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Jana Nowaková ∗ Miroslav Pokorný ∗∗
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∗∗VŠB-Technical University of Ostrava,
Faculty of Electrical Engineering and Computer Science,
Department of Cybernetics and Biomedical Engineering,

17. listopadu 15/2172, 708 33 Ostrava Poruba, Czech Republic
(e-mail: miroslav.pokorny@vsb.cz).

Abstract: The theoretical background for abstract formalization of vague phenomenon of the
complex systems is fuzzy set theory. In the paper vague data as specialized fuzzy sets - fuzzy
numbers are defined and it is described a fuzzy linear regression model as a fuzzy function with
fuzzy numbers as vague parameters. Interval and fuzzy regression technologies are discussed,
the linear fuzzy regression model is proposed. To identify fuzzy regression coefficients of model
genetic algorithm is applied. The numerical example is presented and the possibility area of
vague model is illustrated.
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1. INTRODUCTION

Regression models are used in engineering practice wher-
ever there is a need to reflect more independent variables
together with the effects of other unmeasured disturbances
and influences Bardossy (1990), Shapiro (2006). In classi-
cal regression, we assume that the relationship between de-
pendent variables and independent variables of the model
is well-defined and sharp. In the real world, however,
hampered by the fact that this relationship is more or
less non-specific and vague. This is particularly true when
modelling complex systems which are difficult to define,
difficult to measure or in cases where it is incorporated
into the human element Shapiro (2006).

The theoretical background for abstract formalization of
vague phenomenon of complex systems is fuzzy set the-
ory Novák (1990). In the paper vague data as specialized
fuzzy sets - fuzzy numbers are defined and a fuzzy linear
regression model as a fuzzy function with fuzzy numbers
as vague parameters is described.

2. FUZZY REGRESION ANALYSIS

Linear regression model of investigated system Shapiro
(2006) is given by a linear combination of values of its
input variables

Y ∗ (xj) = A0 +A1x1j + . . . +Anjxnj . (1)
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Conventional regression model is based on the assumption
that the system characteristic is defined by sharp, precise
and deviations between observed and estimated values
of the dependent variables are the result of errors of
observation.

However, the statistical regression models based on prin-
ciples of probability theory are correct only if a number of
preconditions is met Pokorný (1993), Shapiro (2006). The
most common practical problems are

● a small number of observations , the sample is too
small,

● we can not guarantee a normal distribution of error,
● difficult to define the relationship (vagueness) be-

tween the input and output variables.

These problems do not occur when the creation of regres-
sions utilize possibility theory and regression dependence
is identify as a fuzzy function. The origin of the deviation
between the observed and estimated values of the depen-
dent variables may not be significant extent caused by
poor local variables of system structure. These variations
can be caused by in not very sharp nature of the system
parameters. Such fuzzy phenomenon must also be reflected
in fuzziness of the corresponding parameters of the model.

If we consider the fuzzification of regression model, we can
consider two cases (but which are not mutually exclusive).
First of all, we consider that the input data are crisp
and uncertain is in the definition of the model. In this
case, the vagueness is reflected by fuzzy nature of the
regression coefficients as model parameters. In the second
case, we can consider the system as a well-defined and
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Fig. 1. One-dimensional linear interval regression model

fuzzy character have the measured data. Then the carrier
of uncertainty of the model are vague input data. The
paper analyzes the situation where both cases are applied.

2.1 Interval Linear Regression Model

The first step in creating a blurred regression model is the
work Buckley (1990), who developed the technology of
interval regression models

...
Y (xj) =

...
A0 +

...
A1x1j + . . . +

...
Ajxnj . (2)

Where
...
Y (xj) is the estimated value of the output variable

as a closed numerical interval representing the uncertainty
of the non-specific system and

...
A are the regression co-

efficients of the model again in the form of vague closed
numerical intervals. To identify the intervals of regression
coefficients the method of linear programming used in
Kacprzyk (1992), for algebraic calculations with interval
numbers simple interval arithmetic is developed Moore
(1979). Example of a one-dimensional linear interval re-
gression model is shown in Figure (1).

2.2 Fuzzy Linear Regression Model

The next step in the development of indeterminate re-
gression model is the development of models of vague,
using the formalization of uncertainty rather than numer-
ical intervals using the fuzzy intervals. Regression models
reflect the vagueness of the modelled systems are called
fuzzy regression models Kacprzyk (1992), Poleshchuk
(2012), Shapiro (2006). The indeterminate nature of fuzzy
regression model is represented by the estimated fuzzy out-
put values Ỹ ∗ (xj) and the fuzzy regression coefficients Ã
in the form of specialized fuzzy sets - fuzzy numbers. Shape
of fuzzy linear regression model Buckley (2008), Hesh-
maty (1985), Tanaka (1982) is given by The next step in
the development of indeterminate regression model is the
development of models of vague, using the formalization
of uncertainty rather than numerical intervals using the
fuzzy intervals. Regression models reflecting the vagueness
of the modelled systems are called fuzzy regression mod-
els Kacprzyk (1992), Poleshchuk (2012), Shapiro (2006).

