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a b s t r a c t 

Knowledge reduction is one of the key issues in knowledge discovery and data mining. During the con- 

struction of a concept lattice, it has been recognized that computational complexity is a major obstacle in 

deriving all the concept from a database. In order to improve the computational efficiency, it is necessary 

to preprocess the database and reduce its size as much as possible. Focusing on formal fuzzy contexts, we 

introduce in the paper the notions of granular consistent sets and granular reducts and propose granular 

reduct methods in the sense of reducing the attributes. With the proposed approaches, the attributes that 

are not essential to all the object concepts can be removed without loss of knowledge and, consequently, 

the computational complexity of constructing the concept lattice is reduced. Furthermore, the relation- 

ship between the granular reducts and the classification reducts in a formal fuzzy context is investigated. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

The theory of formal concept analysis (FCA), proposed by Wille

[11,47] , centers on the study of formal concepts and conceptual hi-

erarchies. It has been employed to unravel, from relational infor-

mation systems, hierarchical concepts organized as a lattice. Since

its inception, FCA has been applied to many real-life problems

including data mining, information retrieval, knowledge acquisi-

tion, software engineering, data base management systems and on

other disciplines [8,10,18,22–25,28,33,45,57] . Over the years, FCA

has been an important research area with appealing theoretical

and practical issues. 

FCA is formulated based on a formal context materialized as

a set of objects, a set of attributes, and a binary relation usually

taking the form of a binary table that relates the objects to the

attributes with value 0 and 1. However, in many real-life prob-

lems, the binary relations are fuzzy rather than crisp. Thus, formal

fuzzy contexts are more common than their crisp counterparts.

For this reason, binary fuzzy relations are used to analyze Galois

connections between objects and attributes. Burusco and Fuentes-

Gonzáles [4] first examined FCA in a fuzzy setting, and they de-

fined L-fuzzy concepts using implication operators. In recent years,

many researchers have extended FCA theory by using the ideas

from fuzzy logic reasoning or fuzzy set theory, and several gen-
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ralizations of formal fuzzy concept have been made (please see

1,9,12,13,15,34,40,48] ). On the other hand, Kraj ̌ci [19] and Yahia

t al. [53] independently proposed the “one-sided fuzzy concept”,

here each fuzzy concept ( X, B ) takes the form of “X is crisp and

 is fuzzy”, or “X is fuzzy and B is crisp”. Zhang et al. [60] fur-

her constructed the “variable threshold concept lattices”, i.e. crisp-

uzzy variable threshold concepts and fuzzy-crisp variable thresh-

ld concepts, in which the “one-sided fuzzy concept” becomes a

articular case (threshold being equal to 1). One can refer [2] for a

omprehensive survey and comparison of the existing approaches

or fuzzy concept lattices. 

Granular computing (GrC) is an approach for knowledge rep-

esentation and data mining. A granule is a clump of objects

points) drawn together by some criteria. The main directions in

he study of GrC are the construction of granules and computation

ith granules. The former deals with the formation, representa-

ion, and interpretation of granules, while the latter handles the

tilization of granules in problem solving [38,51,54,55] . More re-

ently, there has been an increasing interest in the study of GrC,

nd many methods and models have been proposed and studied

6,29,32,37,39,41,42,49,52,56,59] . 

It should be noted that a concept lattice is constructed by all

he formal concepts combined with a hierarchical order of the con-

epts. At the bottom of a concept lattice structure are object con-

epts, and other concepts (contained in the concept lattice) can

e represented as a join of some object concepts. Hence, the ob-

ect concepts play an important role in the construction of concept

http://dx.doi.org/10.1016/j.knosys.2016.10.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
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attice and can be viewed as a basic information granule in the

oncept lattice. Thus, concept lattice can be treated as a concrete

odel of GrC. Wu et al. [50] first examined the granular structure

f concept lattices and applied it to knowledge reduction of for-

al contexts. Kang et al. [16,17] introduced GrC into FCA and on-

ology learning, and presented a unified model for concept-lattice

uilding and rule extraction under fuzzy granularity and ontology

odel building, ontology merging and ontology connection at dif-

erent levels of granulation. 

Attribute reduction is an important issue in the discov-

ry of knowledge in information systems. In terms of a for-

al context, attribute reduction searches for a minimal attribute

ubset that preserves the required properties. Interest in at-

ribute reduction in FCA has rapidly increased in recent years

7,9,20,21,26,30,35,43,44,46,50,61] . Ganter and Wille [11] first in-

roduced the notions of reducible attributes and reducible objects

y reducing columns and rows in a formal context. Zhang and

ei [61] discussed attribute reduction in classical formal contexts,

nd formulated a reduction approach by using discernibility ma-

rices and Boolean functions. Liu et al [31] . presented a reduction

ethod for concept lattices based on rough set theory. In [46] ,

ang and Zhang proposed a reduction approach by keeping the

eet-irreducible elements. Based on fuzzy K-means clustering, Ku-

ar and Srinivas [20] put forward a method to reduce the size of

 concept lattice by employing the corresponding object-attribute

atrix. Shao et al. [44] formulated a knowledge-lossless approach

o complexity reduction in formal decision contexts with which

he complexity of concept lattice is substantially reduced. Li et al.

21] developed a rule-acquisition oriented framework of knowl-

dge reduction for real decision formal contexts and formulated

 reduction method by constructing a discernibility matrix and

ts associated Boolean function. Nevertheless, the aforementioned

tudies are carried out within classical formal contexts. 

Based on the Lukasiewicz implication, Elloumi et al. [9] formu-

ated a multi-level conceptual data reduction approach via the re-

uction of the object sets by keeping only the minimal rows in a

ormal fuzzy context. Belohlavek et al. [3] proposed a method to

educe the number of formal fuzzy concepts by keeping the so-

alled crisply generated fuzzy concepts derived from some crisp

ubset of attributes and leaving out non-crisply generated fuzzy

oncepts. Li and Zhang [27] introduced the notion of δ-reducts

n formal fuzzy contexts, and gave some equivalent characteriza-

ions of the δ-consistent sets to determine δ-reducts. Comparing

ith the studies on knowledge reduction in the classical formal

ontexts, very little effort has been made to investigate the issue

ithin formal fuzzy contexts. In a concept lattice, object concepts

re actually more important, since every formal concept in a con-

ept lattice can be represented as a join of some object concepts.

u et al. [50] studied granular reducts in classical formal con-

exts by keeping the extensions of all object concepts. However,

t should be noted that the number of formal concepts in a formal

uzzy context dramatically increases, making the structure of the

orresponding lattice more complicated than those of a classical

ormal context. Thus, the reductions made in formal fuzzy contexts

ecome more meaningful. 

In this paper, we study granular reducts of formal fuzzy con-

exts, a generalization of those [50] in fuzzy framework. Accord-

ngly, we propose some granular reduct approaches and inves-

igated the relation between granular reducts and classification

educts in a formal fuzzy context. Specifically, we review in the

ext section some basic notions and properties of crisp-fuzzy con-

epts, and then analyze the basic structures of information gran-

les and concept lattices derived from a formal fuzzy context and

ts sub-contexts. Furthermore, we present some theorems for judg-

ng join-irreducible elements in a concept lattice constructed from

risp-fuzzy concepts. In Section 3 , we study the issue of granular
educts in formal fuzzy contexts. In Section 4 , we propose some

ranular reduct approaches in consistent formal fuzzy decision

ontexts. The relationship between granular reduct and classifica-

ion reduct in a formal fuzzy context is investigated in Section 5 .

he paper is then concluded with a summary and outlook for fur-

her research. 

. Preliminaries 

In this section, we recall the notion of a fuzzy concept lattice

onstructed from crisp-fuzzy concepts and some of its main prop-

rties. More details can be found in [53] on crisp-fuzzy concepts. 

.1. Formal fuzzy contexts and crisp-fuzzy formal concepts 

Yahia [53] and Kraj ̌c i [19] independently proposed the “crisp-

uzzy concept”. In the following, we introduce its basic notion and

nvestigate some of its properties used in our subsequent discus-

ion. 

Let U be a finite and nonempty set called the universe of dis-

ourse. We denote by P(U) and F(U) the set of all ordinary sub-

ets of U and the set of all fuzzy sets in universe U , respectively. 

