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Abstract 

It is important that an optimal learning problem is proved to be NP-hard and the heuristic algorithm for solving the 
problem has to be given. This paper deals with a learning problem appearing in the process of simplifying fuzzy rules, 
proves that the solution optimization is NP-hard and gives its heuristic algorithm. This heuristic, regarded as a new, 
fuzzy learning algorithm, has many significant advantages. © 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction As there exist cognitive uncertainties such as 
vagueness and ambiguity, examples used in learn- 

Learning is an essential way with which human ing are generally considered to be fuzzy data. There 
beings acquire wisdom. Machine learning is a basic fuzzy data preserved in a database are regarded as 
way with which a computer system can possess a type of knowledge. The learning from examples 
intelligence. Learning from examples is one of the with handling uncertainties is fuzzy learning. 
ripe branches of machine learning. The main objec- The objective of fuzzy learning is also to generate a 
rive of learning from examples is to extract a family family of rules, especially fuzzy rules. Several 
of rules from examples which are divided into sev- algorithms of fuzzy learning from examples such as 
eral classes. This family of rules must cover these induction of fuzzy decision trees and fuzzy ID3 
examples explicitly. Therefore, learning from exam- have been developed in [ 1, 2, 11, 13-15]. 
ples is also an important way to acquire knowledge. For a given problem of fuzzy learning from exam- 
Because knowledge acquisition has been univer- pies there exist many algorithms, each one of which 
sally regarded as the bottleneck of the development can generate a family of fuzzy rules covering these 
of expert systems, increasingly great importance examples. As the fact that the cover capability of 
is attached to learning from examples. Several a simple rule is stronger than that of a complicated 
systems of learning from examples appear in rule has generally been acknowledged, a natural 
succession such as ID3 1-9] and AQ15 [7]. problem is how to search for an algorithm which 

can generate the simplest family of fuzzy rules. This 
*Corresponding author. E-mail: wangxz@hbu.edu.cn, is an essential optimization problem in learning 
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theory. We deal with this optimal learning problem sunny =~ negative with true degree 0.66; 
in this paper. Starting from a family of initial fuzzy hotc~sunny =~ negative with true degree 0.86; 
rules, this paper proves that the optimization of highnhotc~sunny ~negat ive  with true degree 0.90; 
simplifying fuzzy rules is NP-hard, and it also gives fa lse~highc~hot~sunny =~ negative with true 
a rather effective and intuitive heuristic algorithm, degree 1.00. 

This heuristic, which is regarded as a new fuzzy If fuzzy sets sunny, hot, high, and false are con- 
learning algorithm, possesses many advantages. 

The fuzzy learning algorithm presented in this sidered to be fuzzy evidence, the above four fuzzy 
paper is also suitable for the crisp case where the rules can give an explanation, i.e., the true degree of 
true degree of initial fuzzy rules is regarded as 1. fuzzy rules will be becoming big as the evidence 

accumulates. 

2. An optimal learning problem in simplifying fuzzy 2.2. Fuzzy knowledge base 
rules 

Table 2 is said to be a fuzzy knowledge base. 
In this section, fuzzy rules and their true degree Where there are n rows and m attributes Attrj  

are defined. A fuzzy knowledge base is considered (j = 1, 2 , . . . ,  m). Aij (i = 1, 2 . . . . .  n; j = 1, 2 , . . . ,  m) 
and the core and the reduction of a initial fuzzy rule are all fuzzy sets defined on the same universe 
are discussed. An optimal learning problem of sim- U = { 1, 2 , . . . ,  n}. For each i and each j (1 ~< i ~< n; 
plifying fuzzy rules is introduced. 1 <~ j <~ m) Aij is regarded as the value of the ith 

example for the jth attribute, Ci is the classification 
2.1. Fuzzy rules and the true degree o f  fuzzy  rules result of the ith example, the ith row is explained to 

be an initial fuzzy rule taking a form 0~'= 1A~p ~ C~ 
Definition 1 (Yuan and Shaw [15]). A fuzzy rule with true degree ~ and inconsistent degree/3~ (See 
takes a form: IF A THEN B which defines a fuzzy Definition 4.) 
relation from condition fuzzy set A to conclusion From the ith initial fuzzy rule, many fuzzy rules 
fuzzy set B. can be generated such as 0 ~= 1A!i, ~ Ci with a true 

degree and an inconsistent degree, where 
A rule IF A THEN B is true means that A implies {jl, J2 , . . .  ,jk } ~ { 1, 2 . . . .  , m}. Let S = {Attrj l ,  

