556 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 4, APRIL 2002

Improving Performance of Similarity-Based
Clustering by Feature Weight Learning
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Abstract—Similarity-based clustering is a simple but powerful technique which
usually results in a clustering graph for a partitioning of threshold values in the unit
interval. The guiding principle of similarity-based clustering is “similar objects are
grouped in the same cluster.” To judge whether two objects are similar, a similarity
measure must be given in advance. The similarity measure presented in this paper
is determined in terms of the weighted distance between the features of the
objects. Thus, the clustering graph and its performance (which is described by
several evaluation indices defined in this paper) will depend on the feature
weights. This paper shows that, by using gradient descent technique to learn the
feature weights, the clustering performance can be significantly improved. It is also
shown that our method helps to reduce the uncertainty (fuzziness and
nonspecificity) of the similarity matrix. This enhances the quality of the similarity-
based decision making.

Index Terms—Clustering, similarity-based clustering, transitive closure, fuzziness
and nonspecificity, gradient-descent technique.
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1 INTRODUCTION

CLUSTERING aims to determine a partition over a given set of
objects. Among the existing clustering methodologies, the similar-
ity-based clustering is a simple but powerful one.The guiding
principle of similarity-based clustering is “similar objects are
within the same cluster and dissimilar objects are in different
clusters,” and a similarity measure must be defined to compute the
degree of similarity between two objects. Two objects are
considered to be similar or dissimilar based on this degree.
Obviously the boundary between the two terms, similar and
dissimilar, is not crisp. Thus, similarity-based clustering is a type
of fuzzy clustering though the generated partitions are considered
crisp.

Roughly speaking, there are two types of fuzzy clustering. One is
to generate a fuzzy partition on the set of objects (there is no crisp
boundary among the clusters), whereas the other is to generate a set
of crisp partitions such as the one generated by similarity-based
clustering which was introduced, for instance, in [5], [16]. For the
former, much research works have been done [1], [3], [13].
Comparatively speaking, the research on the latter is much less.
However, many interesting applications of similarity-based cluster-
ing had been reported. This paper makes an attempt to improve the
performance of the existing similarity-based clustering techniques
via feature weight learning. More specifically, one objective is to
obtain a reasonable similarity matrix with better clustering
performance by learning the feature weights. Another objective is
to reduce the uncertainty (fuzziness and nonspecificity) existing in
the clustering results and therefore enhance the quality of decision
making.

This paper has the following organization: Section 2 outlines the
methodology of clustering based on a similarity matrix and its
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transitive closure. Section 3 discusses the feature weight learning
where the gradient descent technique is used to minimize an
objective function. Section 4 gives some indices such as intrasimi-
larity and intersimilarity for evaluating the quality of a clustering
performance. Section 5 reports experimental results on databases
selected from UCI machine learning repository [14] and makes a
brief comparison with k-means. The conclusion of this paper is
given in the last section.

2 CLUSTERING BASED ON A SIMILARITY MATRIX

Clustering based on a similarity matrix is a popular and practical
technique which usually performs by means of transforming the
similarity matrix into its transitive closure [5]. We briefly describe
this technique as follows:

Let CL denote a set of objects for clustering and p a similarity
measure defined on CL. Specifically, if CL = {ei,es,---,en}, then
a matrix S = (s;5) y v can be defined by s;; = p(e;, ¢j).

The similarity matrix S = (s;;) vy isreflexive (s;; > Oand s;; = 1
if i = j) and symmetric (s;; = s;;), but does not necessarily satisfy
the fuzzy transitive condition s;; > Vj, (sir A sji), where V, A stand
for max and min, respectively. Usually we consider that one object is
similar to another object if and only if the degree of similarity is
greater than or equal to a predefined threshold «. In this way, the
transitive condition states that, for any three objects i, j, and &, if
object i is similar to object & (s;;, > «) and object k is similar to object
Jj (sgj > «) then object ¢ is similar to object j (s;; > «). Since the
transitive condition is indispensable for clustering, the similarity
matrix is always transformed into its Transitive Closure (denoted by
TC(S) = (tij) yxn)- TC(S) is defined as a minimal reflexive,
symmetric, and transitive matrix. Usually, T'C(S) is obtained by
searching for an integer k such that, S* is transitive.

According to the transitive closure T'C(S) = (tij) vy, the N
objects {e1, ez, -+, en} can be categorized into several clusters in
terms of the criterion “e; and e; belong to the same cluster if
tij > a,” where « is a given threshold.

