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Abstract

In this paper, we discuss the solution of a system of fuzzy linear equations, X =AX + U , and its iteration algorithms
where A is a real n× n matrix, the unknown vector X and the constant U are all vectors consisting of n fuzzy numbers,
and the addition, scale-multiplication are de�ned by Zadeh’s extension principle. After introducing a metric between two
fuzzy vectors, we prove that the system has unique solution if ‖A‖∞¡1. We also give the convergence and the error
estimation for using simple iteration to obtain the solution. Finally, we give the convergence and the error estimation of
successive iteration sequence for obtaining the solution. c© 2001 Elsevier Science B.V. All rights reserved.
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Throughout this paper, the notation Rn denotes n-dimensional Euclidean space and the notation Rn×n denotes
the set of all n× n real matrices. The norm in the space Rn or Rn×n is regarded as ‖ • ‖∞, that is

‖x‖∞= Max
16i6n

|xi| for x=(x1; x2; : : : ; xn)T ∈Rn

and

‖A‖∞= Max
16i6n


 n∑
j=1

|aij|

 for A=(aij)n×n ∈Rn×n:

Let a=(a1; a2; : : : ; an)T and b=(b1; b2; : : : ; bn)T. De�ne a6b if and only if aj6bj for j=1; 2; : : : ; n. We
denote

[a; b] = ([a1; b1]; : : : ; [an; bn])T if a6b

( This work has been supported by Natural Science Foundation of Hebei Province (No. 698139), China.
∗ Corresponding author. Tel.: +86 312 5079350; fax: +86 312 5022320.
E-mail address: wangxz@hbu.edu.cn (X. Wang).

0165-0114/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(98)00284 -X



122 X. Wang et al. / Fuzzy Sets and Systems 119 (2001) 121–128

and

I n(R)= {[a; b] | a6b; a∈Rn; b∈Rn}:
The addition, scale-multiplication and matrix-multiplication are de�ned as follows:

[a; b] + [u; v] = [a+ u; b+ v]; [ta; tb] =

{
[ta; tb]; t¿0;

[tb; ta]; t¡0;

T [a; b] =


 n∑
j=1

t1j[aj; bj]; : : : ;
n∑
j=1

tnj[aj; bj]



T

;

where [a; b]∈ I n(R); [u; v]∈ I n(R); t ∈R; T =(tij)∈Rn×n. A metric, d, in the space I n(R) is de�ned as
d([a; b]; [u; v])=Max(‖a− u‖∞; ‖b− v‖∞)

for [a; b]∈ I n(R) and [u; v]∈ I n(R). Obviously, the above three operations within I n(R) are closed respectively,
and I n(R) is a complete metric space with the metric d.
The �-cut of a fuzzy set X in Rn is denoted by L�(X ) i.e.

L�(X )= {t | t ∈Rn; X (t)¿�}; �¿0:

Let

Fn(R)= {X |X is a fuzzy set in Rn; L�(X )∈ I n(R) and L1(X ) 6= ∅}:
It is clear, F1(R), denoted by F(R) in short, is the set of all closed and convex fuzzy numbers. According
to properties and representation theorems of closed and convex fuzzy numbers, we can easily obtain the
following two lemmas.

Lemma 1. Let X ∈Fn(R). Then; X =(x1; x2; : : : ; xn)T and L�(X )= (L�(x1); L�(x2); : : : ; L�(xn))T; �¿0; where
xj ∈F(R) (j=1; 2; : : : ; n).

Lemma 2. Let X; Y ∈Fn(R); �¿0; a∈R. Then L�(X + Y )=L�(X ) + L�(Y ); L�(aX )= aL�(X ).

Let AX =(
∑n

j=1 a1jxj; : : : ;
∑n

j=1 anjxj)
T for A=(aij)∈Rn×n, X =(x1; x2; : : : ; xn)T ∈ Fn(R) where the addition

and the multiplication are de�ned by Zadeh’s extension principle. It is easy to see AX ∈Fn(R). By Lemmas
1 and 2, we have

L�(AX )=AL�(X ) for X ∈Fn(R) and A∈Rn×n:
Let

L�(X ) = [L−� (X ); L
+
� (X )] = ([L

−
� (x1); L

+
� (x1)]; : : : ; [L

−
� (xn); L

+
� (xn)])

T;

where L�(X )∈ I n(R); L−� (X )∈Rn; L+� (X )∈Rn; L−� (X )6L+� (X ) and L−� (xj)∈R; L+� (X )∈R; L−� (xj)6L+� (xj).
De�ne a mapping � :Fn(R)×Fn(R)→R as follows:

�(X; Y ) = Sup
�¿0

d(L�(X ); L�(Y )) = Sup
�¿0

Max
16j6n

(
∣∣L−� (xj)− L−� (yj)∣∣ ; ∣∣L+� (xj)− L+� (yj)∣∣):

We have

Lemma 3. Fn(R) is a complete metric space with the metric �.
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Proof. According to Lemma 1, we obtain Fn(R)=F(R)×F(R)× · · ·×F(R). (F(R); d) is a complete metric
space with the metric d (see [7]), where

d(x; y)= Sup
�¿0

(
∣∣L−� (x)− L−� (y)∣∣ ; ∣∣L+� (x)− L+� (y)∣∣)

for x∈F(R) and y∈F(R). Moreover,

�(X; Y ) = Sup
�¿0

Max
j
(
∣∣L−� (xj)− L−� (yj)∣∣ ; ∣∣L+� (xj)− L+� (yj)∣∣)

=Max
j
Sup
�¿0

(
∣∣L−� (xj)− L−� (yj)∣∣ ; ∣∣L+� (xj)− L+� (yj)∣∣) = Maxj d(xj; yj)

for X =(x1; x2; : : : ; xn)T ∈ Fn(R) and Y =(y1; y2; : : : ; yn)T ∈Fn(R). Hence, (Fn(R); �) is a complete metric
space.

Lemma 4. �(AX; AY )6‖A‖∞�(X; Y ) for X; Y ∈Fn(R); A∈Rn×n.

Proof. According to the operation principle within I n(R), Lemmas 1 and 2, for each �¿0, we have

L�(AX )=AL�(X ) = A[L−� (X ); L
+
� (X )] = A([L

−
� (x1); L

+
� (x1)]; : : : ; [L

−
� (xn); L

+
� (xn)])

T

=


 n∑
j=1

a1j[L−� (xj); L
+
� (xj)]; : : : ;

n∑
j=1

anj[L−� (xj); L
+
� (xj)]



T

=




 n∑
j=1

a1js1(xj);
n∑
j=1

a1js∗1 (xj)


 ; : : : ;


 n∑
j=1

anjsn(xj);
n∑
j=1

anjs∗n (xj)





T

;

where

si(xj)=

{
L−� (xj); aij¿0;

L+� (xj); aij60

and

s∗i (xj)=L
−
� (xj) + L

+
� (xj)− si(xj); j=1; 2; : : : ; n; i=1; 2; : : : ; n:

Replacing X and xj (j=1; 2; : : : ; n) by Y and yj (j=1; 2; : : : ; n) in the above equalities, we can obtain a
similar result. Therefore,

d(L�(AX ); L�(AY )) = Max


Max
16i6n

∣∣∣∣∣∣
n∑
j=1

a1j(si(xj)− si(yj))
∣∣∣∣∣∣ ; Max16i6n

∣∣∣∣∣∣
n∑
j=1

a1j(s∗i (xj)− s∗i (yj))
∣∣∣∣∣∣



= Max


 n∑
j=1

|aij|

 Max
16i6n

(
∣∣L−� (xj)− L−� (yj)∣∣ ; ∣∣L+� (xj)− L+� (yj)∣∣)

= ‖A‖∞d(L�(X ); L�(Y ))6‖A‖∞ Sup
�¿0

d(L�(Y ); L�(Y ))

= ‖A‖∞�(X; Y )
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which implies that

�(AX; AY )= Sup
�¿0

d(L�(AX ); L�(AY ))6‖A‖∞�(X; Y ):

The proof is completed.

Lemma 5. �(X + Z; Y + Z)= �(X; Y ) for X; Y; Z ∈Fn(R).

Proof.

�(X + Z; Y + Z) = Sup
�¿0

d(L�(X + Z); L�(Y + Z))

= Sup
�¿0

d(L�(X ) + L�(Z); L�(Y ) + L�(Z))

= Sup
�¿0

d([L−� (X ) + L
−
� (Z); L

+
� (X ) + L

+
� (Z)]; [L

−
� (Y ) + L

−
� (Z); L

+
� (Y ) + L

+
� (Z)])

= Sup
�¿0

max(‖L−� (X )− L−� (Y )‖∞; ‖L+� (X )− L+� (Y )‖∞)

= Sup
�¿0

d(L�(X ); L�(Y ))= �(X; Y ):

In the following, we discuss the solution of a system of fuzzy linear equations X =AX +U . The solution
can be regarded as the �xed-point of a linear mapping: X → gX =AX + U , where A∈Rn×n and U ∈Fn(R)
are known.

Theorem 1. The mapping g has unique �xed-point within Fn(R) if ‖A‖∞¡1.