For any ˜ X 1 , ̃
 X 2 ∈ F(U) , ˜ X 1 ⊆ ˜ X 2 if and only if ˜ X 1 (x ) ≤˜ 

 2 (x ) (∀ x ∈ U) , and operations ∪ and ∩ on F(U) are defined

y: 

( ̃  X 1 ∪ ̃

 X 2 )(x ) = 

˜ X 1 (x ) ∨ ̃

 X 2 (x ) , 

( ̃  X 1 ∩ ̃

 X 2 )(x ) = 

˜ X 1 (x ) ∧ ̃

 X 2 (x ) . 

The basic data set of FCA is a formal context. A formal fuzzy

ontext is a triple (U, A, ̃  I ) , where U and A are the object set and

ttribute set respectively, and ̃

 I ∈ F(U × A ) is a binary fuzzy rela-

ion between U and A . 

efinition 1 [53] . Let (U, A, ̃  I ) be a formal fuzzy context. For X ∈
(U) , ˜ B ∈ F(A ) , the operators f : P(U) → F(A ) and g : F(A ) →
(U) are defined respectively as follows: 

f (X )(a ) = 

∧ 

x ∈ X ̃

 I (x, a ) , a ∈ A, 

g( ̃  B ) = { x ∈ U|∀ a ∈ A, ̃  B (a ) ≤˜ I (x, a ) } . (1) 

For any x ∈ U , for simplicity, we will write f ( x ) instead of f ({ x }).

Operators f and g form a Galois connection between P(U) and

(A ) , and the following properties can be obtained. 

roperty 1 [53] . Let (U, A, ̃  I ) be a formal fuzzy context, X, X 1 , X 2 , X i ∈
(U) , and ˜ B , ̃  B 1 , ̃

 B 2 , ̃
 B i ∈ F(A ) , i ∈ J (J is an index set). Then 

(1) X 1 ⊆ X 2 ⇒ f (X 2 ) ⊆ f (X 1 ) , ˜ B 1 ⊆ ˜ B 2 ⇒ g( ̃  B 2 ) ⊆ g( ̃  B 1 ) ;
(2) X ⊆ g ◦ f (X ) , ˜ B ⊆ f ◦ g( ̃  B ) ;
(3) f (X ) = f ◦ g ◦ f (X ) , g( ̃  B ) = g ◦ f ◦ g( ̃  B ) ;
(4) f ( 

⋃ 

i ∈ J X i ) = 

⋂ 

i ∈ J f (X i ) , g( 
⋃ 

i ∈ J ̃  B i ) = 

⋂ 

i ∈ J g( ̃  B i ) . 

For a formal fuzzy context (U, A, ̃  I ) , a pair (X, ̃  B ) ∈ P(U) × F(A )

atisfying X = g( ̃  B ) and 

˜ B = f (X ) is called a crisp-fuzzy concept of

(U, A, ̃  I ) (see [53] ). For a set of objects X ∈ P(U) and a fuzzy set

f attributes ˜ B ∈ F(A ) , from Property 1 (3), we can observe that

oth ( g ◦f ( X ), f ( X )) and (g( ̃  B ) , f ◦ g( ̃  B )) are crisp-fuzzy concepts. In

articular, ( g ◦f ( x ), f ( x )) is a crisp-fuzzy concept for each x ∈ U and

s called an object concept. For two crisp-fuzzy concepts (X 1 , ̃
 B 1 )

nd (X 2 , ̃
 B 2 ) , we define (X 1 , ̃

 B 1 ) ≤ (X 2 , ̃
 B 2 ) if and only if X 1 ⊆ X 2 

or equivalently, ˜ B 2 ⊆ ˜ B 1 ). All crisp-fuzzy concepts of (U, A, ̃  I ) form

 complete lattice, denoted as L (U, ̃  A , ̃  I ) , in which the infimum and

he supremum are defined respectively as follows: 

(X 1 , ̃
 B 1 ) ∧ (X 2 , ̃

 B 2 ) = (X 1 ∩ X 2 , f ◦ g( ̃  B 1 ∪ ̃

 B 2 )) 

= (X 1 ∩ X 2 , f (X 1 ∩ X 2 )) ;
(X 1 , ̃

 B 1 ) ∨ (X 2 , ̃
 B 2 ) = (g ◦ f (X 1 ∪ X 2 ) , ̃  B 1 ∩ ̃

 B 2 ) 



158 M.-W. Shao et al. / Knowledge-Based Systems 114 (2016) 156–166 

Table 1 

A formal fuzzy context. 

˜ I a b c d e 

x 1 0 .5 0 .7 0 .7 0 .5 0 .7 

x 2 0 .6 0 .7 1 .0 0 .5 1 .0 

x 3 1 .0 0 .9 1 .0 0 .1 1 .0 

x 4 1 .0 0 .9 0 .9 0 .1 0 .9 

x 5 0 .6 0 .7 1 .0 0 .1 1 .0 

Table 2 

All crisp-fuzzy concepts derived from Table 1 . 

(Objects, attributes) 

FC 1 ({ x 1 , x 2 , x 3 , x 4 , x 5 }, { a 0.5 , b 0.7 , c 0.7 , d 0.1 , e 0.7 }) 

FC 2 ({ x 2 , x 3 , x 4 , x 5 }, { a 0.6 , b 0.7 , c 0.9 , d 0.1 , e 0.9 }) 

FC 3 ({ x 1 , x 2 }, { a 0.5 , b 0, 7 , c 0.7 , d 0.5 , e 0.7 }) 

FC 4 ({ x 2 , x 3 , x 5 }, { a 0.6 , b 0, 7 , c 1.0 , d 0.1 , e 1.0 }) 

FC 5 ({ x 3 , x 4 }, { a 1.0 , b 0, 9 , c 0.9 , d 0.1 , e 0.9 }) 

FC 6 ({ x 2 }, { a 0.6 , b 0, 7 , c 1.0 , d 0.5 , e 1.0 }) 

FC 7 ({ x 3 }, { a 1.0 , b 0, 9 , c 1.0 , d 0.1 , e 1.0 }) 

FC 8 ( ∅ , { a 1.0 , b 1.0 , c 1.0 , d 1.0 , e 1.0 }) 

Fig. 1. The Hasse diagram of the concept lattice L (U, ̃  A , ̃  I ) . 
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Table 3 

A sub-context (U, C, ̃  I C ) . ˜ I a c d 

x 1 0 .5 0 .7 0 .5 

x 2 0 .6 1 .0 0 .5 

x 3 1 .0 1 .0 0 .1 

x 4 1 .0 0 .9 0 .1 

x 5 0 .6 1 .0 0 .1 
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= (g( ̃  B 1 ∩ ̃

 B 2 ) , ̃  B 1 ∩ ̃

 B 2 ) . (2)

Example 1. Table 1 describes a formal fuzzy context (U, A, ̃  I ) ,

where U = { x 1 , x 2 , x 3 , x 4 } , A = { a, b, c, d, e } , and the fuzzy relation
 I is defined in Table 1 . All the crisp-fuzzy concepts derived from

Table 1 are listed in Table 2 , and the Hasse diagram of the concept

lattice L (U, ̃  A , ̃  I ) is depicted in Fig. 1 . 

2.2. Fuzzy sub-contexts and corresponding concept lattices 

In this subsection, we discuss the relationship between the

derivation operators on a formal fuzzy context and those of its sub-

contexts. 

Definition 2. Let K = (U, A, ̃  I ) be a formal fuzzy context. For any C

⊆ A , we can obtain a formal fuzzy context K C = (U, C, ̃  I C ) , which is

called a sub-context of K , where ̃  I C = ̃

 I ∩ (U × C) . For X ∈ P(U) and˜ B ∈ F(C) , the operators f C : P(U) −→ F(C) and g C : F(C) −→ P(U)

are defined respectively as follows: 

f C (X )(a ) = 

∧ 

x ∈ X ̃

 I (x, a ) , a ∈ C, 

g C ( ̃  B ) = { x ∈ U|∀ a ∈ C, ̃  B (a ) ≤˜ I (x, a ) } . (3)

For simplicity, we use f ( X ) and g( ̃  B ) instead of f A ( X ) and g A ( ̃
 B ) ,

respectively. 
Let A be a nonempty finite universe of discourse. For any C ⊆
 , its characteristic function X C is defined by 

 C (a ) = 

{ 

1 , a ∈ C, 

0 , a �∈ C. 

roperty 2. Let (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A. Then,

 X ⊆ U , 

(1) f C (X ) = f (X ) ∩ X C , 

(2) g ◦ f ( X ) ⊆ g C ◦ f C ( X ) . 

roof. Item (1) follows immediately from Definitions 1 and 2 . 

