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Abstract

Feature-weight assignment can be regarded as a generalization of feature selection. That is, if all values of feature-

weights are either 1 or 0, feature-weight assignment degenerates to the special case of feature selection. Generally

speaking, a number in ½0; 1� can be assigned to a feature for indicating the importance of the feature. This paper shows

that an appropriate assignment of feature-weight can improve the performance of fuzzy c-means clustering. The weight

assignment is given by learning according to the gradient descent technique. Experiments on some UCI databases

demonstrate the improvement of performance of fuzzy c-means clustering.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering analysis, which leads to a crisp or

fuzzy partition of sample space, has been widely

used in a variety of areas such as data mining and

pattern recognition [e.g. Hall et al., 1992; Cannon

et al., 1986; Bezdek, 1981]. Fuzzy c-means (FCM)

proposed by Dunn (1974) and extended by Bezdek

(1981) is one of the most well-known methodolo-
gies in clustering analysis.

Basically FCM clustering is dependent of the

measure of distance between samples. In most
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situations, FCM uses the common Euclidean dis-
tance which supposes that each feature has equal

importance in FCM. This assumption seriously

affects the performance of FCM, since in most real

world problems, features are not considered to be

equally important. For example, we consider Iris

database (Fisher, 1936) which has four features,

i.e., sepal length (SL), sepal width (SW), petal

length (PL) and petal width (PW). Fig. 1 shows a
clustering for Iris database based on features SL

and SW, while Fig. 2 shows a clustering based on

PL and PW. From Fig. 1, one can see that there

are much more crossover between the star class

and the point class. It is difficult for us to dis-

criminate the star class from the point class. On

the other hand, it is easy to see that Fig. 2 is more
ed.

mail to: wangxz@mail.hbu.edu.cn
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Fig. 1. Clustering result of Iris database based on feature-

weights ð1; 1; 0; 0Þ by FCM algorithm.
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Fig. 2. Clustering result of Iris database by FCM based on

feature-weights ð0; 0; 1; 1Þ.

1124 X. Wang et al. / Pattern Recognition Letters 25 (2004) 1123–1132
crisp than Fig. 1. It illustrates that, for the classi-
fication of Iris database, features PL and PW are

more important than SL and SW. Here we can

think of that the weight assignment ð0; 0; 1; 1Þ is

better than ð1; 1; 0; 0Þ for Iris database classifica-

tion.

FCM clustering is sensitive to the selection of

distance metric. In (Zhao, 1987), the author stated

that the Euclidean distance can give good results
when all clusters are spheroids with same size or

when all clusters are well separated. In (Gustafson

and Kessel, 1979; Krishnapuram and Kim, 1999),
the authors proposed a G–K algorithm which uses

the well-known Mahalanobis distance as the met-

ric in FCM. They reported that the G–K algo-

rithm is better than Euclidean distance based

algorithms when the shape of data is considered.

In (Wu and Yang, 2002), the authors proposed a
new robust metric, which is distinguished from the

Euclidean distance, to improve the robustness of

FCM.

Since FCM’s performance depends on selected

metrics, it will depend on the feature-weights

which are incorporated into the Euclidean dis-

tance. We try in this paper to adjust these feature-

weights to improve FCM’s performance.
Each feature is considered to have an impor-

tance degree which is called feature-weight. Fea-

ture-weight assignment is an extension of feature

selection. The latter has only either 0-weight or 1-

weight value, while the former can have weight

values in the interval ½0; 1�. From existing litera-

tures one can find a number of commonly used

feature selection algorithms including of sequential
unsupervised feature selection algorithms (Dash

and Liu, 2000), wrapper approaches based on

expectation maximization (Dy and Brodely, 2000),

maximum entropy based methods (Basu et al.,

2000), GA based methods (Pal and Wang, 1996),

and neuro-fuzzy approaches (Pal et al., 2000).

Generally speaking, feature selection method

cannot be used as feature-weight learning tech-
nique, but the inverse is right. This paper proposes

an approach to feature-weight learning which is

based on the gradient-desent technique. It shows

that an appropriate assignment to feature-weights

can improve the performance of FCM clustering.

Experiments on some UCI databases demonstrate

the improvement of performance of FCM clus-

tering.
This paper has following organization. Sec-

tion 2 first reviews the FCM clustering algorithm.