We now focus on the generation of a similarity matrix. Suppose
that each object is identified by a collection of features
{F/(]: Lm} Then, for i = 172 "'>N7 € = (xi,l?xi?z"ﬁxim)/
where z;; corresponds to the value of the feature Fj(1 < j < m).
One may find many approaches to determine the similarity
measure between two objects in terms of their feature values such
as Euclidean distance, relational coefficients, cosine of angle
between two vectors, etc. But, in this paper, we will consider
the similarity measure associated with a weighted distance d](;‘q”)
which is defined as

m 1/2
A = d") (e, eq) — (Z wh (2, — xqj)Q) , (1)
j=1
where w = (wl,w2,---,wy,) is called the feature weight vector. For

each j, w; is nonnegative and is assigned to the jth feature Fj to
indicate the importance of that feature. It is noted that the distance
defined by (1) is just the usual Euclidean metric while all weights
are equal to 1. Thus, the weighted distance defined in (1) is a
generalization of the Euclidean distance. The similarity measure is
then defined by the following equation:

1
(w) __
Pog = T ) (2)
"1+ dyy
where (3 is a positive parameter determined by solving the
following (2a)

q9>p



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 4, APRIL 2002 557

le,e,,e5.e.,e} 0<a <046
{e,}  fep.eyeq e 047 <@ <049
te,} lenes) AN 0.49< 0 <066
/
{e,} {e,es} {;4 } {@5\} 0.66 <0 <0.73
e} et e} e {esh  om<asi

Fig. 1. Dynamic clustering graph 1 with five layers.

where N is the number of objects, pI(,}I) is the value of pl(]:) at
w=(1,1,---,1). The aim of determining £ in this way is to
uniformly distribute all similarity values around the value 0.5. In
other words, since similarity values are user-defined, we expect
that they can uniformly distribute around 0.5 when no additional

information on estimating these similarity degrees is available.

Example 1. Consider five objects

e1(4.8,5.0,3.0,2.0),
€3(2.0,3.0,4.0,5.0),
e3(5.0,5.0,2.0,3.0)
(1.0,5.0,3.0,1.0)
(1.0,4.9,5.0,1.0)

e4 , and

(& .

The formula specified by (2) (where all feature weights are
considered to be 1 and the parameter g is taken to be 0.26
according to the § selection criterion (2a)) is used to compute
the similarity matrix S. It is easy to check that the similarity
matrix does not satisfy the fuzzy transitive condition. Its
transitive closure TC(S) can be obtained by computing 5*.

1 045 073 049 047
1 046 045 045
S= 1 046 0.42
1 0.66

1

1 046 0.73 049 049

1 046 046 046

TC(S)=58"= 1049 049

1 0.66

1

Based on this transitive closure, a dynamic clustering graph
(Fig. 1) can be constructed when the threshold a changes from 1
to 0. From Fig. 1, one can easily see that the partition varies with
the change of the threshold «. For example the partition
contains three clusters when « € (0.49,0.66] and four clusters
when « € (0.66,0.73]. One may observe that it is difficult to
make a crisp decision for selecting a specified partition since
most of the nondiagonal elements of the similarity matrix or its
transitive closure are close to 0.5, which is considered to be the
most fuzzy value.

3 LEARNING FEATURE WEIGHTS

The last section shows that the similarity-based clustering result is
a dynamic clustering graph with the change of the threshold, i.e., a
set of crisp partitions. According to the guiding principle of

similarity-based clustering, the degree of similarity between
objects can be regarded as the degree to which the two objects
belong to the same cluster. It is difficult to say that two objects
definitely belong to the same cluster except when they are
identical. One reason is that two objects may belong to the same
cluster for a given threshold and they could possibly belong to
different clusters for another given threshold. This indicates that
uncertainty exists when judging whether two objects belong to the
same cluster. This uncertainty results from the fuzziness of the
similarity matrix. The bigger the fuzziness of the similarity matrix
is, the more difficult it is to determine the clustering. Feature
weight is an important concept which has been successfully
applied to fuzzy production rules [15]. Noting that the similarity
matrix depends on the feature weight, it is possible to reduce its
fuzziness by adjusting the values of the feature weights. This
would improve the decision making performance.