(2) For any x ∈ g ◦ f ( X ), by item (1) we have 

 ∈ g ◦ f (X ) ⇔ ∀ a ∈ A, f (X )(a ) ≤ ˜ I (x, a ) 

⇒ ∀ a ∈ C, f C (X )(a ) ≤˜ I (x, a ) 
⇔ x ∈ g C ◦ f C (X ) . 

herefore, g ◦ f ( X ) ⊆ g C ◦ f C ( X ). �

xample 2. In Example 1 , let C = { a, c, d} . Then (U, C, ̃  I C ) is a sub-

ontext of (U, A, ̃  I ) , and is represented by Table 3 . For any X ⊆ U ,

t can be easily checked that f C (X ) = f (X ) ∩ X C . 

emma 1. Let K = (U, A, ̃  I ) be a formal fuzzy context, C ⊂ A, X ⊆ U,

nd X i ⊆ U, i = 1 , 2 , . . . , k . If 

f (X ) = 

k ⋂ 

i =1 

f (X i ) , 

hen 

f C (X ) = 

k ⋂ 

i =1 

f C (X i ) . 

roof. 

f C (X ) = f (X ) ∩ C 

= 

( 

k ⋂ 

i =1 

f (X i ) 

) 

∩ C 

= 

k ⋂ 

i =1 

( f (X i ) ∩ C ) 

= 

k ⋂ 

i =1 

f C (X i ) . 

�

Lemma 1 says that if the intension derived from an object

et can be represented as the intersection of intensions derived

rom some object sets in a formal fuzzy context, then in any sub-

ontext, the equality still holds. 

orollary 1. Let K = (U, A, ̃  I ) be a formal fuzzy context, C ⊂ A, x ∈ U,

nd x i ∈ U, i = 1 , 2 , . . . , k . If 

f (x ) = 

k ⋂ 

i =1 

f (x i ) , 
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hen 

f C (x ) = 

k ⋂ 

i =1 

f C (x i ) . 

emma 2. Let K = (U, A, ̃  I ) be a formal fuzzy context, C ⊂ A, X ⊆ U,

nd X i ⊆ U, i = 1 , 2 , . . . , k . If 

(g( f (X )) , f (X )) = 

k ∨ 

i =1 

(g( f (X i )) , f (X i )) , (4)

hen 

(g C ( f C (X )) , f C (X )) = 

k ∨ 

i =1 

(g C ( f C (X i )) , f C (X i )) . (5)

roof. From Eq. (4) , we have 

f (X ) = 

k ⋂ 

i =1 

f (X i ) . 

hen by Lemma 1 , we have 

f C (X ) = 

k ⋂ 

i =1 

f C (X i ) . (6)

ence, 

 C ◦ f C 

( 

k ⋃ 

i =1 

(g C ◦ f C (X i )) 

) 

= g C 

( 

k ⋂ 

i =1 

( f C ◦ g C ◦ f C (X i )) 

) 

= g C 

( 

k ⋂ 

i =1 

f C (X i ) 

) 

= g C ◦ f C (X ) . (7) 

By Eqs. (6) and (7) , we conclude Eq. (5) . �

Lemma 2 says that if a crisp-fuzzy concept derived from an ob-

ect set is a join of some crisp-fuzzy concepts derived from a finite

bject sets, then in any sub-context, the corresponding crisp-fuzzy

oncept derived from the same object set can also be represented

s the join of crisp-fuzzy concepts derived from these object sets. 

orollary 2. Let K = (U, A, ̃  I ) be a formal fuzzy context, C ⊂ A, x ∈ U,

nd x i ∈ U, i = 1 , 2 , . . . , k . If 

(g( f (x )) , f (x )) = 

k ∨ 

i =1 

(g( f (x i )) , f (x i )) , (8)

hen 

(g C ( f C (x )) , f C (x )) = 

k ∨ 

i =1 

(g C ( f C (x i )) , f C (x i )) . (9)

. Join-irreducible elements 

It is known that irreducible element plays an important role in

omputing the attribute reduction in a formal context. In this sec-

ion, we study the properties of join-irreducible elements derived

rom a formal fuzzy context and its sub-contexts. 

efinition 3 [11] . Let L be a finite lattice and v ∈ L . We denote 

 ∗ = 

∨ { x ∈ L | x < v } . 
 

∗ is said to be join-irreducible if v � = v ∗ . 

heorem 1 [11] . Let L be a finite lattice. Every element in L is a join

f some join-irreducible elements. 
It should be noted that every crisp-fuzzy concept (X, ̃  B ) in the

oncept lattice L (U, ̃  A , ̃  I ) can be represented as a join of object con-

epts of its extension, that is, 

(X, ̃  B ) = 

∨ 

x ∈ X 
(g ◦ f (x ) , f (x )) . 

heorem 2. Let K = (U, A, ̃  I ) be a formal fuzzy context, C ⊂ A and x ∈
. If ( g C ( f C ( x )), f C ( x )) is a join-irreducible element in L (U, ̃  C , ̃  I C ) , then

 g ( f ( x )), f ( x )) is also a join-irreducible element in L (U, ̃  A , ̃  I ) . 

roof. If ( g ( f ( x )), f ( x )) is not a join-irreducible element in L (U, ̃  A , ̃  I ) ,

hen ( g ( f ( x )), f ( x )) is a join of some join-irreducible elements of

 (U, ̃  A , ̃  I ) , i.e., there exists x i ∈ U, i = 1 , 2 , . . . , k (k ≥ 2) such that 

(g( f (x )) , f (x )) = 

k ∨ 

i =1 

(g( f (x i )) , f (x i )) , 

here (g( f (x i )) , f (x i )) (i = 1 , 2 , . . . , k ) is join-irreducible element. 

By Corollary 2 , we have 

(g C ( f C (x )) , f C (x )) = 

k ∨ 

i =1 

(g C ( f C (x i )) , f C (x i )) . 

e conclude that ( g C ( f C ( x )), f C ( x )) can be represented as a join

f some join-irreducible elements of L (U, ̃  C , ̃  I C ) , which contradicts

he assumption that ( g C ( f C ( x )), f C ( x )) is a join-irreducible element

n L (U, ̃  C , ̃  I C ) . Thus, we have proved that ( g ( f ( x )), f ( x )) is a join-

rreducible element in L (U, ̃  A , ̃  I ) . �

Let K = (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A . A binary

elation R C is defined by 

 C = { (x, y ) ∈ U × U| ̃  I (x, a ) ≤˜ I (y, a ) , ∀ a ∈ C} , (10)

 C is called an ordered relation on the object set, where ( x, y ) ∈ R C 
eans that y is not less than x with respect to all attributes in C .

t is evident that 

 C = 

⋂ 

a ∈ C 
R { a } . 

For any x ∈ U , its granule of knowledge induced by the ordered

elation R C is 

 x ] R C = { y ∈ U| (x, y ) ∈ R C } 
= { y ∈ U| ̃  I (x, a ) ≤˜ I (y, a ) , ∀ a ∈ C} , (11) 

here [ x ] R C is the set of objects whose attribute value is not less

han x with respect to all attributes in C . 

emma 3. Let K = (U, A, ̃  I ) be a formal fuzzy context, C ⊆ A and x ∈
. Then, 

f C ([ x ] R C )(a ) = f C (x )(a ) , ∀ a ∈ C. 

roof. By Eq. (3) , we obtain 

f C ([ x ] R C )(a ) = 

∧ 

x ∈ [ x ] R C 

˜ I (x, a ) 

= ̃

 I (x, a ) 

= f C (x )(a ) . 

�

heorem 3. Let K = (U, A, ̃  I ) be a formal fuzzy context, C ⊆ A and

 ∈ U. Then, ([ x ] R C , f C ([ x ] R C )) is a crisp-fuzzy formal concept of K C 

nd 

 x ] R C = g C ◦ f C (x ) . 

roof. From Lemma 3 , we obtain 

 C ◦ f C ([ x ] R C ) = g C ◦ f C (x ) . 
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By Property 1 (2), we have 

[ x ] R C ⊆ g C ◦ f C ([ x ] R C ) = g C ◦ f C (x ) . (12)

On the other hand, for any y ∈ g C ◦ f C ([ x ] R C ) , we have { y } ⊆
g C ◦ f C ( x ). By Property 1 (1) and (3), we conclude that 

f C (x ) = f C ◦ g C ◦ f C (x ) ⊆ f C ({ y } ) = f C (y ) , 

that is f C ( x ) ⊆ f C ( y ), this means 

f C (x ) = ̃

 I (x, a ) ≤˜ I (y, a ) = f C (y ) , ∀ a ∈ C. 