B, denoted by A ~ B. The implication operator can At t r j2 , . . . ,  Attrjk } be a subset of attributes (k ~< m), 
be interpreted in many ways [10, 15]. As the inter- we denote the fuzzy rule 0 k= 1A~j~ ~ Ci with a true 
pretation of [15], the implication A ~ B in this degree ~i and an inconsistent degree fli, in short, by 
paper is understood to be A c B. Attrlis =~ C~ [~,  fli]. 

Definition 2 (Yuan and Shaw [15]). The true de- Definition 3. A fuzzy knowledge base is said to 
gree of a fuzzy rule A=*,B is defined to be have true evidence if S1 c S 2 i m p l i e s a l  ~<~2foran 
~,~u min(#a(U), #B(U))/~,~V#A(U) where A and B arbitrary, given ith row where ~1 and ~: are true 
are two fuzzy sets defined on the same universe U. degrees of fuzzy rules Attrl~, =~ C~ and and 

As an instance, we consider the following family Attrl~s~ ~ C~, respectively. 
of training examples (Table 1, adopted from [9, 15] 
with some modification). Definition 4. For a given fuzzy rule Attr I ~ =~ Ci with 

Table 1 shows a small set of training examples true degree ~, the inconsistent degree fl~ is defined by 
that uses the 'Saturday morning' attributes, Posit- [El where IE[ = {jlhttrl~s = AttrlJs, C~ ~ Cj}, [El 
ive class and Negative class are two unspecified denotes the number of elements of the set E. 
activities. There are 12 fuzzy sets defined on the 
same universe U = { e t , e 2  . . . . .  e~4}. They are As an example, the fuzzy knowledge base, 
sunny, overcast, rain, hot, mild, cool, high, normal, Table 3, can be generated by selecting the maximal 
false, true, positive and negative. It is easy to verify membership of each attribute over its range of 
the following fuzzy rules, nonfuzzy label values in Table 1. 
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Table 1 
A family of training examples 

Case Outlook Temperature HumidiD' Windy Class 

e i Sunny Overcast Rain Hot Mild Cool High Normal False True Positive Negative 

= 1 0.9 0.1 0.0 0.9 0.1 0.0 0.8 0.2 0.7 0.4 0.4 0.7 
= 2 0.9 0.1 0.1 0.8 0.2 0.1 0.9 0.2 0.1 0.8 0.3 0.7 
• = 3 0.1 0.9 0.2 0.9 0.1 0.1 0 .9  0.1 0 .9  0.1 0.8 0.3 
• = 4 0 . 0  0.1 0.9 0.1 0.9 0.0 0.6 0.5 0.8 0.3 0.6 0.5 

= 5 0.1 0.0 0.9 0.0 0.1 0.9 0.0 1.0 0.8 0.2 0.9 0.2 
= 6 0.1 0.1 0.9 0.0 0.2 0.9 0.1 0.9 0.1 0.9 0.3 0.8 
= 7 0.0 1.0 0.0 0.0 0.1 0.9 0.1 0.9 0.2 0.9 0.9 0.3 
= 8 0.9 0.1 0.0 0.3 0.9 0.1 0.9 0.1 1.0 0.0 0.2 0.9 

j = 9 0.8 0.2 0.0 0.0 0.4 0.6 0.0 1.0 1.0 0.0 0.9 0.2 
j = 10 0.0 0.1 0.9 0.0 1.0 0.0 0.0 1.0 0.9 0.1 0.6 0.5 
j = 11 0.9 0.1 0.0 0.0 0.9 0.1 0.1 0.9 0.0 1.0 0.8 0.3 
• j = 12 0.0 1.0 0.0 0.1 0.9 0.0 1.0 0.0 0.0 1.0 0.7 0.4 
j = 13 0.0 0.9 0.1 1.0 0.0 0.0 0.0 1.0 0.9 0.1 0.7 0.2 
j = 14 0.0 0.1 0.9 0.0 0.9 0.1 0.9 0.1 0.0 1.0 0. I 0.9 

