi*v o=
For fair comparison, mi-SVM is employed as the base classi- 3 < ool LT 0=2
fier with parameter C' = 100, and Gaussian kernel £(x;,x;) = = £ :zj
— 2 . . . o -
exp(—%) is adopted with o =1 for all the learning ., =5
i i ion i 3 0 10 15 20
strategies, Wthf.l also serves 'as'the? kernel'fun'ctlon in kernel Alpha Number of Querles (Bag—level)
k-means clustering and the similarity relation in fuzzy rough © )

sets. To avoid the random effect, 50 trials are conducted on each
dataset and the average results are recorded. The experiments
are performed under MATLAB 7.9.0 with the “svmtrain” and
“svmpredict” functions of libsvm, which are executed on a com-
puter with a 3.16-GHz Intel Core 2 Duo CPU, a 4-GB memory,
and 64-b Windows 7 system.

D. Result Discussion

1) Result on MNIST Datasets: Fig. 6 demonstrates the av-
erage testing accuracy of 50 trials for each learning strategy on
the ten single-digit MNIST MIL datasets. It is observed that
the accuracy of mi-SVM trained on the initial training set (i.e.,
two positive bags and two negative bags) is around 50%, which
is just slightly higher than a random guess. By querying new
unlabeled bags, the accuracy increases gradually. Basically, we
have the following observations.

1) Among the six informativeness measurements (i.e.,

SVMactive, BagMargin, SoftMax, CombinU, Noisy
Or, and Fisher), NoisyOr and Fisher are the best per-
forming ones, which can always achieve higher accuracy
than others in the entire learning process; SVMactive is
also a competitive method, but its advantage over oth-
ers is not obvious; BagMargin, SoftMax, and CombinU
perform even worse than the baseline Random on most
datasets. The reason could be found in Table III, which
lists the informativeness values of the selected bags by
six measurements in the first learning iteration of Digit
0. When considering SVMactive, NoisyOr, or Fisher,
the informativeness value of the selected bag is much
higher than that of the other bags, however, when consid-
ering BagMargin, SoftMax, or CombinU, all the bags
have very similar informativeness values. That is to say,
the rigorous computation on BagMargin, SoftMax, and
CombinU may weaken the differences of the informative-
ness values among different bags, as a result, the selection
may be unreliable due to trivial advantage.

2) The low accuracy of SoftMax and CombinU can be fur-

ther explained by a sensitivity analysis of parameter «

Fig. 7. Sensitivity analysis of parameter « for (a) and (b) SoftMax and
(c) and (d) CombinU.

in the softmax function, i.e., (7). Fig. 7 demonstrates the
measure values for five unlabeled bags and the learn-
ing trends of SoftMax and CombinU with different set-
tings of « on Digit 0. For SoftMax, it can be observed
that a larger o leads to a higher difference of measure
values among the bags, accordingly, the learning perfor-
mance is improved a lot. This phenomenon also exists for
CombinU, but the impact is much smaller. In a word, the
performances of SoftMax and CombinU are sensitive to
parameter .. In order to get competitive results, we have
to make additional efforts for parameter tuning. However,
this problem does not exist for other methods. For in-
stance, there is no additional parameter for SVMactive,
BagMargin, and NoisyOr, while the only parameter for
Fisher is the kernel parameter, which is exactly the same
with the one in the SVM. This is also a reason why we
did not implement the diversity criteria with SoftMax and
CombinU.

3) By incorporating CBD or FBD, the performances of
SVMactive, NoisyOr, and Fisher have been improved in
most cases. For NoisyOr and Fisher, the improvements
achieved by CBD and FBD are similar. This is because
the adoption of a fixed kernel function and kernel param-
eter makes CBD and FBD intrinsically compatible for an
informativeness measurement. For SVMactive, FBD out-
performs CBD in most cases. This could be due to the fact
that SVMactive evaluates an unlabeled bag by its mini-
mum instance margin, i.e., the selection of a bag will only
depend on the most valuable instance in it, all the other
instances will be useless. As analyzed in Sections III-B
and III-C, CBD is based on a clustering process of all
the instances, whereas FBD is directly related to the most
valuable instance with regard to the evaluation targets.
As a result, FBD is more suitable to be incorporated
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TABLE IV
AVERAGE TESTING ACCURACY (%) OF THE 20 LEARNING ITERATIONS (UPPER RESULT) AND FINAL TESTING ACCURACY (%) AFTER THE LEARNING PROCESS IS
FINISHED (LOWER RESULT)