Hence, y ∈ [ x ] R C , and from which we obtain 

g C ◦ f C ([ x ] R C ) ⊆ [ x ] R C . (13)

It follows from Eqs. (12) and (13) that 

g C ◦ f C ([ x ] R A ) = g C ◦ f C (x ) = [ x ] R C , 

and ([ x ] R C , f C ([ x ] R C )) is a crisp-fuzzy formal concept. �

Let (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A . We denote 

β(U) = { ([ x ] R C , f ([ x ] R C )) | x ∈ U} , 
γ (U) = { (g C ◦ f C (x ) , f C (x )) | x ∈ U} . 
Corollary 3. Let K = (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A.

Then β(U) = γ (U) . 

Proof. It can be straightforwardly derived from Theorem 3 . �

Definition 4. Let ( U , ≤) be a partial order set, x, y ∈ U and x < y. x

is called the lower close neighbor of y , if there does not exist z ∈ U

such that x < z < y . Here, y is also called the upper close neighbor

of x and is denoted by x ≺ y . 

For any y ∈ U , we denote α(y ) = { x ∈ U| x ≺ y } . Note that α( y )

is the set of lower close neighbors of y . In the discussion to follow,

for simplicity, we use the symbol | · | to denote the cardinality of

a set. 

Theorem 4. Let K = (U, A, ̃  I ) be a formal fuzzy context and x ∈ U.

Then object concept ([ x ] R A , f ([ x ] R A )) is a join-irreducible element in

L (U, ̃  A , ̃  I ) iff | α(([ x ] R A , f ([ x ] R A ))) | ≤ 1 . 

Proof. ( ⇒ ) Suppose that | α(([ x ] R A , f ([ x ] R A ))) | ≥ 2 . Let 

([ z] R A , f ([ z] R A )) , ([ u ] R A , f ([ u ] R A )) ∈ α(([ x ] R A , f ([ x ] R A ))) . 

We are going to prove that 

([ z] R A , f ([ z] R A )) ∨ ([ u ] R A , f ([ u ] R A )) = ([ x ] R A , f ([ x ] R A )) . 

Notice that 

([ x ] R A , f ([ x ] R A )) ≥ ([ z] R A , f ([ z] R A )) ∨ ([ u ] R A , f ([ u ] R A )) 

= (g ◦ f ([ z] R A ∪ [ u ] R A ) , f ([ z] R A ) ∩ f ([ u ] R A )) 

> ([ z] R A , f ([ z] R A )) and ([ u ] R A , f ([ u ] R A )) . 

If 

(g ◦ f ([ z] R A ∪ [ u ] R A ) , f ([ z] R A ) ∩ f ([ u ] R A )) < ([ x ] R A , f ([ x ] R A )) , 

then it is in conflict with Definition 4 . Thus, 

(g ◦ f ([ z] R A ∪ [ u ] R A ) , f ([ z] R A ) ∩ f ([ u ] R A )) = ([ x ] R A , f ([ x ] R A )) . 

It also conflicts with the assumption that ([ x ] R A , f ([ x ] R A )) is a

join-irreducible element. Consequently, we conclude that | α(([ x ] R A ,

f ([ x ] R A ))) | ≤ 1 , i.e., 

|{ ([ y ] R A , f ([ y ] R A )) ∈ L (U, ̃  A , ̃  I ) | ([ y ] R A , f ([ y ] R A )) 

≺ ([ x ] R A , f ([ x ] R A )) }| ≤ 1 . 

( ⇐ ) Assume that | α(([ x ] R A , f ([ x ] R A ))) | ≤ 1 . 

If | α(([ x ] R A , f ([ x ] R A ))) | = 0 , then ([ x ] R A , f ([ x ] R A )) does not con-

tain any sub-concept. Hence, by Definition 3 , ([ x ] R A , f ([ x ] R A )) itself

is a join-irreducible element. 
If | α(([ x ] R A , f ([ x ] R A ))) | = 1 , then ([ x ] R A , f ([ x ] R A )) has only one

ower close neighbor, and we denote it as ([ u ] R A , f ([ u ] R A )) . It is

vident that 

([ u ] R A , f ([ u ] R A )) < ([ x ] R A , f ([ x ] R A )) . 

y Definition 3 , we conclude that ([ x ] R A , f ([ x ] R A )) is a join-

rreducible element. �

By Theorem 4 we can easily determine whether or not an ob-

ect concept is a join-irreducible element. 

orollary 4. Let K = (U, A, ̃  I ) be a formal fuzzy context and x ∈ U.

hen object concept ([ x ] R A , f ([ x ] R A )) is a join-irreducible element in

 (U, ̃  A , ̃  I ) iff |{ [ y ] R A ∈ U/R A | [ y ] R A ≺ [ x ] R A }| ≤ 1 . 

roof. It can simply be proved from Theorems 3 and 4 . �

xample 3. In Example 1 , by computing we have [ x 1 ] R A = { x 1 , x 2 } ,
 x 2 ] R A = { x 2 } , [ x 3 ] R A = { x 3 } , [ x 4 ] R A = { x 3 , x 4 } , [ x 5 ] R A = { x 2 , x 3 , x 5 } .
hus, 

{ [ y ] R A ∈ U/R A | [ y ] R A ≺ [ x 1 ] R A }| = 1 , 

{ [ y ] R A ∈ U/R A | [ y ] R A ≺ [ x 2 ] R A }| = 0 , 

{ [ y ] R A ∈ U/R A | [ y ] R A ≺ [ x 3 ] R A }| = 0 , 

{ [ y ] R A ∈ U/R A | [ y ] R A ≺ [ x 4 ] R A }| = 1 , 

nd |{ [ y ] R A ∈ U/R A | [ y ] R A ≺ [ x 5 ] R A }| = 2 . Using Corollary 4 we con-

lude that ([ x 1 ] R A , f ([ x 1 ] R A )) , ([ x 2 ] R A , f ([ x 2 ] R A )) , ([ x 3 ] R A , f ([ x 3 ] R A ))

nd ([ x 4 ] R A , f ([ x 4 ] R A )) are join-irreducible elements in L (U, ̃  A , ̃  I ) . 

. Granular reducts of formal fuzzy contexts 

Based on the notion of crisp-fuzzy formal concept, we first

resent some deterministic approaches to granular reducts of for-

al fuzzy contexts, and then discuss the reduction method and the

orresponding algorithm. 

efinition 5. Let K = (U, A, ̃  I ) be a formal fuzzy context. An at-

ribute subset C ⊆ A is referred to as a granular consistent set of

 if g C ◦ f C (x ) = g ◦ f (x ) for all x ∈ U . If C ⊆ A is a granular con-

istent set of K and there is no proper subset D ⊂ C such that D is

 granular consistent set, then C is referred to as a granular reduct

f K . 

From Definition 5 , we can see that a granular reduct is a min-

mal attribute set preserving all the object granules of a concept

attice. 

heorem 5. Let K = (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A.

hen C is a granular consistent set of K iff

 C ◦ f C (x ) ⊆ g ◦ f (x ) , ∀ x ∈ U. (14)

roof. By Property 2 (4), we know that 

 ◦ f (x ) ⊆ g C ◦ f C (x ) , ∀ x ∈ U. 

ence, we conclude that C is a granular consistent set if and only

f Eq. (14) holds. �

We denote the set of all granular reducts of K as Red(K ) . Ac-

ording to the significance of the attributes, based on granular

educts, the attribute set A is divided into three parts: 

• Indispensable attribute (core attribute) set C k : C k = 

⋂ 

Red(K ) ; 
• Relatively necessary attribute set K k : K k = 

⋃ 

Red(K ) −⋂ 

Red(K ) ; 
• Unnecessary attribute set I k : I k = A − ⋃ 

Red(K ) . 

orollary 5. Let K = (U, A, ̃  I ) be a formal fuzzy context and a ∈ A.

hen a is an indispensable attribute iff there exists x ∈ U such that 

 A −{ a } ◦ f A −{ a } (x ) � g ◦ f (x ) . (15)
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Ĩ  

g  

t

 

D  

r

 

a

Table 4 

The discernibility matrix � . 