Table 2 
Fuzzy knowledge base 

No. Attrl  Attr2 ... Attrm Class True degree Inconsistency 

rl A11 A12 ...  Aim Ci ~1 [~l 
r2 A21 A22 ... A2m C2 g2 32 

r, A,l A,2 --. A,m C, :% [~, 

It is easy to prove that the inconsistent degree of Definition 5. For  a given fuzzy rule, Attrl~ ~ Ci 
the fuzzy rule Attrl~s => Ci will become small as the with a true degree ~ and an inconsistent degree/3, 
set S increases monotonically. For  instance, the an attribute A (A e C) is said to be dispensable in 
inconsistent degrees of fuzzy rules the fuzzy rule if Attrl~s_:Al => Ci has a true degree 

false ~ N (S = { Windy}), greater than or equal to 6 (a given threshold) and 
an inconsistent degree less than or equal to /3, 

highc~false ~ N (S = {Humidity, Windy}), otherwise, attribute A is indispensable in the rule. 
ho t ,h igh , fa l se  ~ N 

(S = { Temperature, Humidity, Windy}), In the following, we always regard 6 as a given 
and 

threshold and do not repeat the meaning of the 
sunny~hotc~highnfalse ~ N (S = {Outlook, Greek letter ft. 

Temperature, Humidity, Windy}) As an example, we consider the first initial fuzzy 

are 6, 2, 1 and 0, respectively. Obviously, the incon- rule listed in Table 3. Because the inconsistent 
sistent degree of every initial fuzzy rulein Table 3 is degree of the initial fuzzy rule sunnyc~hotc~ 
0 (the last column of Table 3). highnfalse ~ N  is 0 but that of the fuzzy rule 

hot~highc~false => N is 1, the attribute Outlook is 
2.3. Core and reduction of initial fuzzy rule indispensable in the first initial fuzzy rule. Similarly, 

we have attributes Temperature, Humidity and 
Consider a fuzzy knowledge base where the set of Windy that are dispensable in the first initial fuzzy 

attributes is supposed to be C. rule. 
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Table 3 
A fuzzy knowledge base generated by Table 1 

No. 

r~ Outlook Temperature Humidity Windy Class True degree Inconsistency degree 

.1 = 1 Sunny Hot High False Negative 1.00 0 
j = 2 Sunny Hot High True Negative 0.92 0 
j = 3 Overcast Hot High False Positive 0.92 0 
j = 4 Rain Mild High False Positive 1.00 0 
j = 5 Rain Cool Normal False Positive 1.00 0 
j = 6 Rain Cool Normal True Negative 0.93 0 
j = 7 Overcast Cool Normal True Positive 1.00 0 
j = 8 Sunny Mild High False Negative 1.00 0 
j = 9 Sunny Cool Normal False Positive 1.00 0 
j = 10 Rain Mild Normal False Positive 0.83 0 
j = 11 Sunny Mild Normal True Positive 0.93 0 
d = 12 Overcast Mild High True Positive 0.89 0 
j = 13 Overcast Hot Normal False Positive 0.86 0 