Datasets ~ Random BagMargin  SoftMax CombinU A A+CBD A+FBD * %+CBD  %+FBD * *+CBD  %+FBD
Digit “0” 71.49 64.56 52.41 67.21 7126 72307 748417 7812 82.937 81.527  78.88  83.007 82.6607
81.08 69.60 54.84 73.50 81.08  83.807 85.847 9434  94.887 95.30T  93.04  94.907 95.107
Digit “1” 74.44 72.22 54.02 76.84 7921  81.827  50.60|] 80.10  84.147 82.467 80.83  86.127 84.217
86.54 81.54 56.40 84.74 89.36  94.187  50.10]] 9552 97.047 96.627  96.52  98.007 97.5671
Digit “2” 66.57 57.60 52.74 59.40 64.03 72317 73341 7347  77.397 75.787 7397  77.727 78.387
76.24 61.54 53.46 65.30 71.38  81.4271 82.741  88.74  90.607 89.847  87.00 83.90]] 90.207
Digit “3” 65.03 58.76 52.77 59.49 64.47  76.017 71.2417  69.31  73.047 72831 7135  76.067 75.007
73.52 63.76 54.10 66.84 73.64  83.407 80.427 84.10  86.927 86.227 87.06  87.507 86.86]]
Digit “4” 65.98 57.96 53.16 61.77 65.58  68.057 76.887 7494  78.741 78.667 7491  78.547 78.737
77.30 60.96 54.60 66.30 7520  76.467 84.547 91.86 91.36]] 93247 90.68  88.78]| 91.047
Digit “5” 64.14 58.14 52.95 59.93 64.81 62.83|] 71.087 74.65 77.731 77.687 7452 79.377 79.047
72.48 61.50 55.60 66.06 71.62  73.987 84.347 91.80  91.967 93.467 89.96  91.007 91.247
Digit “6” 67.89 66.66 52.97 70.33 69.93 63.16]]  76.587 78.11  80.697 81.837 78.61  82.857 82.927
77.68 72.38 55.52 77.88 79.56  76.68]]  87.287 93.20  94.467 94907 9446  96.407 95.707
Digit “7” 68.41 68.51 52.37 66.73 6524 69.567 70241 7841  79.1471 80.901  77.10  79.977 81.197
76.74 76.98 53.90 74.66 7390  82.627 78.88T 9292 92.68|] 93.80T 91.84  93.187 92.767
Digit “8” 61.05 55.27 51.95 56.71 59.00  60.757 72887  67.71  69.847 72.677 6750  69.567 71.647
70.22 58.86 54.26 61.94 67.02  71.367 83.567 84.34 84.20|] 86.587 81.72  7534]|  79.00]]
Digit “9” 60.74 52.68 51.63 54.11 59.08  65.137 67.527  65.83  69.907 70.11T7  65.18  67.847 70.017
68.36 54.18 52.56 56.76 66.02  74.907 79967 8218 81.56]]  84.60T 76.16 71.20]] 76.647
Avg. 66.57 61.24 52.70 63.25 66.26  69.197 705217  74.06  77.367 77441 7429  78.107 78.381
76.02 66.13 54.52 69.40 74.88  79.887 79.777  89.90  90.577 91467 88.84  88.02]] 89.617

Note: Due to space limit, we denote “SVMactive,” “NoisyOr,” and “Fisher” as “A”, “3,” and “,” respectively. For each dataset, the highest average accuracy is in bold face. The
symbols of T and ||, respectively, represent that the average accuracy is improved or not by incorporating CBD or FBD.

with SVMactive. However, an exceptional case exists in
Fig. 6(b), where SVMactive + FBD demonstrates a de-
creasing learning trend on Digit . This could be caused
by a bad selection in the first learning iteration, which
obstructs the classifier to converge to the optimal one at
the beginning.

Furthermore, Fig. 6(k) shows the average performance of the
learning strategies on the ten single-digit MNIST MIL datasets.
Overall speaking, CBD and FBD can achieve very similar im-
provements for the informativeness measurements.

Table IV reports the mean accuracy of the 20 learning it-
erations and the final accuracy after the learning stops, re-
spectively. For each dataset, the best results are highlighted
in bold face. It is observed that the best results are always
achieved by incorporating a diversity criterion. Among them,
Fisher + FBD and NoisyOr+FBD give the best average results
for mean accuracy and final accuracy, respectively. Besides, we
use T and || to demonstrate whether the diversity criteria can
improve the performance of its single informativeness-based
strategy. Obviously, accuracy improvement is achieved on most
datasets for both CBD and FBD with regard to all the three
informativeness measurement, i.e., SVMactive, NoisyOr, and
Fisher.