D(x i , y j ) x 1 x 2 x 3 x 4 x 5 

x 1 ∅ ∅ d d d 

x 2 ace ∅ d cde d 

x 3 abce ab ∅ ce ab 

x 4 abce ab ∅ ∅ ab 

x 5 ace ∅ ∅ ce ∅ 
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roof. It can easily be proved from Theorem 5 and the definition

f indispensable attribute. �

Corollary 5 can help us determine whether or not an attribute

s indispensable. 

efinition 6. Let K = (U, A, ̃  I ) be a formal fuzzy context and ( x, y )

 U × U . We define 

(x, y ) = { a ∈ A | ̃  I (x, a ) > ̃

 I (y, a ) } , 
here D(x, y ) is referred to as the granular discernibility attribute

et of x and y , and M = (D(x, y ) | (x, y ) ∈ U × U) is called the gran-

lar discernibility matrix of K . 

We denote 

 0 = {D(x, y ) | D(x, y ) � = ∅ , (x, y ) ∈ U × U} . 
heorem 6. Let K = (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A.

hen, C is a granular consistent set iff C ∩ D(x, y ) � = ∅ for all D(x, y ) ∈
 0 . 

roof. ( ⇒ ) Let C be a granular consistent set. By Theorem 5 , we

ave g C ◦ f C ( x ) ⊆ g ◦ f ( x ) for all x ∈ U . Using Theorem 3 we obtain

 x ] R C ⊆ [ x ] R A , ∀ x ∈ U. (16)

or any D(x, y ) ∈ M 0 , there exists a ∈ A such that ̃  I (x, a ) > ̃

 I (y, a ) .

ence, y �∈ [ x ] R A . By Eq. (16) , we have y �∈ [ x ] R C . Thus, there exists

 ∈ C such that ̃  I (x, c) > ̃

 I (y, c) . By Definition 6 , we conclude that

 ∈ D(x, y ) . Hence, C ∩ D(x, y ) � = ∅ . 
( ⇐ ) Suppose that C ∩ D(x, y ) � = ∅ for all D ( x, y ) ∈ M 0 . For any x,

 ∈ U , if y �∈ [ x ] R A , i.e. there exists a ∈ A such that ̃  I (x, a ) > ̃

 I (y, a ) ,

e have D(x, y ) � = 0 , hence C ∩ D(x, y ) � = ∅ . Thus, there exists c ∈ C

uch that ̃  I (x, c) > ̃

 I (y, c) , which means y �∈ [ x ] R C , and we conclude

hat [ x ] R C ⊆ [ x ] R A . Since [ x ] R C = g C ◦ f C (x ) and [ x ] R A = g ◦ f (x ) , it fol-

ows that 

 C ◦ f C (x ) ⊆ g ◦ f (x ) . 

y Theorem 5 , we obtain that C is a granular consistent set of

 . �

Theorem 6 provides a method to determine whether or not an

ttribute set is consistent. By employing the granular discernibil-

ty matrix, we obtain the following judgment theorem of core at-

ribute. 

heorem 7. Let K = (U, A, ̃  I ) be a formal fuzzy context and a ∈ A.

hen, a is an indispensable (core) attribute in K iff there exists ( x, y )

 U × U such that D(x, y ) = { a } . 
roof. ( ⇒ ) Assume that a is an indispensable attribute in K , then

 − { a } is not a granular consistent set of K . By Theorem 6 we have

 A −{ a } ◦ f A −{ a } (x ) � g ◦ f (x ) , namely, [ x ] R A −{ a } � [ x ] R A . Thus, [ x ] R A ⊂
 x ] R A −{ a } . Hence, there exists y ∈ U such that y ∈ [ x ] R A −{ a } and y �∈
 x ] R A , which means ˜ I (x, b) ≤˜ I (y, b) (∀ b ∈ A − { a } ) and 

˜ I (x, a ) >
 

 (y, a ) . Therefore, by Definition 6 we conclude that D(x, y ) = { a } . 
( ⇐ ) If there exists ( x, y ) ∈ U × U such that D(x, y ) = { a } ,

hen, by Definition 6 , we obtain ̃

 I (x, b) ≤ ˜ I (y, b) (∀ b ∈ A − { a } ) and
 

 (x, a ) > ̃

 I (y, a ) . Thus, [ x ] R A −{ a } � [ x ] R A , that is, g A −{ a } ◦ f A −{ a } (x ) �

 ◦ f (x ) . Hence, a ∈ 

⋂ 

Red(K ) . Therefore, a is an indispensable at-

ribute in K . �

Let 
∨ 

D(x, y ) be a Boolean expression which is equal to 1, if

(x, y ) = ∅ . Otherwise, 
∨ 

D(x, y ) is a disjunction of variables cor-

esponding to the attributes contained in D(x, y ) . 

Let � = 

∧ 

(x, y ) ∈ U×U 

∨ 

D(x, y ) , where 
∧ 

is conjunction of liter-

ls. � is called the discernibility function of L (U, ̃  A , ̃  I ) . 
heorem 8. Let K = (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A.

hen, C is a granular reduct of K iff
∧ 

c∈ C c is a prime implicant of

he discernibility function � . 

roof. ( ⇒ ) Let C ⊆ A be a granular reduct of K . By Theorem 6 , we

ave 

 ∩ D(x, y ) � = ∅ , ∀ D(x, y ) ∈ M 0 . 

hen, there exists D(x, y ) ∈ M 0 such that C ∩ D(x, y ) = { c} for any c

 C . It follows that 
∧ 

c∈ C c is a prime implicant of the discernibility

unction. 

( ⇐ ) Suppose 
∧ 

c∈ C c is a prime implicant of the discernibility

unction � . Then 

 ∩ D(x, y ) � = ∅ , ∀ D(x, y ) ∈ M 0 , 

nd, there must exist D(x, y ) ∈ M 0 such that (C − { c} ) ∩ D(x, y ) = ∅ .
herefore, we conclude that C is a granular reduct of K . �

Let 

 = 

∧ 

(x, y ) ∈ U×U 

∨ 

D(x, y ) = 

t ∨ 

k =1 

( 

q k ∧ 

s =1 

a s 

) 

, 

here 
∧ q k 

s =1 
a s , k ≤ t , are all the prime implicants of the dis-

ernibility function � . We denote N k = { a s | s = 1 , 2 , . . . , q k } . Then

 N k | k = 1 , 2 , . . . , t} is the set of all granular reducts of K . 

Discernibility functions are monotonic Boolean functions and

heir prime implications uniquely determine all the granular

educts of formal fuzzy contexts. 

By Theorem 8 , the procedure for computing granular reducts is

iven in Algorithm 1 . The complexity of line 1 is | A || U | 2 and the

omplexity from line 2 to line 3 is 2 | A | . Hence, the maximum time

omplexity of Algorithm 1 is t = 2 | A | + | A || U| 2 . 

lgorithm 1 Computing all granular reducts of (U, ̃  A , ̃  I ) . 

nput: 

A formal fuzzy context K = (U, A, ̃  I ) . 

utput: 

Red(K ) // the set of granular reducts of (U, ̃  A , ̃  I ) . 

1: Computing the granular discernibility matrix M = (D(x, y ) |
(x, y ) ∈ U × U) ; 

2: Computing � = 

∧ 

(x,y ) ∈ U×U 

∨ 

D(x, y ) ; 

3: Computing � = 

t ∨ 

k =1 

(
q k ∧ 

s =1 

a s 

)
; 

4: Let N k = { a s | s ≤ q k } and Red(K ) = { N k | k ≤ t} ; 
5: Return Red(K ) . 

xample 4. Continued from Example 1 . The discernibility matrix

f formal fuzzy context K = (U, A, ̃  I ) is represented as Table 4 .

rom Table 4 , using discernibility function we have 

 = 

∧ 

(x, y ) ∈ U×U 

∨ 

D(x, y ) 

= d ∧ (a ∨ b) ∧ (c ∨ e ) ∧ (a ∨ c ∨ e ) ∧ (c ∨ d ∨ e ) ∧ (a ∨ b ∨ c ∨ e ) 

= d ∧ (a ∨ b) ∧ (c ∨ e ) 

= (a ∧ c ∧ d) ∨ (b ∧ c ∧ d) ∨ (a ∧ e ∧ d) ∨ (b ∧ d ∧ e ) 
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Table 5 

A formal fuzzy decision context S = (U, A, ̃  I , D, ̃  J ) . 

a b c d e d 1 d 2 d 3 

x 1 0 .5 0 .7 0 .7 0 .5 0 .7 0 .6 0 .5 0 .8 

x 2 0 .6 0 .7 1 .0 0 .5 1 .0 0 .7 0 .8 0 .9 

x 3 1 .0 0 .9 1 .0 0 .1 1 .0 0 .9 0 .4 1 .0 

x 4 1 .0 0 .9 0 .9 0 .1 0 .9 0 .7 0 .4 0 .9 

x 5 0 .6 0 .7 1 .0 0 .1 1 .0 0 .7 0 .4 0 .9 

Fig. 2. The Hasse diagram of the concept lattice L (U, ̃  D , ̃  J ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

All crisp-fuzzy concepts of L (U, ̃  D , ̃  J ) . 