= 14 Rain Mild High True Negative 1.00 0 

Definition 6. For  a given fuzzy rule, Attrl~s =~ Ci does not belong to the core), the rule Attrl~c_~A~ =~ 
with a true degree ~ and an inconsistent degree/3, if Ci will have a true degree greater than or equal to 
all attributes in S are indispensable, this rule is 6 and an inconsistent degree less than or equal to/3. 
called independent. A subset of attributes R (R c S) A reduct R, R c C - {A}, can be obtained by re- 
is called a reduct of the rule Attr[~=~Ci if moving supe r f luousa t t r ibu tes in these t  C - { A } .  
Attr[~ ~ C~ is independent and has an inconsistent Obviously, A does not belong to R, i.e., attribute 
degree less than or equal to /3 and a true degree A does not belong to some reduct of the rule 
greater than or equal to 6. (For convenience, we Attr[~=~Ci. 
also call Attrl~ ~ C~ a reduct of Attrl~ =~ C~). The On the other hand, if attribute A does not belong 
set of attributes which are indispensable in the to some reduct of the rule Attr[~ => C~, there exists 
initial rule Attr[~ =~ C~ is called the core of the a subset of C, R, such that A does not belong to 
initial fuzzy rule. R and the rule Attr[~ =:, C~ has a true degree greater 

than or equal to 6 and an inconsistent degree less 
For  a given initial fuzzy rule, its core is unique than or equal to/3. As the fuzzy knowledge base has 

but its reducts are not. We continue considering, true evidence, R c C - {A}implies that the rule 
for example, the first initial rule listed in Table 3. Attrl~-IAi =:" C~ has a true degree greater than or 
The core is {Outlook} while {Outlook, Temper- equal to ~ and an inconsistent degree less than or 
ature} and {Outlook, Humidity} are two reducts of equal to/3. Hence, attribute A is dispensable in the 
the rule. rule Attrlic =~ Ci. This completes the proof. [] 

Theorem 1. For a 9iven fuzzy knowledge base with Definition 7. A reduct of an initial fuzzy rule 
true evidence, the core of an initial fuzzy rule is equal Attrlic => Ci, R, is said to be minimal, if S is not 
to the intersection of all reducts of the rule. That is a reduct of the initial fuzzy rule for each set S with 

S = R a n d S ¢ R .  i Core(Attrlc =:, Ci) = ~{Reduct(Attrl~ =~ Ci) } 

Proof. If A is a dispensable attribute in the rule For  convenience, the rule Attrl~ =:, C~ is also said 
A ttrl ~ =:, Ci with an inconsistent degree /3 (i.e. A to be a minimal reduct of the initial fuzzy rule. 
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Theorem 1 gives us a method of obtaining min- range of nonfuzzy label values (e.g. Table 3). Every 
imal reducts for fuzzy knowledge base with true row of the fuzzy knowledge base is considered to be 
evidence. Starting from the core, a minimal reduct an initial fuzzy rule with some true degree and with 
of an initial fuzzy rule can be obtained by adding some inconsistent degree (e.g. the last two columns 
progressively attributes to the core and verifying of Table 3). An optimal learning problem is in search 
the true degree and the inconsistent degree. For of a family of fuzzy rules covering all given fuzzy 
a fuzzy knowledge base without true evidence, the examples such that (1) each fuzzy rule of this family 
process of obtaining a minimal reduct must start is a minimal reduct of some initial fuzzy rule, (2) the 
from empty set. number of fuzzy rules of this family is least. 

2.4. An optimal learning problem 
3. NP-hard problem and heuristic algorithm 

A fuzzy example is considered to be a fuzzy set 
defined on the nonfuzzy label space consisting of all A computational problem is said to be a P-prob- 
values of attributes. For instance, the first row of lem if there exists an algorithm such that the exact 
Table 1 el = (0.9, 0.1, 0.0, 0.9, 0.1, 0.0, 0.8, 0.2, 0.7, solution to the computational problem can be ob- 
0.4, 0.4, 0.7) is a fuzzy example of the fuzzy know- tained within time of polynomial, if not, it is called 
ledge base Table 3, where the nonfuzzy label space NP-hard. For a NP-hard problem, only the ap- 
is (sunny, overcast, rain, hot, mild, cool, high, normal, proximate heuristic algorithm can be given. It is the 
false, true, positive, negative), kernel of a computational problem that the exact 

algorithm for the solution to the problem is given 
Definition 8. A fuzzy rule Attr]~s=~Ci is said to or the problem is proved to be NP-hard and the 
cover a fuzzy example if the membership of at- approximate, heuristic algorithm is given. Details 
tributes and the membership of classification for of NP-hard problems can be found in [3, 12] 
the example are all greater than or equal to ~/(a In this section, the optimal learning problem of 
threshold), simplifying fuzzy rules mentioned in Section 2.4 is 