For the purpose of reducing fuzziness of the similarity matrix,
we consider the minimization of the following evaluation
function [2]:

2 1
- = (w1 - M 1)1 = pw
R I BT
in which N is the number of objects in a partition, w=
(wi,ws, - -+, wy) represents the feature weight vector, ) specified
by (2) is the similarity between objects ¢, and ¢,, and p},) is defined
in (2a).

This evaluation function E(w), which was formulated in [2], is
constructed based on a simple function f(z,y) = z(1 —y) 4+ y(1 —
r)(1<z,y<l). ‘ ‘

Noting that 2 =1 -2y, % > 0 if y < 0.5,2 <0 if y> 0.5, we
have from (3) the following equality:

Lim, w) ( E(w) = min E(w). (3a)

1 r) 1)
[o}’ =005 <0.5] or [y —1,0},) >0.5]

Assuming all feature weights be equal to 1, we can compute the
similarity between two objects by (2), which can be regarded as the
“old similarity.” If one allows the feature weights to vary in the
interval [0, co), then the similarity computed by (2) may be viewed
as the “new similarity,” which depends on the selection of the
feature weights. It is observed from (3a) that minimizing (3)
implies that the new similarity tends to 1 (0) if the old similarity is
greater (less) than 0.5. It is also true that by minimizing (3), one
could improve the intrasimilarity and intersimilarity (defined in
the next section). That is, the average similarity within the same
cluster will increase and the average similarity among diverse
clusters will decrease. Moreover, according to [4], the fuzziness of
the new similarity matrix S can be defined as

Fuzziness (S('”)) =

- m > (/’;({‘;) log p{) + (1 - p%')) log(l _ pl(;;)))

q<p

From (3a), we know that minimizing E(w) possibly leads to
pl(,":) — 0 or 1. In either case, one can easily see that the fuzziness of
S will be very small. Due to the reduction of fuzziness (i.e., since
the new similarity departs from 0.5 more than the old similarity),
the similarity matrix with feature weights offers a better decision
making capability for clustering results than the one without the
feature weights.

According to [6], fuzzy sets mainly have three semantics,
namely, similarity, preference, and uncertainty. Similarity is
exploited in clustering analysis and fuzzy control. Since the
similarity depends on the feature weights, the degree to which a
pair of objects belongs to the same model could be changed by
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adjusting (learning) the feature weights. We train the feature
weights by minimizing (3).

For training the feature weights, a three-layered neural network
([2]) can be designed. We omit the network figure and directly
establish the training equations. To minimize (3), the gradient-
descent technique is used. We derive the training equations as
follows:

The change in w;, Aw; is computed as

OE(w)

Awj = —n , (4)
! ow;
for j =1,---,n, where 7 is the learning rate. For the computation of
aggju), the following expressions are used:
aE_(m:;Z@_g,p(l)).ap_%).% (5)
ow;  N(N-1)4 M) odl) ow;
oy -8 .
ody) (L4 dyy)?
ad(w) ) ,
85; = wj(Tp; — Tqj) /d;q)' (7)

The learning rate 7 for each epoch is determined by

B, — 77aE(w) e, 77aE(w) i
dwy ow, A>0 ®)
E(wl 3 )\E)E(w) o /\QE(w)>.
ow; ow,

Equation (8) aims to search for an appropriate step-length (since too
small an 7 leads to low computational efficiency but too big an n
usually results in divergence of the algorithm). This is a one-
dimensional search (¥ is considered as a function with respect to the
nonnegative variable )), therefore, many standard one-dimensional
search techniques such as Fibonacci method [12] can be used.

The training algorithm is described as follows:
Step 1. Determine the value of § according to (2a).
Step 2. Initialize w; with random values in [0, 00).

Step 3. Compute 65—(5“) for each j using (5), (6), and (7).

Step 4. Searching for 7 according to (8).

Step 5. Update w; with w; + Aw; for each j if w; + Aw; > 0.

Step 6. Repeat steps 3, 4, and 5 until convergence, i.e., until the value
of E becomes less than or equal to a given threshold, or until the
number of iterations exceeds a certain predefined number.

After training, the function E(w) should attain a local minimum.
We expect that, on average, the similarity values {pé"q”), p=
1,--+,N,q < p} with trained weights are closer to 0 or 1 than that
without trained weights such as { pw, p=1,---,N,q < p}. That is,
we expect the fuzziness of the similarity matrix with trained weights
to be much smaller than the fuzziness of the similarity matrix

without weights.