Table V reports the average time cost during each learning
iteration and the average number of iterations for training mi-
SVM by different strategies. The time cost during each iteration
mainly consists of two parts: training base classifiers and eval-
vating unlabeled bags. The first part is directly related to the
number of training iterations for mi-SVM. The selection of a
valuable bag can not only improve the learning performance,
but also reduce the number of training iterations and force the

SVM to converge to the optimal one faster. It is observed that the
average number of training iterations for mi-SVM in a diversity-
based strategy (e.g., Fisher + CBD or Fisher + FBD) is very
close to that in its single informativeness-based strategy (e.g.,
Fisher), which demonstrates that the incorporation of diversity
to informativeness will not increase the training complexity. As
for the bag evaluation part, CBD has a higher complexity than
FBD, which is clear from Table V. However, in real-world AL
applications, labeling a sample usually takes much more time
than selecting a sample. For instance, it may take several seconds
to several minutes for labeling a sample, whereas the selecting
part just takes milliseconds. Thus, the time complexity of all the
strategies is in an acceptable range.

We also make some statistical tests on the results listed in
Table IV. Paired Wilcoxon’s signed rank test is performed,
which is a famous nonparametric statistical hypothesis test for
assessing whether there exists significant difference between
two sets of results. The corresponding p-values are reported
in Table VI, and the significance level 0.05 is adopted. If the
p-value is smaller than 0.05, the two referred methods are con-
sidered as statistically different. It can be seen that almost
all the diversity-based strategies are statistically different from
the single informativeness-based strategies by considering both
mean accuracy and final accuracy. However, the diversity-based
strategies may have no essential difference from each other in
some cases. This is consistent with the results shown in Fig. 6,
where the learning trends of some diversity-based strategies
(e.g., Fisher + CBD and Fisher + FBD) are similar during the
entire process.