proved to be NP-hard and a rather intuitive, effec- 
Let ~7 = 0.6, for instance, the fuzzy rule "Temper- tive, heuristic algorithm is given. Suppose the true 

ature is hot"c~"Outlook is Sunny" =~ N covers the degree of each initial fuzzy rule is greater than or 
example el because the membership of attributes is equal to a given threshold, we consider the optimal 
0.9 > ~/ and the membership of classification is learning problem mentioned in Section 2.4. Obvi- 
0.7 > ~7. ously, all initial fuzzy rules constitute a family 

The ith initial fuzzy rule covers the ith fuzzy which covers all given fuzzy examples (e.g. Table 
example by means of selecting a feasible ~/. Obvi- 3 covers Table 1, the threshold is taken to be 0.6). 
ously, a reduct of the ith initial fuzzy rule covers the The optimal learning problem is divided into three 
i-th fuzzy example too (1 -%< i -%< n). tasks to be fulfilled. 

The main task of inductive learning is to extract The first task is in search of a minimal reduct for 
rules from given examples. When cognitive uncer- each initial fuzzy rule. Theorem I provides 
tainties of a given example are handled, rules a method of obtaining a minimal reduct, which can 
extracted are generally fuzzy [15]. One optimal be divided into six steps. 
learning from examples is how to extract rules such 
that these extracted rules cover the given examples Step 1: For the ith initial fuzzy rule (1 <-% i <~ n), 
and these rules are "simplest". Now, we introduce the core, K, can be given by verifying whether an 
a problem of optimal learning from examples ap- attribute is dispensable in the condition set (if the 
pearing in the process of simplifying fuzzy rules, fuzzy knowledge base has not true evidence, K is 

Let E be a family of fuzzy examples (e.g. Table 1), supposed to be empty set), F := 1. 
T be a fuzzy knowledge base generated by selecting Step 2: Take F attributes A1, A2 . . . . .  Ar from 
the maximal membership of each attribute over its C - K. 
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Step 3: Add Aa, Az, ... ,A t  to K (K:= K~{A1,  ing one rule from each Ri (1 ~< i ~< n) and putting 
A2 .... ,At}). them together. Obviously, R* generated by using 

Step 4: Compute the true degree and the incon- this way is not unique. The main difficulty is how to 
sistent degree of the fuzzy rule Attrl~ =~ Ci. select a suitable one from each Ri such that number 

Step 5: I f K  is a reduct then exit successfully, else of elements of the selected subset attains minimum. 
new F attributes Aa, A 2  . . . .  , Ar are taken from In order to fulfill our last task, we give the follow- 
C - K, goto Step 3. ing Theorem 2. 

Step 6: If all combinations of elements of C - K, 

have been used and a reduct does not appear, Theorem 2. The last task of the optimal learnin9 
F : = / "  + 1, goto Step 2. problem is NP-hard. 

This process of determining a minimal reduct of an The validity of Theorem 2 can be given by the 
initial fuzzy rule is illustrated by considering the first following Lemma 1. 
row of Table 3. Let 6 be 0.8, it is easy to verify that the 
attribute Outlook is uniquely indispensable in the 

Lemma 1. Let F be a finite set, Xx, X2 .... ,Xm be 
first initial fuzzy rule of Table 3. Therefore, Outlook is m nonempty subsets of F. A problem of optimal 
the core of the first initial fuzzy rule. Take the second selection of elements is in search of a subset 
attribute Temperature and add it to the core. Notice Y (Y c F) 9enerated by selectin9 one element from 
sunny~hot ~ N with true degree 0.86 each Xi (1 <<. i <~ m), such that the number of elements 

and inconsistent degree 0 of the subset Y, I YI, attains minimum. The problem of 
sunny =~ N with true degree 0.66(< 6) optimal selection of elements is NP-hard. 