Example 2. Consider the five objects in Example 1 again. We want to
learn the four corresponding feature weights such that the
evaluation function (3) attains a local minimum. The parameters
3 are taken to be 0.26 and all initial values of feature weights are
taken to be 1. After 1,000 epochs, the evaluation function
specified in (3) converges with the feature weight vector
w = [3.8210, 8.1342,0.0000, 0.0000]. Using this vector and (1)
and (2), one can determine the similarity matrix S and its
transitive closure S*:
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Fig. 2. Dynamic clustering graph 2 with four layers.
1 016 0.83 0.21 0.21
1 0.16 0.19 0.19
S = 1 0.20 0.20
1 0.83
1
1 019 0.83 0.21 0.21
1 0.19 0.19 0.19
TC(S) =8 = 1 021 021
1 0.83
1

Based on this transitive closure, a dynamic clustering graph (Fig. 2)
is formed when the threshold « changes from 1 to 0. By comparing
the similarity matrices of Examples 1 and 2, it is found that the
degrees of similarity depart from 0.5 in Example 2 more than those
in Example 1. The decision making based on the similarity matrices
in Example 2 is easier than the case in Example 1 for clustering. For
Example 2, an intuitive decision of three clusters can be made, i.e.,
{e1,e3}, {es, €5}, and {e2}, corresponding to any threshold selected
in (0.21, 0.83]. This intuitive decision will be validated according to
the evaluation indices defined in the next section.

It is worth noting that, as a result of the feature weight learning,
the last two feature weights vanish. In this situation, the feature
weight learning coincides with the feature selection in [2]. The
learned feature weight vector indicates that the first two features
are significant for clustering.

4 INDICES OF EVALUATION ON CLUSTERING BASED ON
A SIMILARITY MATRIX

For a given similarity matrix, the clustering results based on its
transitive closure will be different with the change of the threshold
a. All objects will constitute one cluster if o is taken to be 0. While the
threshold a changes from 0 to 1, the number of clusters generated in
the clustering will gradually increase from 1 to a maximum number.
Thus, a dynamic clustering graph is obtained (see Figs. 1 and 2). One
problem is the appropriate evaluation of the clustering graph. In
other words, if two dynamic clustering graphs are generated for a
given data set, which graph is relatively better? In what follows, we
suggest to use some evaluation indices to measure the performance
of the clustering. We expect that the learning of the feature weights
specified in the previous section will result in a better performance
of the clustering. However, due to the interaction among these
indexes, it is difficult to achieve the optimal values of all indices
simultaneously. Usually a trade-off must be made.

1.  Fuzziness of a similarity matrix. For a given similarity-
matrix S = (s;;) vy, the fuzziness of S is defined accord-
ing to [4], ie.,

Fuzziness(S) =

]\](];71_1)2(57;]' log S,j]' + (1 — S,'J') 10g(1 — S,‘j)) (9)

j<i



Reducing the fuzziness will make decision making easier.
This evaluation index is for a similarity matrix, i.e., for the
entire clustering graph.

The following evaluation indices 2, 3, 4, and 5 are
defined for a specified partition. While these indices are
needed for evaluating the entire clustering performance,
the simple average for different levels can be used.
Intrasimilarity. For a given cluster L, the intrasimilarity of
L is defined as the average similarity of all pairs in L. For a
clustering with m clusters {Li, Lo, - L,,l;f corresponding
to a threshold o, the intrasimilarity SMgftm(a) is defined
as the average of all 1ts cluster intrasimilarities. It is clear
that the value of SM." (w) isin [0,1]. The bigger the value of
SM}M)W the better the performance of clustering.
Intersimilarity. For a pair of clusters L; and L, the
intersimilarity is defined as

(w)
[)pq )

peLi,q€Lls

 _
SMyL =

where r; and 7, are numbers of objects in L; and Lo,
respectively. For a clustering with m clusters
{Li,Ls,---,L,,} corresponding to a threshold «, the
intersimilarity SMI(”te,(a) is defined as the average of
all alrs of intersimilarities. Obviously, the value of
S]Umt o is in [0,1]. The smaller is the value of SAII(:t rr
the better is the performance of clustering.