(objects, attributes) 

FC 1 ({ x 1 , x 2 , x 3 , x 4 , x 5 } , { d 0 . 6 1 , d 0 . 4 2 , d 0 . 8 3 } ) 
FC 2 ({ x 1 , x 2 } , { d 0 . 6 1 , d 0 . 5 2 , d 0 . 8 3 } ) 
FC 3 ({ x 2 , x 3 , x 4 , x 5 } , { d 0 . 7 1 , d 0 . 4 2 , d 0 . 9 3 } ) 
FC 4 ({ x 2 } , { d 0 . 7 1 , d 0 . 8 2 , d 0 . 9 3 } ) 
FC 5 ({ x 3 } , { d 0 . 9 1 , d 0 . 4 2 , d 1 . 0 3 } ) 
FC 6 (∅ , { d 1 . 0 1 , d 1 . 0 2 , d 1 . 0 3 } ) 
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Hence, { a, c, d }, { b, c, d }, { a, e, d } and { b, d, e } are gran-

ular consistent sets of K , and any proper subsets of { a, c,

d }, { b, c, d }, { a, e, d } and { b, d, e } are not granular consis-

tent sets. Therefore, { a, c, d }, { b, c, d }, { a, e, d } and { b, d,

e } are granular reducts of K , and d is an indispensable at-

tribute. By the reduction, we have the reduced formal fuzzy con-

texts (U, { a, c, d} , ̃  I { a,c,d} ) , (U, { b, c, d} , ̃  I { b,c,d} ) , (U, { a, e, d} , ̃  I { a,e,d} )
and (U, { b, d, e } , ̃  I { b,d,e } ) respectively. We obtain the same num-

ber of object concepts from the reduced formal fuzzy con-

texts (U, { a, c, d} , ̃  I { a,c,d} ) , (U, { b, c, d} , ̃  I { b,c,d} ) , (U, { a, e, d} , ̃  I { a,e,d} )
and (U, { b, d, e } , ̃  I { b,d,e } ) . 

5. Granular reducts of consistent formal fuzzy decision 

contexts 

In this section, we introduce the notion of a formal fuzzy de-

cision context as an extension of formal fuzzy context by divid-

ing the attributes into condition attributes and decision attributes.

Similarly, we consider granular reducts and attribute characteristics

of consistent formal fuzzy decision contexts. 

Definition 7. A formal fuzzy decision context is a quintuple S =
(U, A, ̃  I , D, ̃  J ) , where (U, A, ̃  I ) and (U, D, ̃  J ) are formal fuzzy contexts,

A ∩ D = ∅ , A and D are conditional attribute set and decision at-

tribute set, respectively. 

Let S = (U, A, ̃  I , D, ̃  J ) be a formal fuzzy decision context and C ⊆
A . The operator f C and g C in fuzzy contexts (U, A, ̃  I ) are defined by

Eq. (3) . To avoid confusion, the corresponding derivation operators

in context (U, D, ̃  J ) are denoted as f D and g D . 

Example 5. Table 5 represents a formal fuzzy decision context

S = (U, A, ̃  I , D, ̃  J ) , where, U = { x 1 , x 2 , x 3 , x 4 , x 5 }, A = { a, b, c, d, e }
and D = { d 1 , d 2 , d 3 } . Fig. 2 is the Hasse diagram of concept lattice

L (U, ̃  D , ̃  J ) , and Table 6 lists all crisp-fuzzy concepts of L (U, ̃  D , ̃  J ) . 

Definition 8. Let S = (U, A, ̃  I , D, ̃  J ) be a formal fuzzy decision con-

text. S is said to be consistent if f ◦ g ( x ) ⊆ f D ◦ g D ( x ) for all x ∈ U .

Otherwise, it is said to be inconsistent. 
xample 6. In Example 5 , since 

 ◦ f (x 1 ) = { x 1 , x 2 } = g D ◦ f D (x 1 ) , 

 ◦ f (x 2 ) = { x 2 } = g D ◦ f D (x 2 ) , 

 ◦ f (x 3 ) = { x 3 } = g D ◦ f D (x 3 ) , 

 ◦ f (x 4 ) = { x 3 , x 4 } ⊆ { x 2 , x 3 , x 4 , x 5 } = g D ◦ f D (x 4 ) , 

 ◦ f (x 5 ) = { x 2 , x 3 , x 5 } ⊆ { x 2 , x 3 , x 4 , x 5 } = g D ◦ f D (x 5 ) , 

e can see that S is a consistent formal fuzzy decision context. 

efinition 9. Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy de-

ision context and C ⊆ A . If f C ◦ g C ( x ) ⊆ f D ◦ g D ( x ) for all x ∈ U , then

 is referred to as a granular consistent set of S . If C is a granular

onsistent set of S and no proper subset of C is a granular consis-

ent set, then C is referred to as a granular reduct of S . 

We denote the set of all granular reducts of S = (U, A, ̃  I , D, ̃  J ) as

ed(S ) . Similarly, the attribute set A is divided into three parts ac-

ording to the significance of the attributes: 

• Indispensable attribute (core attribute) set C s : C s = 

⋂ 

Red(S ) ; 
• Relatively necessary attribute set K s : K s = 

⋃ 

Red(S ) − ⋂ 

Red(S ) ;
• Unnecessary attribute set I s : I s = A − ⋃ 

Red(S ) . 

Similar to the definition of ordered relation R C defined by Eq.

8) , the ordered relation R D with respect to the decision attribute

et D in (U, A, ̃  I , D, ̃  J ) is defined by 

 D = { (x, y ) ∈ U × U| ̃  J (x, d) ≤ ˜ J (y, d) , ∀ d ∈ D } . 
Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy decision con-

ext and ( x, y ) ∈ U × U . We denote 

 

S (x, y ) = 

{{ a ∈ A | ̃  I (x, a ) > ̃

 I (y, a ) } , ˜ J (x, d) > ̃

 J (y, d) (∃ d ∈ D ) ;
∅ , ˜ J (x, d) ≤ ˜ J (y, d) (∀ d ∈ D ) .

D 

S (x, y ) is referred to as the discernibility attribute set of x and

 , and M 

S = (D 

S (x, y ) | x, y ∈ U) is called the discernibility matrix

f S . 
We denote 

 

S 
0 = { D 

S (x, y ) | D 

S (x, y ) � = ∅ (x, y ∈ U) } . 
heorem 9. Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy de-

ision context and C ⊆ A. Then, C is a granular consistent set iff

 ∩ D 

S (x, y ) � = ∅ for all D 

S (x, y ) ∈ M 

S 
0 
. 

roof. ( ⇒ ) For any D 

S (x, y ) ∈ D 0 , from the above definition we

onclude that y �∈ [ x ] R D . Since C is a granular consistent set, we

ave 

 x ] R C = g C ◦ f C (x ) ⊆ g D ◦ f D (x ) = [ x ] R D . 

ence, y �∈ [ x ] R C , that is, there exists an attribute c ∈ C such that
 

 (x, c) > ̃

 I (y, c) , which implies that c ∈ D 

S (x, y ) . Therefore, c ∈ C ∩
 

S (x, y ) . It is evident that C ∩ D 

S (x, y ) � = ∅ . 
( ⇐ ) Suppose that C ∩ D 

S (x, y ) � = ∅ for all D 

S (x, y ) ∈ M 

S 
0 
. Since

 is a consistent formal fuzzy decision context, for any x, y ∈ U ,

f y �∈ [ x ] R D , we have y �∈ [ x ] R A , i.e., there exists a ∈ A such that
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Table 7 

The discernibility matrix � . 