And then lists some cluster validity functions

which are used to measure the performance of

FCM. Section 3 introduces a feature-weight

learning algorithm based on the gradient-decent

technique. Section 4 experimentally demonstrates

the improvement of performance of FCM on
some UCI databases. And the final Section 5

offers our conclusion.
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2. FCM algorithm and its some validity functions

2.1. FCM algorithm

FCM partitions a set of s-dimensional vectors
X ¼ fX1; . . . ;Xng into c clusters where Xj ¼
fxj1; . . . ; xjsg represents the jth sample for j ¼
1; . . . ; n. Every cluster is a fuzzy set defined on the

sample space X ¼ fX1; . . . ;Xng. The ith cluster is

supposed to have the center vector vi ¼ fvi1; . . . ;
visg ð16 i6 cÞ. FCM can be regarded as an

extension of HCM (the Hard (i.e., crisp) c-
means). The main difference between FCM and
HCM is that the generated partition is fuzzy

for FCM and is crisp for HCM. For the jth
sample Xj ð16 j6 nÞ and the ith cluster center

vi ð16 i6 cÞ, there is a membership degree

uij ð2 ½0; 1�Þ indicating with what degree the

sample Xj belongs to the cluster center vector vi,
which results in a fuzzy partition matrix U ¼
ðujiÞn�c. FCM aims to determine cluster centers
vi ði ¼ 1; 2; . . . ; cÞ and the fuzzy partition matrix

U by minimizing the objective function J defined

as follows:

JðU ; v1; v2; . . . ; vc;X Þ ¼
Xc
i¼1

Xn
j¼1

umijd
2
ij ð2:1Þ

subject to

Xc
i¼1

uij ¼ 1; 8j ¼ 1; . . . ; n ð2:2Þ

where dij is Euclidean distance from sample Xj to

cluster center vi defined as:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
k¼1

ðvik � xjkÞ2
s

ð2:1aÞ

The exponent m in Eq. (2.1) is used to adjust the

weighting effect of membership values. Large m
will increase the fuzziness of the function (2.1).

The value of m is often set to 2. Applying deriva-

tive to Eqs. (2.1) and (2.2), one can derive the

computational formulae of uij and vi as:

vi ¼
Pn

j¼1 u
m
ijXjPn

j¼1 u
m
ij

ð2:3Þ
uij ¼
1Pc

k¼1

dij
dkj

� �2=ðm�1Þ ðm 6¼ 1Þ ð2:4Þ

where Xj represents the jth sample.

Based on Eqs. ((2.1)–(2.4)), we describe the

FCM algorithm as follows:

Step 1: Choose an integer c and a threshold value

e. Let m ¼ 2. Initialize the fuzzy partition

matrix U by generating c� n random

numbers in the interval ½0; 1�.
Step 2: Compute vi ð16 i6 cÞ according to Eq.

(2.3).

Step 3: Compute all dij according to (2.1a) and

then all uij according to (2.4). Thus up-

date the fuzzy partition matrix U by the

new computed uij.
Step 4: Compute the objective function J by

using (2.1). If it converges or the differ-
ence between two adjacent computed val-

ues of objective function J is less than the

given threshold e then stop. Otherwise go

to step 2.

The input to FCM algorithm is a set of samples

fX1; . . . ;Xng and during executing the algorithm

two parameters (m and e) need to be given in ad-
vance. Moreover, the number of clusters is also

required to predefine. The output of FCM algo-

rithm is those cluster-centers and the fuzzy parti-

tion matrix U .

2.2. Cluster validity functions

Cluster validity functions are often used to

evaluate the performance of clustering in different

indexes and even two different clustering methods.

A lot of cluster validity criteria were proposed
during the last 10 years. Most of them came from

different studies dealing with the number of clus-

ters. Among the criteria (Dubes and Jain, 1988),

there are two important types for FCM. One is

based on the fuzzy partition of sample set and the

other is on the geometric structure of sample set.

The main idea of validity functions based on

fuzzy partition is that, the less fuzziness of the
partition is, the better the performance is. The



Table 1

A brief summary of four selected validity functions

Validity function Functional description Optimal partition

Partition coefficient VpcðUÞ ¼
Pn

j¼1

Pc
i¼1 u

2
ij

n
Max(Vpc)

Partition entropy VpeðUÞ ¼ � 1

n

Xn
j¼1

Xc
i¼1

uij log uij
� �( )

Min(Vpe)

Fukuyama–Sugeno function VfsðU ; v1; L; vc;X Þ ¼
Pc

i¼1

Pn
j¼1 u

2
ij kXj � vik2 � kvi � �vk2
� �

Min(Vfs)

Xie–Beni function VxbðU ; v1; L; vc;X Þ ¼
Pc

i¼1

Pn
j¼1 u

2
ijkXj � vik2

n � mini6¼k kvi � vkk2
n o� � Min(Vxb)
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representative functions for this type are partition

coefficient Vpc (Bezdek, 1974) and partition en-
tropy Vpe (Bezdek, 1975). Empirical studies [e.g.