Sometimes the clustering performance is evaluated in
terms of the intersimilarity matrix (s;;) which is

defined as (SM w) )

Lj mxm
Ratio of intrasimilarity to intersimilarity. According to (2)

and (3), the intrasimilarity and the intersimilarity are two
important indices to describe the quality of a partition. But,
in many practical problems, their optimal values, i.e., the
maximum intrasimilarity and the minimum intersimilarity,
are not achieved at the same partition. Thus, a trade-off
between them should be given to evaluate the overall
quality of the partition. It is suggested to use the ratio of
intrasimilarity to intersimilarity to evaluate the overall
similarity of a partition. The maximal threshold which
maximizes the ratio of intrasimilarity to intersimilarity is
called the optimal threshold and it is denoted by «,. More
specifically, the optimal threshold value o, is defined as
R(agp) = maxg< o< 1 R(a), where

mxm

R(«) = Intrasimilarity(«) /Intersimilarity (). (10)

When a crisp decision for the clustering result needs to be
made, we suggest considering the crisp partition corre-
sponding to the optimal threshold.

Nonspecificity. Suppose that the clustering graph contains
m+1 partitions corresponding to m+1 thresholds
g, 1, Q- -y, with the order ap <oy < as < -+ < ayy.
We neglect the partition corresponding to oy (because the
intersimilarity does not exist) and consider the remaining
m partitions. When a crisp decision for the clustering
graph is needed, one crisp partition will be selected from
the m partitions. The index 4 suggests using the maximum
ratio of intrasimilarity to intersimilarity to make the
selection. Obviously, the nonspecificity exists in the
selection process. We model the nonspecificity as follows:

Consider the vector
V= (R17R27 Ty Rm)y

where R; = R(«;)/(maxi<i<m R(c;)) and R(q;) is defined
by (10). Referring to index 4, we can consider R; as the
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possibility with which the jth partition is selected as the
crisp decision (1 <j<m). Thus, the vector V can be
considered as a possibility distribution. The nonspecificity
(or ambiguity) [8] is defined as

Ambig(V) = Z(m — miy1)In ¢, (11)
=1
where (7,7, - - -, Ty,) is the permutation of the normalized
possibility distribution (Ry, Rs,- -, R,,), sorted such that,
m > i fori=1,2,--- . m,and 7,41 =0
In [10], this specificity is called U-uncertainty. It is
clear that the distribution (1,0,---,0) has the minimum
nonspecificity 0, which means the first component can
be fully specified.

Example 3. Consider Examples 1 and 2. Based on the similarity
matrix and its transitive closure in Example 1 where no feature
weights are used, the values of the evaluation indices are
computed as follows: Optimal threshold: o, = 1.0000; Corre-
sponding partition: {{ei}, {e2}, {es}, {es},{e5}}; Intrasimilarity
= 1.0000; Intersimilarity = 0.5031; Ratio of intrasimilarity to
intersimilarity = 1.9876; Fuzziness = 0.3367; Nonspecificity =
1.4707.

Similarly, the values of those for Example 2 with the learned
feature weight vector

w = [3.8210,8.1342, 0.0000, 0.0000]

are: Optimal threshold a,, = 0.8300; Corresponding partition:
{{e1},{e2},{es}, {ea}, {es}}; Intrasimilarity = 0.8866; Intersimi-
larity = 0.1865; Ratio of intrasimilarity to intersimilarity = 4.7545;
Fuzziness = 0.2404; Nonspecificity = 0.8187.

By comparing these two results, one can see that the ratio of
intrasimilarity to intersimilarity of the first result is far less than
that of the second result and the first fuzziness (nonspecificity)
is bigger than the second one. It indicates that the second result
(with learned feature weights) is overall better than the first
result (without feature weights). In fact, the first result
corresponding to the threshold 1 makes no sense.

5 EXPERIMENTAL DEMONSTRATION

To further verify the advantages of clustering with feature weight
learning, we select eight databases. For these databases, the
performance based on the five evaluation indices defined in
Section 4 will be computed and compared.

The eight databases employed for experiments are obtained
from various sources. They are

Rice taste data [11],

Iris data [7],

Servo data [14],

Thyroid gland data [14],

BUPA liver disorders [14],

MPG data [14],

Boston Housing Data [14], and

Pima India diabetes data [14]; where Servo data have four
symbolic attributes.