The indeterminate nature of fuzzy regression model is rep-
resented by the estimated fuzzy output values Ỹ ∗ (xj) and

the fuzzy regression coefficients Ã in the form of specialized
fuzzy sets - fuzzy numbers. Shape of fuzzy linear regression
model Buckley (2008), Heshmaty (1985), Tanaka (1982) is
given by

Ỹ ∗ (xj) = Ã0 + Ã1x1j + . . . + Ãjxnj = Ã.x′ (3)

where x′ is a transposed column vector x = (x1, x2, . . . , xn)
and Ã is a parameter vector whose elements are fuzzy
numbers. In the fuzzy regression function Ã is the multi-
dimensional fuzzy set (fuzzy relation) as the Cartesian
product of fuzzy sets of fuzzy parameters

Ã = Ã0 × Ã1 × . . . × Ãn (4)

with membership function in the form

µÃ (a) =
n

⋃
i=1

{µÃi
(a)} , a = (a1, a2, . . . , an) . (5)

The shape of the membership function of fuzzy numbers
output value of fuzzy linear regression model (1) is calcu-
lated by Zadeh’s extensional principle Novák (1990) in the
form

µγ̃ (y) = ⋃
a∣at′=y

µÃ (a) ; {a∣t′ = y} = 0,

0 ; elsewhere.
(6)

Membership function µÃi
(ai) is approximated in the

form of triangular fuzzy numbers Ghorsray (1997), Novák
(1990)

µÃi
(ai) = 1 − ∣αi − ai∣

ci
; αi − ci ≤ ai ≤ αi + ci,

0 ; elsewhere,
(7)

where αi is the mean value (core) of fuzzy number Ãi and

ci is half of the width of the carrier bearing Ãi = {αi, ci}.
The term of membership functions for the output fuzzy
sets (3) can be written in the form Kacprzyk (1992)

µγ̃ (y) = 1 − ∣y − α.x′∣
∑ni=1 ci ∣xi∣

; α.x′ −
n

∑
i=1

ci ∣xi∣ ≤ y ≤ α.x′+

+
n

∑
i=1

ci ∣xi∣ ,

0 ; elsewhere,

(8)

2.3 Identification of Fuzzy Linear Regression Model

Fitness of linear regression fuzzy model to the given data
is measured through the Bass-Kwakernaakss index H see
Figure 2.

In the procedure of model identification the optimization
procedure minimizes the vagueness of global fuzzy func-
tion through the minimization of sum of fuzzy regression
coefficients vagueness

min J =min
n

∑
i=1

ci (9)

under condition

hj ≤H, j = 1,2, . . . ,m. (10)

IFAC PDeS 2013
Velke Karlovice, Czech Republic

246



Fig. 2. Adequacy of linear regression fuzzy model

The fitness of estimated value to sampled value is done
using α cut and α level set at the fitness h = H (see
Fig. 2)

Y 0,H
j = ⌊Y 0,H

j , Y
0,H

j ⌋ ,
Y ∗,Hj = ⌊Y ∗,Hj , Y

0,H

j ⌋ .
(11)

We assume the good estimation of output value under the
condition is fulfilled

maxy {µγ̃0 (y) ∧ µγ̃∗ (y)} = Cons (Ỹ 0, Ỹ ∗) ≥H. (12)

The relation (12) is satisfied under the condition (Fig. 2)

Y ∗j ≤ Y
0

j , j = 1,2, . . . ,m,

Y 0
j ≤ Y ∗j , j = 1,2, . . . ,m.

(13)

Boundary of intervals Y ∗,Hj , j = 1,2, . . . ,m we can express

Y ∗,Hj = − (1 −H)
n

∑
i=1

cij ∣xij ∣ + αTxj ,

Y
∗,H

j = (1 −H)
n

∑
i=1

cij ∣xij ∣ + αTxj .
(14)

Next we can set the optimization problem for using of
genetic algorithm

(1) minimization of fuzzy model vagueness

min J =min
n

∑
i=1

cij , i = 1,2, . . . , n, j = 1,2, . . . ,m,

(15)
(2) subject to

αTxj + (1 −H)
n

∑
i=1

cij ∣xij ∣ ≥ y0j + (1 −H)∆y0j ,

−αTxj + (1 −H)
n

∑
i=1

cij ∣xij ∣ ≥ −y0j + (1 −H)∆y0j .

cij ≥ 0.
(16)

Quantification of models vagueness is formalized by calcu-
lating fuzzy intervals of fuzzy numbers estimated output
values Ỹ ∗ (x). Width of fuzzy numbers carriers are the
interval in which the values of the output variables may lie
with a defined grade of membership. On Figure 3 is graph-
ically illustrated the course of a one-dimensional fuzzy
linear regression function together with the appropriate
possibility area of estimated fuzzy output Ỹ ∗.