Finally, Fig. 8 demonstrates the AL performance on the multi-
digit MNIST MIL dataset. According to the above-presented re-
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TABLE V
AVERAGE TIME (SECONDS) FOR SELECTING ONE BAG AND AVERAGE NUMBER OF ITERATIONS FOR TRAINING MI-SVM
Data sets Random BagMargin SoftMax  CombinU A A+CBD A+FBD * x%+CBD *+FBD * %+CBD  %+FBD
Digit “0” 0.1976 0.2184 0.6125 0.2212 0.2659 1.2487 0.3766 0.0914 1.0056 0.1720 0.1629 1.0290 0.1984
4.2) 4.5) (7.5) (4.5) (4.6) (5.5) (4.5) (2.6) (2.4) (2.6) (2.6) (2.4) (2.5)
Digit “1” 0.1654 0.1445 0.5238 0.1363 0.1773 1.0169 0.3410 0.0696 0.9162 0.1563 0.1415 0.9288 0.1892
(3.8) (3.8) (7.4) (3.4) 3.5) @.1) (2.6) 2.4) (2.3) 2.5) 2.3) (2.2) 2.4)
Digit “2” 0.2305 0.2629 0.5544 0.2700 0.3410 1.1897 0.4531 0.0990 0.9653 0.1934 0.1806 0.9841 0.2221
(4.8) 4.9) (7.3) (5.0) (5.3) (5.3) (5.1) 2.9) 2.7) (2.9) (2.8) 2.7) (2.8)
Digit “3” 0.2462 0.2296 0.5343 0.2414 0.3167 1.1243 0.4283 0.0950 0.9460 0.1799 0.1690 0.9650 0.2067
(5.0) (4.8) (7.0) (5.0) 5.1 (5.0) (4.9) 2.9) (2.8) (2.9) 2.7 2.7) 2.7
Digit “4” 0.2401 0.2519 0.5043 0.2493 0.3094 1.2057 0.3615 0.0966 0.9867 0.1892 0.1813 1.0021 0.2157
(4.9) (5.0) (7.3) (5.0 (4.9) (5.5) @.1) 2.7) .7 (2.8) (2.6) (2.6) (2.6)
Digit “5” 0.2597 0.2495 0.5652 0.2556 0.3431 1.3694 0.4189 0.0912 0.9595 0.1818 0.1722 0.9771 0.2071
(5.2) (5.0) (7.3) (5.0) (5.3) (6.9) (4.9) 2.7 (2.6) (2.8) 2.7 (2.6) (2.6)
Digit “6” 0.2297 0.2205 0.6099 0.1981 0.2861 1.3965 0.3963 0.0801 1.0177 0.1614 0.1603 1.0307 0.1914
4.7) 4.5) (7.7) @.1) @.7) (6.5) 4.7) (2.5) (2.5) (2.5) (2.5) (2.4) (2.5)
Digit “7” 0.2042 0.1845 0.6318 0.2044 0.3053 1.2729 0.4380 0.0846 1.0221 0.1652 0.1676 1.0480 0.2019
(4.3) 4.0) (7.5) (4.3) 4.9) (5.6) (5.0) (2.6) (2.5) (2.5) (2.5) (2.5) (2.5)
Digit “8” 0.3123 0.2973 0.5615 0.2769 0.4077 1.4177 0.4557 0.1141 0.9954 0.2079 0.1950 1.0199 0.2281
(5.6) (5.3) (7.2) (5.0 (5.9) (6.9) (5.1) 3.2) (3.2) (3.2) (3.0) (3.1) (3.0)
Digit “9” 0.3144 0.3503 0.6202 0.3578 0.4208 1.3723 0.4564 0.1149 1.0873 0.2160 0.2000 1.1141 0.2509
(5.4) (5.8) (7.4) (5.7) (5.7) (6.0) (4.9) @3.1) (3.0) (3.1) (2.9) (2.9) (2.9)
Avg. 0.2400 0.2409 0.5718 0.2411 0.3173 1.2614 0.4126 0.0936 0.9902 0.1823 0.1731 1.0099 0.2111
(4.8) (4.8) (7.4) 4.7) (5.0) (5.7) (4.6) (2.8) (2.7) (2.8) (2.6) (2.6) (2.7)
Note: Due to space limit, we denote “SVMactive”, “NoisyOr” and “Fisher” as “A”, “>” and “¥” respectively.
TABLE VI
PAIRED WILCOXON’S SIGNED-RANK TESTS (p-VALUES)
Method BagMargin ~ SoftMax  CombinU A A+CBD A+FBD X %+CBD  %+FBD * %+CBD % +FBD
Random 0.0039¢ 0.0020t 0.0195¢ 0.4922 0.1309 0.0840  0.0020tf  0.0020f  0.0020f  0.0020f  0.0020f  0.0020f
0.0039% 0.0020t 0.0039¢ 0.1641 0.0098f  0.0840  0.0020f  0.00201  0.0020f  0.0020f  0.00201  0.0020%
BagMargin - 0.0020t 0.0137¢ 0.00591  0.00591  0.0840  0.0020f  0.0020f  0.00201  0.0020f  0.0020f  0.002071
- 0.0020t 0.003971 0.0039f  0.0020f  0.0840  0.00207  0.0020f  0.0020f  0.0020f  0.0020f  0.00201
SoftMax - - 0.00207 0.0020Ff  0.00201  0.00391  0.0020f  0.0020f  0.00201  0.0020f  0.0020f  0.00207
- - 0.00207 0.0020f  0.0020f  0.00391  0.0020f  0.0020f  0.0020f  0.00201  0.0020f  0.00201
CombinU - - - 0.0098f  0.03711  0.0840  0.00207  0.0020f  0.00201  0.00201  0.0020f  0.00201
- - - 0.0039Ff  0.00391  0.0840  0.0020f  0.0020f  0.00201  0.0020f  0.0020f  0.002071
A - - - - 0.1055 0.0840  0.0020tf  0.0020f  0.0020f  0.0020f  0.0020f  0.0020%
- - - - 0.0137f  0.0840  0.0020f  0.0020tf  0.0020f  0.00207  0.0020f  0.0020f
A+CBD - - - - - 0.2324  0.0488t  0.0059tf  0.00591 0.0273Ff  0.0020f  0.00397
- - - - - 0.3223  0.0020tf  0.0020f  0.0020f  0.0020f  0.0059tf  0.0020f
A+FBD - - - - - - 0.4922  0.01371  0.0039f  0.2754 0.00987  0.0039f
- - - - - - 0.0020f  0.00207  0.00201  0.00987 0.1055 0.0098+
* - - - - - - - 0.0020f  0.0020f  0.5566 0.00201  0.002071
- - - - - - - 0.1934 0.00201  0.1934 0.4922 0.9219
%+CBD - - - - - - - - 1.0000  0.002071 0.1602 0.0195¢
- - - - - - - - 0.0898  0.00787 0.2871 0.4316
*+FBD - - - - - - - - - 0.00207 0.3750 0.0273+
- - - - - - - - - 0.0098+ 0.1309 0.1934
* - - - - - - - - - - 0.00201  0.002071
- - - - - - - - - - 0.6250 0.0840
*+CBD - - - - - - - - - - - 0.5566
- - - - - - - - - - - 0.3750