NI AW =

Due to the symbolic attributes, we revise the distance formula
(1) as the following:

1/2
) = d™ (ey, eq) (pr7(a:],y]> : (1a)
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TABLE 1
Clustering Performance on Several Data Sets
Data-Sets Weight Information #.of Avgh of  Avg# Of Intra- Inter- Ratio Maximum  Fuzziness Non-
layers classesper  singletons per Similarity  Similarity ratio specificity
layer layer

Rice Without weights 37 48.71 4411 0.9492 0.3995 24169 3.0024 0.3346 4.2799
With 5 lcarncd wcights 32 43.81 34.13 0.9684 0.3897 2.4552 3.2826 0.2084 3.3373

Iris Without weights 21 50.43 40.52 0.9151 0.4600 1.9945 2.1146 0.3115 3.2360
With 4 Iearned weights 4 14.00 3.25 0.8536 0.3211 2.7186 3.2248 0.2691 1.4485
With weights (1,1,0,0) 10 25.70 16.90 0.9182 0.5555 1.6576 1.8235 0.2092 2.4642
With weights (0,0,1,1) 7 26.86 18.57 0.9210 0.5118 1.8201 2.1960 0.2894 2.0110

Servo Without weights 1 167.00 167.00 1.0000 0.5018 1.9927 1.9927 0.3446 0
With 4 Icarncd wcights 3 39.00 14.00 0.9216 0.3479 2.7321 3.3747 0.2587 1.1203

Thyroid Without weights 38 70.53 61.68 0.9173 0.3542 2.6500 3.0913 0.3119 4.6893
With § Icarned wcights 32 34.19 26.03 0.9196 0.2370 4.4331 13.479 0.2934 4.3005

Bupa Without weights 42 117.10 107.21 0.9456 0.3626 2.7588 5.3601 0.3203 4.5662
With 6 learned weights 36 101.40 89.54 0.9599 0.3859 2.9886 5.4428 0.2831 4.0206

MPG Without weights 15 86.74 67.87 0.9174 0.4496 2.0630 2.4297 0.2983 3.3936
With 9 learned weights 15 41.53 17.53 0.8986 0.3396 26210 3.1715 0.2831 3.2376

Boston Without weights 25 113.84 89.24 0.9169 04736 1.9412 2.0580 0.3046 3.4791
With 14 Icarned weights 19 36.48 185 0.9176 0.4569 2.0144 21731 0.2838 3.3353

Pima Without weights 36 237.08 218.44 0.9417 0.3730 2.6879 6.2076 0.3183 4.1709
With 8 learned weights 24 38.59 19.99 0.8966 0.1973 5.0897 17.106 0.1970 3.4962

where p;(a,b) = |a —b| if a and b are real and

(1 if a#b
/’/(avb)f{o Zf a=2"0

if a and b are symbols.

Instead of using (1), one can use (la) to derive a set of equations
similar to (2)-(14). For each selected database, the learning weight
procedure proposed in Section 3 can be used to obtain the values of
the feature weights. The learning rate 7 for each epoch is determined
by (8) and the well-known Fibonacci one dimensional search
technique is used [12]. Compared with the fixed learning rate, the
one-dimensional search for learning rate can expedite the conver-
gence of the gradient-descent algorithm.

Using the Transitive Closure method of similarity-based
clustering, two clustering graphs for each selected database are
obtained, with the thresholds ranging from 0 to 1. One graph is
generated by using a similarity measure with feature weights and
the other is without feature weights (i.e., all weights are equal to 1).
For every graph of the given databases, we first count the number
of “layers,” i.e., the number of partitions and, then, compute the
values of evaluation indices given in Section 4. The results are
shown in Table 1 the nine indices shown in Table 1 are used to
evaluate the performance of a clustering graph. One can make the
following observations from Table 1.

1. The proposed feature weight leaning technique can result
in an improvement for almost all evaluation indices
individually, but not necessarily simultaneously. For
example, in the Bupa database, the intrasimilarity and
the intersimilarity may not be simultaneously improved
due to the interaction that exists between them.

2. Three important evaluation indices, i.e., the ratio of
intrasimilarity to intersimilarity, the fuzziness, and the

nonspecificity, are improved for all databases. That will
reduce or overcome the difficulties (which results from the
uncertainty of similarity-based clustering) in the deci-
sion—making for choosing a crisp partition.

3. The amount of improvement for these evaluation indices is
dependent on the specified database and the specified
features. For example, the improvement for the Iris
database is more significant than that for the Bupa
database. For all databases, the reduction of number of
clusters is significant.

4. Overall, Table 1 shows that the clustering graph after
feature weight learning is better than that before learning.
It verifies the validity and advantages of similarity-based
clustering with feature weight learning.