Fig. 3. One-dimensional fuzzy linear regression model

3. USAGE OF GENETIC ALGORITHM

As it was mentioned the classical used method of linear
programming for identification of fuzzy regression coef-
ficients was substituted by using of genetic algorithm
(GA). The identification of fuzzy regression coefficients

Ã0, Ã1, . . . , Ãn, where Ãi = {αi, ci}, was divided into two
tasks

(1) the identification of the mean value (core) αi of fuzzy

number Ãi and
(2) the identification of ci as a half of the width of the

carrier bearing Ãi = {αi, ci}.

The tasks are solved by using genetic algorithm in series.
First the identification of αi and then the identification of
ci are done.

The sharp observed values y0 are fuzzificated

∆y0 = ay0, (17)

where a ∈ ⟨0.02; 0.1⟩ or another value, but the value of a
is defined by the expert. Then the fuzzy observed value is
defined as

Ỹ 0 = {y0,∆y0}, (18)

and the estimated fuzzy value Ỹ ∗ analogously

Ỹ ∗ = {y∗,∆y∗}. (19)

3.1 Identification of the Mean Value (Core) αi

For the identification of the mean value (core) αi of fuzzy

number Ãi the minimization of fitness function

min J1 =min
1

J

J

∑
j=1

[y0 (xj) − y∗ (xj)]
2
, (20)

by genetic algorithm is used.

3.2 Identification of the Half of the Width of the Carrier
Bearing ci

For the identification of ci as a half of the width of the
carrier bearing Ãi the minimization of fitness function (9)
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Fig. 4. Course of GA convergence

min J2 =min
n

∑
i=1

∣ci∣ (21)

by genetic algorithm with three constraints (16) is used.

4. CASE STUDY

For proving of efficiency of proposed method, the two
dimensional linear function in form

Y 0 = 1000 − 250x1 + 430x2 (22)

was chosen. The set of Y 0 with ten members using (22)
was created. For creating the set of Y 0 the values of x1
and x2 were chosen randomly from the standard uniform
distribution on the open interval (0,1) but multiplied by
random integer. For fuzzification of observed value a = 0.1
was used.

Then the minimization of fitness function J1 (20) by
embedded function of genetic algorithm in Optimtool in
Matlab environment was used. The parameters of GA were
elected as

● population type - double vector
● population size - 100
● scaling function - rank
● selection - stochastic uniform
● mutation function - constraint dependent
● crossover function - scattered
● migration - forward
● stop criterion - no changes in fitness function

The shape of convergence of values of minimization of
fitness function J1 is depicted in Figure (4). The outputs
of the minimization by described GA are the estimated
values of the mean values (cores) α0, α1 and α2 of Ã0, Ã1

and Ã2.

The next step was to determine the c0, c1 and c2 of Ã0, Ã1

and Ã2. For this task the minimization of fitness function
J2 (21) by GA was used with the same parameters as in
task of determining of αi.

As we now have the complete information to assemble the
estimated fuzzy numbers Ã0, Ã1 and Ã2 we can define

Fig. 5. Possibility area of two-dimensional fuzzy regression
model

Y ∗ (y∗,∆y∗) = Ã0 (α0, c0)+ Ã1 (α1, c1)x1+ Ã2 (α2, c2)x2,
y∗ = α0 +α1x1 +α2x2,

∆y∗ = c0 +c1x1 +c2x2.
(23)

With knowledge of (23) we are able to create the surfaces,
which are defined as the upper and lower boundary

Y
∗ = y∗ + ∆y∗,

Y ∗ = y∗ − ∆y∗.
(24)

The area between the created lower and upper surface
boundary could be called possibility area. For chosen linear
regression function (22) the determined possibility area is
shown in Figure (5).

5. CONCLUSION

Abstract mathematical models of complex systems are
often not very adequate because they do not accurately
reflect the natural uncertainty and vagueness of the real
world. The suitable theoretical background for abstract
formalization of vague phenomenon of complex systems
is fuzzy set theory. In the paper vague data as specialized
fuzzy sets - fuzzy numbers are defined and it is described a
fuzzy linear regression model as a fuzzy function with fuzzy
numbers as vague parameters. Interval and fuzzy regres-
sion technology are discussed, the linear fuzzy regression
model is proposed. To identify fuzzy regression coefficients
of model instead of commonly used linear programming
method C̨etintav (2013) the effective genetic algorithm is
applied Goldberg (1989). The two-dimensional numerical
example is presented and the possibility area of vague
model is graphically illustrated. Next research will be fo-
cused on development of fuzzy non-linear regression model
with fuzzy output value Pokorný (1993) to have possibility
to investigate and model vague non-linear systems.
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