Proof. By Lemmas 4 and 5, we know �(gX; gY )6‖A‖∞�(X; Y ) holds well for X; Y ∈Fn(R). Hence, the
mapping g is a compressed mapping with respect to the metric �. Lemma 3 shows that (Fn(R); �) is a
complete metric space, therefore, there uniquely exists a point X ∗ ∈Fn(R) such that gX ∗=AX ∗ + U =X ∗,
which completes the proof.

Now, we discuss iteration algorithms for obtaining the �xed-point. The sequence {X (k); k¿0} is called the
simple iteration sequence of the mapping g, where

X (k) = (x(k)1 ; x
(k)
2 ; : : : ; x

(k)
n ); x(k)i =

n∑
j=1

aijx
(k−1)
j + ui (i=1; 2; : : : ; n):

k =1; 2; : : : and X (0) = (x(0)1 ; x
(0)
2 ; : : : ; x

(0)
n ) is known, initial point. The following Theorem 2 gives us the con-

vergence and error estimation of the simple iteration sequence.

Theorem 2. The simple iteration sequence of the mapping g; {X (k); k¿0} satis�es

�(X (k); X ∗)6
‖A‖k∞

1− ‖A‖∞ �(X
(1); X (0))

if ‖A‖∞¡1; where X ∗ is the �xed-point of the mapping g.

Proof. By Theorem 1, there uniquely exists X ∗, the �xed-point of the mapping g. From X (i+1) =AX i +
U; X (i) =AX (i−1) + U , Lemmas 4 and 5 we have

�(X (i+1); X (i))6‖A‖∞�(X (i); X (i−1))
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which implies

�(X (i+1); X (i))6‖A‖i∞�(X (1); X (0)):
Similarly,

�(X (k); X ∗)6‖A‖k∞�(X (0); X ∗):

Hence,

�(X (k); X ∗)→ 0 (k→∞):
Using triangular inequality, we obtain

�(X (k); X ∗)6 �(X (k+1); X (k)) + �(X (k+1); X ∗)

6 �(X (k+1); X (k)) + �(X (k+1); X (k+2)) + �(X (k+2); X ∗)

6 · · ·6
k+p∑
i=k

�(X (i); X (i+1)) + �(X (k+p+1); X ∗):

Letting p→∞ in the above inequalities, we have

�(X (k); X ∗)6
∞∑
i=k

�(X (i); X (i+1))6
∞∑
i=k

‖A‖i∞�(X (1); X (0)) =
‖A‖k∞

1− ‖A‖∞ �(X
(1); X (0))

which is just our desired result.

In the following, we take the convention that
∑0

j=1 bj =0.
The sequence {X (k); k¿0} is called the successive iteration sequence of the mapping g, where
X (k) = (x(k)1 ; x

(k)
2 ; : : : ; x

(k)
n )

x(k)i =
i−1∑
j=1

aijx
(k)
j +

n∑
j=i

aijx
(k−1)
j + ui (i=1; 2; : : : ; n)

k =1; 2; : : : and X (0) = (x(0)1 ; x
(0)
2 ; : : : ; x

(0)
n ) is known, initial point. The following Theorem 3 gives us the con-

vergence and error estimation of the successive iteration sequence.

Theorem 3. The successive iteration sequence of the mapping g; {X (k); k¿0}; satis�es �(X (k); X ∗)6
�k�(X (0); X ∗) and �(X (k); X ∗)6(�k=(1− �))�(X (1); X (0)) if ‖A‖∞¡1 and each element of the matrix A is
non-negative. Here X ∗ is the �xed-point of the mapping g and �=Maxi(

∑n
j=i aij=(1 − ∑i−1

j=1 aij))
6‖A‖∞¡1:

Proof. Let li=
∑i−1

j=1 aij; vi=
∑n

j=i aij

A=



0 0 0 · · · 0
a21 0 0 · · · 0
a31 a32 0 · · · 0
· · · · · · · · · · · · · · ·
an1 an2 an3 · · · 0


+



a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
· · · · · · · · · · · · · · ·
0 0 0 0 ann


 =B+ C:



126 X. Wang et al. / Fuzzy Sets and Systems 119 (2001) 121–128

Then, li + vi6maxi(li + vi)= ‖A‖∞¡1. Notice (vi=(1− li))6li + vi (i=1; 2; : : : ; n), �=Maxi vi=(1− li) and
‖A‖∞= maxi |li + vi|, hence, �6‖A‖∞¡1. By Theorem 1, there uniquely exists a �xed-point X ∗ ∈Fn(R)
such that AX ∗ + U =X ∗, so BX ∗ + CX ∗ + U =X ∗. As the successive iteration sequence can be denoted by