and inconsistent degree 2(> 0) 
hot ~ N with true degree 0.59(< 6) To prove Lemma 1, we briefly recall some con- 

and inconsistent degree 2(> 0) cepts of the set cover. 

we have the conclusion that sunny and hot are 
indispensable in the fuzzy rule sunnyc~hot ~ N, and Definition 9. Let T be a finite set, F = {S,, 
{Outlook, Temperature} is a minimal reduct of the $2, . . . ,  Sp} be a family of subsets of T. We say F is 
initial fuzzy rule. a cover of T if 0 ~= 1 S~ = T. We say IF* I is a opti- 

This method of determining a minimal reduct is mal cover of T if F* is a cover of T and IF* [ ~< IF[ 
only suitable for the case that the number of at- for an arbitrary cover of T, F, where I ] denotes the 
tributes is not much. Generally, the number of number of elements of a set. 

attributes of a learning problem is far less than that 
of examples. The problem of optimal cover of a set mentioned 

The second task is in search of a family of minim- in Definition 9 has been proved to be NP-hard in 
al reducts for the ith fuzzy example (1 ~< i ~< n) such the literature [4]. 
that each reduct inside of this family covers the ith 
fuzzy example. Let the set of fuzzy examples be Proof  of Lemma 1. Without losing generality, we 
E = {el, e2,...  ,e,} and the set of minimal reducts explicitly give the process of proof via examples. 
be R = {rl,r2,. . .  ,r,} where ri is the minimal re- L e t F  = {1,2, . . .  ,8},X1 = {1, 3,4},X2 = {1,2, 3}, 
duct of the ith initial rule (1 ~< i ~< n). For  each X3 = {3, 4, 5, 6}, X4 = {3, 7, 8}, X5 = {4, 6, 7} and 
i(1 <~ i <<. n),Ri, a subset of R, can be determined by X6 = {2, 5, 7, 8}. We consider the problem of opti- 
checking whether the rule covers e~, i.e. mal selection of elements in this case. The following 

Table 4 can be constructed by arranging 
Ri={r~lrjER, rjcoversei } ( i =  1,2, n). 

"'" ' X~ (1 ~< i ~< 6). The ith row of Table 4 is regarded as 
The last task is in search of a subset of R, denoted the set X~ (1 ~< i ~< 6) where elements which do not 
by R*, such that R* covers all fuzzy examples and appear in the set Xi (1 ~< i ~< 6) are replenished by 
[R*[ = Minimum. R* can be constructed by select- • called dead element. 
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A pa th  of Table  4 can be ob ta ined  by selecting Table 4 
one nondead  element  f rom each row. Fo r  instance, 
1 --, 1 --, 3 ~ 3 --* 4 --* 5 and 3 --* 3 --* 3 ~ 3 --, 7 ~ 7 I 2 3 4 5 6 7 8 

are two paths  of Table  4. The  first pa th  involves the 1 1 * 3 4 . . . .  

columns  1, 3-5 of Table  4 while the second pa th  2 1 2 3 . . . . .  

involves only the third co lumn and the seventh 3 * * 3 4 5 6 * * 

co lumn of Table  4. Obviously ,  the p rob lem of opti-  4 • • 3 • • . 7 8 
5 * * * 4 * 6 7 * 

mal selection of elements  is equivalent  to looking  6 * 2 * * 5 * 7 8 

for a pa th  involving least co lumns  in Table  4. 
Cons t ruc t  Table  5 via replacing every nondead  

element of  Table  4 by the row label of  the element. T a b l e  5 

It is obvious  that  searching for a pa th  involving 
least co lumns  in Table  4 is as same as in Table  5. 1 2 3 4 5 6 7 8 

We denote  by S = { 1 , 2 , 3 , 4 , 5 , 6 } ,  $ 1 = { 1 , 2 } ,  1 l * l 1 * * * * 
$2 = {2, 6}, $3 = {1, 2, 3, 4}, S ,  = {1, 3, 5}, $5 = 2 2 2 2 . . . . .  