D S (x, y ) x 1 x 2 x 3 x 4 x 5 

x 1 ∅ ∅ d d d 

x 2 ace ∅ d cde d 

x 3 abce ab ∅ ce ab 

x 4 abce ∅ ∅ ∅ ∅ 
x 5 ace ∅ ∅ ∅ ∅ 

Ĩ  

s  

t  

[

[

T  

S

 

a

 

s  

a

T  

s  

S

P  

A  

g  

i

Ĩ
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Algorithm 2 Computing all granular reducts of a consistent formal 

fuzzy decision context (U, A, ̃  I , D, ̃  J ) . 

Input: 

A consistent formal fuzzy decision context S = (U, A, ̃  I , D, ̃  J ) . 

Output: 

RED (S ) // the set of attribute reducts of S . 
1: Computing the granular discernibility matrix M 

S = 

(D 

S (x, y ) | (x, y ) ∈ U × U) ; 

2: Computing � 

S = 

∧ 

(x,y ) ∈ U×U 

∨ 

D 

S (x, y ) ; 

3: Computing � 

S = 

t ∨ 

k =1 

(
q k ∧ 

s =1 

a s 

)
; 

4: Let N 

S 
k 

= { a s | s ≤ q k } and Red(S ) = { N 

S 
k 
| k ≤ t} ; 

5: Return Red(S ) . 
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 (x, a ) > ̃

 I (y, a ) . Hence, we conclude that D 

S (x, y ) � = 0 . By the as-

umption, we obtain C ∩ D 

S (x, y ) � = ∅ . Thus, there exists c ∈ C such

hat ̃  I (x, c) > ̃

 I (y, c) , which means y �∈ [ x ] R C , and we conclude that

 x ] R C ⊆ [ x ] R D . It follows that 

 x ] R C = g C ◦ f C (x ) ⊆ g D ◦ f D (x ) = [ x ] R D . 

herefore, we have proved that C is a granular consistent set of

 . �

Theorem 9 provides a method to determine whether or not an

ttribute set is consistent in S . 
By employing the granular discernibility matrix, we obtain

traightforwardly the following judgment theorem of granular core

ttribute in a consistent formal fuzzy decision context. 

heorem 10. Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy deci-

ion context and a ∈ A. Then, a is an indispensable (core) attribute in

 iff there exists ( x, y ) ∈ U × U such that D 

S (x, y ) = { a } . 
roof. ( ⇒ ) Assume that a is an indispensable attribute in S , then

 − { a } is not a granular consistent set of S . By Theorem 5 , we have

 A −{ a } ◦ f A −{ a } (x ) � g D ◦ f D (x ) , i.e., [ x ] R A −{ a } � [ x ] R D . Thus, there ex-

sts y ∈ U such that y ∈ [ x ] R A −{ a } and y �∈ [ x ] R D , which implies that 

 

 (x, a ) > ̃

 I (y, a ) , ˜ I (x, b) ≤˜ I (y, b) , ∀ b ∈ A − { a } , 
nd 

 

 (x, d) > ̃

 J (y, d) (∃ d ∈ D ) . 

y the definition of D 

S (x, y ) , we conclude that D 

S (x, y ) = { a } . 
( ⇐ ) If there exists ( x, y ) ∈ U × U such that D 

S (x, y ) = { a } , then

y definition we obtain that 

 

 (x, b) ≤˜ I (y, b) (∀ b ∈ A − { a } ) , ̃  I (x, a ) > ̃

 I (y, a ) 

nd 

 

 (x, d) > ̃

 J (y, d) (∃ d ∈ D ) . 

hus, y ∈ [ x ] R A −{ a } and y �∈ [ x ] R D , and we conclude that [ x ] R A −{ a } �
 x ] R D , that is, g A −{ a } ◦ f A −{ a } (x ) � g D ◦ f D (x ) . Hence, a ∈ 

⋂ 

Red(S ) .
onsequently, a is an indispensable attribute in S . �

Let 

 

S = 

∧ 

(x, y ) ∈ U×U 

∨ 

D 

S (x, y ) = 

t ∨ 

k =1 

( 

q k ∧ 

s =1 

a s 

) 

, 

here 
∧ q k 

s =1 
a s , k ≤ t , are all the prime implicants of the dis-

ernibility function � 

S . Then N 

S 
k 

= { a s | s ≤ q k } , k ≤ t, are all granular

educts of S . 
By Theorem 9 , the procedure for computing granular reducts is

iven in Algorithm 2 . The complexity of line 1 is | A || U | 2 and the

omplexity from line 2 to line 3 is 2 | A | . Hence, the maximum time

omplexity of Algorithm 1 is t = 2 | A | + | A || U| 2 . 
xample 7. Continued from Example 5 . The discernibility matrix

f the formal fuzzy decision context S is represented by Table 7 .

rom Table 7 , using the discernibility function we have: 
 

S = 

∧ 

(x, y ) ∈ U×U 

∨ 

D 

S (x, y ) 

= d ∧ (a ∨ b) ∧ (c ∨ e ) ∧ (a ∨ c ∨ e ) ∧ 

(c ∨ d ∨ e ) ∧ (a ∨ b ∨ c ∨ e ) 

= d ∧ (a ∨ b) ∧ (c ∨ e ) 

= (a ∧ c ∧ d) ∨ (b ∧ c ∧ d) ∨ (a ∧ e ∧ d) ∨ (b ∧ d ∧ e ) . 

Therefore, { a, c, d }, { b, c, d }, { a, e, d } and { b, d, e } are granular

educts of S , and d is an indispensable attribute. 

. Relation between granular reduct and classification reduct 

n a formal fuzzy context 

A formal fuzzy context can also be regarded as an information

able, it is natural to consider attribute reducts of a fuzzy informa-

ion table. Recently, by using rough set (RS) [36] approach, many

ypes of attribute reducts have been proposed in fuzzy information

ables from perspective of classification of the universe or rule-

reserving [5,14,58] . 

For a formal fuzzy context, one can consider two types of

educts: RS reducts (based on classification or rule-preserving) and

CA reducts (based on concepts and their hierarchies). Hence, what

xactly is the relation between FCA reducts and RS reducts is an

nteresting question. In this section, we consider attribute reducts

f formal fuzzy contexts from the perspective of ordered relation

nd then discuss the relationship between granular reduct and

lassification reduct. 

Let K = (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A . The or-

ered relation R C is defined by Eq. (8) . Then K = (U, A, ̃  I ) can be

reated as an ordered fuzzy information system. By U / R C we de-

ote the family set { [ x ] R C | x ∈ U} . Any element in U / R C is called an

rdered class. One can easily obtain the following properties: 

• R C is reflexive, transitive, and asymmetric; 
• if C ⊆ B ⊆ A , then R C ⊇ R B ⊇ R A ; 
• if C, B ⊆ A , then R C∪ B = R C ∩ R B ; 
• if C ⊆ B ⊆ A , then [ x ] R C ⊇ [ x ] R B ⊇ [ x ] R A ; 
• if y ∈ [ x ] R C , then [ y ] R C ⊆ [ x ] R C and [ x ] R C = 

⋃ { [ y ] R C : y ∈ [ x ] R C } ; 
• [ x ] R C = [ y ] R C iff ˜ I (x, a ) = ̃

 I (y, a )(∀ a ∈ C) ; 
• J = { [ x ] R C | x ∈ U} constitutes a covering of U . 

Let K = (U, A, ̃  I ) be a formal fuzzy context. An attribute subset

 ⊆ A is called a classification consistent set (based on ordered

elation) of K if R C = R A . Furthermore, if R C−{ c} � = R A for all c ∈ C ,

hen C is called a classification reduct (based on ordered relation)

f K . 
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We denote the set of all classification reducts of K = (U, A, ̃  I ) as

Red(C ) . Similarly, based on the classification reduct, the attribute

set A is divided into three parts: 

• Indispensable attribute (core attribute) set C i : C i = 

⋂ 

Red(C ) ; 
• Relatively necessary attribute set K i : K i = 

⋃ 

Red(C ) −⋂ 

Red(C ) ; 
• Unnecessary attribute set I i : I i = A − ⋃ 

Red(C ) . 

Theorem 11. Let K = (U, A, ̃  I ) be a formal fuzzy context and a ∈ A.

Then, a ∈ C i iff R A −{ a } � = R A . 