BX (k) + CX (k−1) + U =X (k); k =1; 2; : : :

the following equalities hold well for each �¿0:

L�X ∗=L�(BX ∗ + CX ∗ + U )=BL�(X ∗) + CL�(X ∗) + L�(U );

L�X (k) =L�(BX (k) + CX (k−1) + U )=BL�(X (k)) + CL�(X (k−1)) + L�(U ):

Notice B and C are all non-negative matrices, we have

[L−� (X
∗); L+� (X

∗)]

= [BL−� (X
∗); BL+� (X

∗)] + [CL−� (X
∗); CL+� (X

∗)] + [L−� (U ); L
+
� (U )]

and

[L−� (X
(k)); L+� (X

(k))]

= [BL−� (X
(k)); BL+� (X

(k))] + [CL−� (X
(k−1)); CL+� (X

(k−1))] + [L−� (U ); L
+
� (U )]:

Moreover,

L−� (X
∗)− L−� (X (k))

=B(L−� (X
∗)− L−� (X (k))) + C(L−� (X ∗)− L−� (X (k−1)))

and

L+� (X
∗)− L+� (X (k))

=B(L+� (X
∗)− L+� (X (k))) + C(L+� (X ∗)− L+� (X (k−1))):

Put

max
i

|L−� (x(k)i )− L−� (x∗i )|= |L−� (x(k)i0 )− L−� (x∗i0 )|;
max
i

|L+� (x(k)i )− L+� (x∗i )|= |L+� (x(k)i1 )− L+� (x∗i1 )|:

Then

|L−� (x(k)i0 )− L−� (x∗i0 )|

=

∣∣∣∣∣∣
i0−1∑
j=1

ai0j(L
−
� (x

(k)
j )− L−� (x∗j )) +

n∑
j=i0

ai0j(L
−
� (x

(k−1)
j )− L−� (x∗j ))

∣∣∣∣∣∣
6li0 Maxj

|L−� (x(k)j )− L−� (x∗j )|+ vi0 Maxj |L−� (x(k−1)j )− L−� (x∗j )|

6li0�(X
(k); X ∗) + vi0�(X

(k−1); X ∗): (1)

Similarly

|L+� (x(k)i1 )− L+� (x∗i1 )|6li1�(X (k); X ∗) + vi1�(X
(k−1); X ∗): (2)
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From (1) and (2) we obtain

Max
i
(|L−� (x(k)i )− L−� (x∗i )|; |L+� (x(k)i )− L+� (x∗i )|)

6Max
i
(|L−� (x(k)i0 )− L−� (x∗i0 )|; |L+� (x(k)i1 )− L+� (x∗i1 )|)

6lij�(X
(k); X ∗) + vij�(X

(k−1); X ∗) (j=0 or 1):

Taking “Sup” in the above inequalities for �¿0, we further obtain

�(X (k); X ∗)6lij�(X
(k); X ∗) + vij�(X

(k−1); X ∗):

Therefore,

�(X (k); X ∗)6
vij

1− lij
�(X (k−1); X ∗)6��(X (k−1); X ∗)

implies

�(X (k); X ∗)6�k�(X (0); X ∗): (3)

Replacing X ∗ by X (k−1) in the above process, we have a similar result

�(X (k); X (k−1))6�k−1�(X (1); X 0): (4)

Using triangular inequality, we know that the following inequality:

�(X (k); X ∗)6
k+p∑
i=k

�(X (i); X (i+1)) + �(X (i+p+1); X ∗) (5)

holds well. Using inequality (4) and letting p→ ∞ in the inequality (5), we obtain

�(X (k); X ∗)6
∞∑
i=k

�i�(X (1); X (0)) =
�k

1− ��(X
(1); X (0)); (6)

which completes the proof.

Example. Consider the following system of fuzzy linear equations:(
x1
x2

)
=

(
0:4 0:1
0:2 0:5

)(
x1
x2

)
+
(
U1
U2

)
;

where

U1(t) =



t − 4; 46t ¡ 5;
(2− 1

5 t)
1=8; 56t610;

0 otherwise;
U2(t) = exp

[
−
(
t − 10
�

)2]
; � =

10√
2 log 10

:

Numerical solutions of x1 and x2 can be obtained by using successive iteration algorithm, where the initial x1
and x2 are taken to be 0, the iteration times is k = 26, � = 0:6125, �(x(1); x(0)) = 20, and �=(1−�)�(x(1); x(0)) =
0:00015. According to these numerical solutions, the �gures of membership functions of x1 and x2 are drawn
as Figs. 1 and 2.
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Fig. 1. Membership function x1( t ): Fig. 2. Membership function x2( t ).
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