For the eight selected databases, Table 2 provides a brief
comparison between the similarity-based clustering and the
popular clustering algorithm k-means method [9]. Since k-means
method is a kind of distance-based clustering, it can also be
regarded as similarity-based clustering method according to (2). By
using the Euclidean distance and weighted distance in k-means,
we compare the three indices: intrasimilarity, intersimilarity, and
their ratio. The cluster number for the k-means method is specified
such that it corresponds to the similarity-based one. It is hard to
see from Table 2 which method has a better performance. But, one
thing is obvious: The learning weight indeed can improve the
performance of both Transitive Closure (similarity-based method)
and k-means (distance-based method). But, the improvement for
Transitive Closure seems to be more significant than for k-means.

It is necessary to discuss the complexity of the feature weight
learning algorithm since the performance improvement is at the
price of the learning weights. We first analyze the time complexity
for each epoch. One part is (5)-(7). We can estimate the times of
applications and divisions, which are O(N?). The other part is the
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TABLE 2
A Brief Comparison between Transitive Closure Method and K-Means

Databases Transitive closure K-means Transitive closure K-means

(o, B.y.t) without (o, B,y,t) without (o, B,y,1) with (o, B,y,t) with

weights weights weights weighls
Rice (0.95, 0.40, 3.00, 002)  (0.77,0.36,2.17,004)  (0.97,0.39,3.28,003)  (0.88, 0.38, 2.34, 006)
Iris (0.92,0.46,2.12,002)  (0.91,0.44,2.06, 006)  (0.85,0.32,3.23,004)  (0.90, 0.39, 2.41, 007)
Servo (1.00, 0.50, 2.00, 001)  (1.00, 0.50, 2.02, 003)  (0.92, 0.35,3.38,004)  (0.91, 0.40, 2.38, 006)
Thyroid (0.92, 0.36, 3.09, 080)  (0.84,0.35,2.38,079)  (0.92,0.24, 13.5, 135)  (0.85, 0.38,2.68, 143)
Bupa (0.95,0.36,5.36, 121)  (0.93,0.36,2.58, 136)  (0.96, 0.39,5.44, 181)  (0.97, 0.37, 2.62, 180)
MPG (0.92,0.45,2.43,158)  (0.88,0.41,2.14,191)  (0.90,0.34,3.17,251)  (0.90, 0.32, 3.28, 295)
Boston (0,92, 0.47,2.06, 185)  (0.89,0.49, 1.84,203)  (0.92, 046, 2.17,335)  (0.90, 0.48, 1.88, 362)
Pima (0.94, 0.37, 6.21, 145)  (0.77,0.30, 2.55, 158)  (0.90, 0.20, 17.1, 258)  (0.70, 0.19, 8.68, 269)

(av, B,7,t) represents (intrasimilarity, intersimilarity, maximum ration, and the running time [seconds]).

one-dimensional search indicated by (8). The search algorithm is
the Fibonacci method with the time complexity O(N). Thus, the
time complexity for each epoch is O(N?). The time complexity of
the entire learning algorithm depends on the convergence of the
algorithm. In fact, the learning algorithm we used is the traditional
gradient-descent method. Noting that the evaluation function (3) is
infinitely differentiable with respect to feature weights
wy,Wws, - -, Wy, the gradient-descent algorithm with learning rate
searched by Fibonacci method is convergent [12]. Our experiments
demonstrate this result. It is found in our experiments that the
convergence rate of the learning algorithm is very fast. Table 2
indicates the running time for each database.

One problem is the local minimum. The learning algorithm may
converge to a local, not the global minimum point. That is a
drawback but is unavoidable for any gradient-descent-like algo-
rithm. It is worth pointing out that, even if the feature weight
learning algorithm converges to a local minimum point, perfor-
mance improvements of clustering graphs can still be achieved.
These improvements have already been demonstrated in our
experiments.

6 CONCLUSIONS

When one uses the similarity-based clustering techniques such as
the Transitive Closure method to construct a clustering graph and
further to make a crisp decision for the clustering graph, it is often
mentioned that the graph performance is poor and has much
uncertainty (fuzziness and no-specificity). Hence, the decision
making based on the clustering graph is rather difficult. This
paper proposes that the clustering graph performance can be
improved by feature weight learning. The feature weight learning
results in a reduction of the uncertainty existing in the clustering
process and, therefore, makes the decision making for choosing a
crisp partition easier.
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