Note: In each comparison, the upper and lower results are, respectively, the p-values of the Wilcoxon’s signed rank tests on the mean accuracy and final accuracy in Table I'V. For
each test, T represents that the two referred methods are significantly different with the significance level 0.05.

sults, Fisher + CBD and Fisher + FBD have achieved the best
performance. Thus, we only implement Fisher, Fisher + CBD,
Fisher + FBD, and the baseline Random on this dataset. Obvi-
ously, the performance of Fisher has been improved, especially
by Fisher + FBD.

2) Result on Corel Data sets: For simplicity, we only imple-
ment Random, NoisyOr, NoisyOr + CBD, NoisyOr+FBD,
Fisher, Fisher + CBD, and Fisher + FBD for this group of
datasets. Fig. 9 demonstrates the average testing accuracy of
50 trials for each learning strategy. Unfortunately, the diversity

criteria (i.e., CBD and FBD) fail to improve the performance of
the single informativeness-based strategies (i.e,. NoisyOr and
Fisher) on these tasks. The underlying reason could be found
in Fig. 10, which demonstrates the instance distribution of dif-
ferent unlabeled bags in the first two feature dimensions of the
MNIST datasets and Corel datasets. It is clear that the MNIST
datasets possess the two basic characteristics described in
Section III-A, i.e., the number of instances in different bags
differs a lot and the instance distribution is highly irregular.
Howeyver, these two characteristics are not obvious in the Corel
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datasets. As a result, the performance may even be decreased if
the data do not satisfy the premises described in Section III-A.
Furthermore, it can be seen from Table II that the number of
instances in a bag for the Corel datasets is much smaller than
that of the MNIST datasets, and the dimensionality of the fea-
ture vector for the Corel datasets is much higher than that of
the MNIST datasets. In such a high-dimensional feature space,
the distribution for a few instances will be very sparse. That is
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Algorithm 5: Pseudo-Code for mi-SVM Optimization
Heuristics
Input:
Multiple-instance training set S = {(Bi, v:) }iz1-
Output:
SVM solution (w, b).
1 Initialize y;; = y; for each B;; € Bi;
2 repeat
3 Compute SVM solution (w, b) with imputed labels v;;;
4 for each positive bag B; do
5 Compute f;; = wTB;; + b for each B;; € Bi;
6
7
8
9

Set y;; = sign(f;;) for each B;; € B;;

if ZBQ‘EB;‘ (1 —+ yij)/Z == (0 then
Compute j* = argmax; fij;
Set yij+ = 1;

10 end

11 end

12 until imputed labels y;; have no change;

13 return (w,b).

Algorithm 6: Pseudo-Code for MI-SVM Optimization
Heuristics
Input:
Multiple-instance training set S = {(Bi, ys) }iz1-
Output:
SVM solution (w, b).

1 Initialize x; = ZBUE& Bij/|B;| for each positive bag B;;
2 repeat
3 Compute SVM solution (w, b) with all instances in

negative bags and positive examples {x; : y; = 1};

4 for each positive bag B; do

5 Compute f;; = w'Bi; + b for each B;; € Bi;
6 Compute j* = argmax; fij;

7 Set x; = B;j=;

8 end

9

10

until selector variables j* have no change;
return (w, b).

to say, all the instances are far away from each other and the
diversity evaluation is not a necessary step.

V. CONCLUSION

In this paper, two diversity criteria have been proposed to
evaluate unlabeled bags in SVM-based MIAL, i.e,. CBD and
FBD, which measure the diversity of an unlabeled bag by the
kernel k-means clustering algorithm and lower approximations
in fuzzy rough sets. By incorporating CBD and FBD with tra-
ditional informativeness measurements, the learner can query
the unlabeled bag with both high informativeness and diversity.
Moreover, the kernel function adopted in the SVM also serves
as the kernel function in kernel k-means clustering and the sim-
ilarity relation in fuzzy rough sets, which makes CBD and FBD
intrinsically compatible with SVM. Experimental comparisons
demonstrate that the diversity criteria are effective to improve
performance when the number of instances in different bags
differs a lot and the instance distribution is highly irregular.
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APPENDIX

The heuristic optimization models of mi-SVM and MI-SVM
are presented as Algorithms 5 and 6, respectively.
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