Proof. ( ⇒ ) Let a ∈ C i . If R A −{ a } = R A , then there exists C ⊆ A − { a }
such that C is a classification reduct. Hence, we conclude that

a �∈ 

⋂ 

Red(C ) , which contradicts the assumption. Consequently, we

have R A −{ a } � = R A . 

( ⇐ ) It follows immediately from the definition of indispensable

attribute. �

Theorem 12. Let K = (U, A, ̃  I ) be a formal fuzzy context and a ∈ A.

Then, a ∈ I i iff R A = R A −{ a } and R C i ⊆ R { a } (where C i is the set of in-

dispensable attributes). 

Proof. ( ⇒ ) Suppose a ∈ I i , then a �∈ C i . By Theorem 11 , we have

R A = R A −{ a } . If R C i � R { a } , then there exists ( x, y ) ∈ U × U such that

(x, y ) ∈ R C i and (x, y ) �∈ R { a } . Thus, we have (x, y ) �∈ R C i ∩ R { a } , i.e.,

(x, y ) �∈ R C i ∪{ a } . Hence, R A ⊆ R C i ∪{ a } ⊂ R C i . It means that there exists

a set B ⊆ A such that C i ∪ { a } ⊆ B and B is a granular reduct, which

contradicts a ∈ I i . Consequently, we have R C i ⊆ R { a } . 
( ⇐ ) Since R A = R A −{ a } , form Theorem 11 we conclude that a is

not an indispensable attribute, i.e., a �∈ C i . Assume that there exists

B ∈ Red(C ) such that a ∈ B . It is evident that C i ⊂ B . We denote

D = B − C i ∪ { a } . Hence, 

R B = R C i ∪{ a }∪ D = R C i ∩ R { a } ∩ R D . 

From R C i ⊆ R { a } , we obtain 

R C i ∩ R { a } ∩ R D = R C i ∩ R D = R C i ∪ D = R B −{ a } . 

Thus, we have R B = R B −{ a } , which contradicts B ∈ Red(C ) . Con-

sequently, a �∈ 

⋃ 

Red(C ) . Therefore, we conclude that a ∈ A −⋃ 

Red(C ) = I i . �

Theorem 13. Let K = (U, A, ̃  I ) be a formal fuzzy context and a ∈ A.

Then, a ∈ K i iff R A = R A −{ a } and R C i � R { a } . 

Proof. It can easily be proved from Theorems 11 and 12 . �

Theorem 14. Let K = (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A.

Then, C is a granular consistent set of (U, ̃  A , ̃  I ) iff C is a classification

consistent set of K . 

Proof. ( ⇒ ) Let C be a granular consistent set of (U, ̃  A , ̃  I ) . Then

g C ◦ f C (x ) = g ◦ f (x ) for all x ∈ U . By Theorem 3 , we obtain [ x ] R C =
[ x ] R A for all x ∈ U , which means R C = R A . It follows that C is a clas-

sification consistent set of K . 

( ⇐ ) Suppose C is a classification consistent set of K , i.e., R A =
R C . Then we have [ x ] R C = [ x ] R A for all x ∈ U . From Theorem 3 and

Definition 5 , one can easily conclude that C is a granular consistent

set. �

Corollary 6. Let K = (U, A, ̃  I ) be a formal fuzzy context and C ⊆ A.

Then, C is a granular reduct of K iff C is a classification reduct of K . 

Proof. It follows immediately from Theorem 14 . �

Theorem 14 and Corollary 6 say that a granular consistent set

(reduct) is also a classification consistent set (reduct) in a formal

fuzzy context, and vice versa. 

Theorem 15. Let K = (U, A, ̃  I ) be a formal fuzzy context and a ∈ A.

Then, 
(1) a ∈ C k ⇔ a ∈ C i ; 

(2) a ∈ I k ⇔ a ∈ I i ; 

(3) a ∈ K k ⇔ a ∈ K i . 

roof. It can be proved directly from Corollary 6 . �

By Theorem 15 , we obtain that granular reducts and classifi-

ation reducts in a formal fuzzy context have the same attribute

haracteristics. Thus, one can obtain all granular attribute charac-

eristics via the classification attribute characteristics in a formal

uzzy context. 

Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy decision con-

ext and C ⊆ A. A is called a classification consistent set of S if R C 
R D . Furthermore, if R C−{ c} � = R D for all c ∈ C , then C is called a

lassification reduct of S . 
The set of all classification reducts of S = (U, A, ̃  I , D, ̃  J ) is de-

oted by Red(D ) . Similarly, based on the classification reduct, the

ttribute set A is divided into three parts: 

• Indispensable attribute (core attribute) set C d : C d = 

⋂ 

Red(D ) ; 
• Relatively necessary attribute set K d : K d = 

⋃ 

Red(D ) −⋂ 

Red(D ) ; 
• Unnecessary attribute set I d : I d = A − ⋃ 

Red(D ) . 

heorem 16. Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy deci-

ion context and a ∈ A. Then, a is an indispensable attribute in S iff

 A −{ a } � R D . 

roof. It is similar to the proof of Theorem 11 . �

heorem 17. Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy deci-

ion context and a ∈ A. Then, a is an unnecessary attribute in S iff

 A −{ a } ⊆ R D and R C d ⊆ R D ∪ R { a } (where C d is the set of indispensable

ttributes). 

roof. It is similar to the proof of Theorem 12 . �

heorem 18. Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy deci-

ion context and a ∈ A. Then, a is a relatively necessary attribute in S
ff R A −{ a } ⊆ R D and R C d � R D ∪ R { a } . 

roof. It is similar to the proof of Theorem 13 . �

heorem 19. Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy deci-

ion context and C ⊆ A. Then, C is a granular consistent set of S iff C

s a classification consistent set of S . 

roof. It is similar to the proof of Theorem 14 . �

orollary 7. Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy deci-

ion context and C ⊆ A. Then, C is a granular reduct of S iff C is a

lassification reduct of S . 

roof. It can easily be proved from Theorem 19 . �

Theorem 19 and Corollary 7 say that a granular consistent set

reduct) is also a classification consistent set (reduct) in a formal

uzzy decision context, and vice versa. 

heorem 20. Let S = (U, A, ̃  I , D, ̃  J ) be a consistent formal fuzzy deci-

ion context and a ∈ A. Then, 

(1) a ∈ C s ⇔ a ∈ C d ; 

(2) a ∈ I s ⇔ a ∈ I d ; 

(3) a ∈ K s ⇔ a ∈ K d . 

roof. It can easily be proved from Corollary 7 . �

From Theorem 20 , we know that granular reducts and classi-

cation reducts in a consistent formal fuzzy decision context have

he same attribute characteristics. Thus, one can obtain all granular

ttribute characteristics via the classification attribute characteris-

ics in a consistent formal fuzzy decision context. 
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. Conclusion 

It is known that the cost of constructing a concept lattice

s a super-linear function of the corresponding context size and

he efficient computing of concept lattices is of great importance.

hus, knowledge reduction plays a very crucial role in reducing

he dimensionality of a context, especially in large databases. In

his paper, we have proposed granular reduct approach in formal

uzzy contexts which can guarantee that the object granules ob-

ained from the reduced formal fuzzy context are identical to those

btained from the initial formal fuzzy context. Since a granular

educt is a minimal attribute set preserving all the object concepts,

ne can formulate all the object concepts of the initial formal fuzzy

ontext from one of its granular reduct. As a result, not only can

he computational complexity of constructing the concept lattices

e reduced, but also more concise representation of the concepts

an be obtained. Thus, the mining of fuzzy decision rules is made

ore convenient after reduction. 

For a formal fuzzy context, it is natural to consider two kinds

f reduction, namely, granular reducts and classification reducts.

n this paper, the relationship between granular reduct and clas-

ification reduct in a formal fuzzy context has been established,

rom which the following meaningful conclusions can be obtained:

1) A granular consistent set (reduct) is also a classification consis-

ent set (reduct), and vice versa; (2) attribute characteristics in the

lassification reducts are identical to those in the granular reducts.

rom the above assertions, one can obtain all the granular reducts

nd their attribute characteristics via the classification reducts and

heir attribute characteristics, and vice versa. 

In view of the future research, the mining of fuzzy decision

ules in reduced formal fuzzy contexts will be further investigated.

he relationship between the granular reducts and the classifi-

ation reducts for inconsistent formal fuzzy decision contexts or

nterval-valued formal contexts deserves to be investigated. 
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