{3, 6}, X6 = {3, 5}, Sv = {4, 5, 6}, and  $8 = {4, 6}. 3 * * 3 3 3 3 * * 

Obviously ,  {$1, $2, . . . ,  Ss } const i tutes  a cover  of  S. 4 * * 4 * * * 4 4 
The  p rob lem of searching for a pa th  involving least 5 * * * 5 * 5 5 * 

6 * 6 * * 6 * 6 6 
columns  in Table  5 is equivalent  to the p rob lem of 
op t imal  cover  of the set S (An opt imal  cover  of the 
set S is {$3, Sv}). The  p rob lem of op t imal  cover  of 
a set has been proved  to be N P - h a r d  in [4], there- O = {Rl,  . . . ,  R8 }, R* = empty. 
fore, the p roof  of  this l emma  is completed.  State 1. Max  T(r) = 5, r* = 4, O = {R~, R3, Rs}, 

Because of the NP-ha rd ,  it is unrealistic to fulfill R* = {4} 
the last task by searching for an exact a lgori thm. State 2. Max  T(r) = 2, r* = 6, (2 = {Rs}, 
The  following is a heuristic a lgor i thm for our  last R* = {4, 6} 
task, which is ra ther  effective and intuitive. State 3. Max  T(r) = 1, r* = 2, Q ~ empty, 

Let ~2= {Rt, R2 . . . .  ,R,} be a family of  non-  R * =  {2,4,6} [Stop]. 
empty  subsets of  set R. The  initial value of R* is 
supposed  to be empty  set (R and R* have been Example  2. Consider  the op t imal  learning con- 
indicated in the second task), cerning Tables  1 and 3. Using the heuristic algo- 

Repeat  the following three steps: r i thm ment ioned  above,  we give the following re- 
Step 1. Fo r  each r e R, compu te  the n u m b e r  of suit of the learning (see Table  6). 

t imes with that  r appears  in the family 

t? (i.e. compu te  T(r)  = 52~=1 2~ where Table  6 shows five fuzzy rules (the inconsistent  
)~j = 1 if r e  Rj and  2j = 0 if rCRj), degree of each fuzzy rule is 0), that  is overcast =~ P 

Step 2. Select r* such that  T(r*)  = Max1 ~ ,  (T  = 0.85, I = 0), sunnyc~hioh ~ N (T  = 0.93, 
T(r). I = 0), rainc~false~P (T  = 0.83, I = 0), rainc~ 

Step 3. F o r  j = 1, 2 , . . . ,  n, r emove  R~ from f2 if true ~ P (T = 0.96, I - 0) and  sunnyc~normal ~ P 
r*eRj  and replace R* with {r*}wR*. (T=O.96, l=O)where  T i s t h e t r u e d e g r e e a n d l i s  
Until  Q becomes empty,  the inconsistent  degree. 

Example  1 illustrates the compu ta t i ona l  process 
of the a lgor i thm above.  4. Conclusions 

Example  1. The  initial state: R~ = {6, 7}, R2 = This pape r  deals with the learning process of  
{ 1, 2, 3, 4}, R3 = { 1, 6}, R4 = {1, 2, 4, 5}, R5 = simplifying fuzzy rules, p roves  the main  opt imiza-  
{2,8}, R6 = {3,4, 5,7}, R~ = {2,4}, Rs = {4,5}, t ion p rob lem is NP-ha rd ,  and gives a rather  
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Table 6 
A learning result concerning Tables 1 and 3 

Outlook Temperature Humidity Windy Class True degree 

Overcast • • • P 0.85 
Sunny * High * N 0.93 
Rain * * False P 0.83 
Rain • • True N 0.96 
Sunny * Normal * P 0.96 

effective and  intui t ive heuristic algori thm. This heu- [2] K.J. Cios, UM. Sztandera, Continuous ID3 algorithm 
ristic regarded as a new fuzzy learning a lgor i thm with fuzzy entropy measures, in: Prec. IEEE Internet. 
has the following advantages. Conf. on Fuzzy Systems, San Diego, CA, 8-12 March 

(1) It  allows hand l ing  fuzziness existing in the 1992, pp. 469-476. 
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