Dunn, 1976; Bezdek et al., 1980] think of that the

maximum Vpc and minimum Vpe may be lead to a

good interpretation of the samples considered. The

best interpretation is achieved when the value Vpc
gets its maximum or Vpe gets its minimum. Dis-

advantage of Vpc and Vpe are the lack of direct

connection to a geometrical property and its
monotonic decreasing tendency with c. On the

other hand the main idea of the validity function

based on the geometric sample structure is that

samples within one partition should be compact

and samples within different clusters should be

separate, for instance, Fukuyama–Sugeno func-

tion Vfs (Fukuyama and Sugeno, 1989) and the

Xie–Beni function Vxb (Xie and Beni, 1991). It is
clear that a good partition is that the samples in

one cluster are compact and the samples among

different clusters are separate. Minimizing Vxb or

minimizing Vfs is expected to lead to a good par-

tition. Because Vxb decreases monotonically when c
gets very large, we can impose a punishing func-

tion. But Vxb can get a better performance even

without a punishing function (Xie and Beni, 1991).
Intuitively, the fuzziness and the compactness of a

partition should decrease with the increase of the

number of clusters. For example, the partition

entropy decreases to zero when c gets very large

and goes to n.
It is not possible to compare two crisp parti-

tions with the validity functions based on the

fuzziness of the partition, since the fuzziness of any
crisp partition is zero. For example, the first two
validity functions, partition coefficient and parti-

tion entropy, will be a constant when all mem-
bership degrees are either 0 or 1. It is hard to

generally say that a good partition is crisp or

fuzzy. It depends on the specific data set and its

explanation. However, if we consider all fuzzy

partitions (including of the crisp ones) for a data

set, the good partition should meet that (A) the

objective function converges, and (B) its fuzziness

is as small as possible.
Table 1 is a brief summary of 4 selected cluster

validity functions which will be used in Section 4

to evaluate the performance of FCM clustering. It

is noted that in some cases these validity functions

cannot get their optimal values simultaneously.
3. Feature-weight learning

The feature-weight learning is based on the

similarity between samples. There are many ways

to define the similarity measure, such as the related

coefficient and Euclidean distance, etc. Motivated

by simplicity and easy-manipulation, here the

similarity measure qðwÞ
ij is defined as follows:

qðwÞ
ij ¼ 1

1þ b � dðwÞ
ij

ð3:1Þ

Since similarity measure (3.1) is associated with the

weighted Euclidean distance, it has well analytic

properties and intuitive meaning. The value of
similarity measure qðwÞ

ij is called new similarity

degree. When w ¼ ð1; 1; . . . ; 1Þ the similarity de-

gree qð1Þ
ij (in short qij) is called old. We hope qij can

uniformly distribute in ½0; 1�. However most real
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data sets may not meet the requirement of uniform

distribution in ½0; 1�. To adjust the mean of the

distribution of qijs, the positive parameter b ð> 0Þ
is used. Noting that 0.5 is the mean of the uniform

distribution in ½0; 1�, we would like to select a b
such that:

2

nðn� 1Þ
X
j<i

1

1þ b � dij
¼ 0:5 ð3:1aÞ

where dij is commonly used Euclidean distance,

and dðwÞ
ij is the weighted Euclidean distance defined

as follows:

dðwÞ
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k¼1;...;s

w2
kðxik � xjkÞ2

 !vuut ð3:1bÞ

where w ¼ ðw1; . . . ;wsÞ is the feature-weight vec-

tor. Its component is the importance degree cor-
responding to each feature. Larger wk is, more

important the kth feature is in FCM. When

w ¼ ð1; . . . ; 1Þ, the space fkdðwÞ
ij k6 rg is a hyper-

sphere with radius r in the well-known Euclidean

space (called original space). In the original space,

dðwÞ
ij is denoted by dij and qðwÞ

ij by qij. When

w 6¼ ð1; . . . ; 1Þ, it means that the axes would be

extended or shrunk in accordance with wk. Thus
the space fkdðwÞ

ij k6 rg is hyper-ellipse, called the

transformed space. The lower the value of wk is,

the higher the flattening extent is.

According to De Luca and Termini (1972), the

fuzziness of similarity degrees fqijji < jg can be

defined as

Fuzziness ¼ �2

nðn� 1Þ
X
i<j

qij log qij

�
þ ð1� qijÞ logð1� qijÞ

	
ð3:1cÞ

It is clear that fuzziness shown in (3.1c) attains

its maximum when all similarity degrees are

close to 0.5. It will attains its minimum when all

similarity degrees are close to either 0 or 1. A

good partition should have the following prop-
erty: the samples within one cluster are closed to

the center and different centers are more sepa-

rate, which implies that the samples within one

cluster are more similar (qðwÞ
ij ! 1) and dissimilar
samples are more separate (qðwÞ
ij ! 0), so that the

fuzziness given in (3.1c) is low. Therefore we

hope that, by adjusting w, the similar objects

(qij > 0:5) in the original space are more similar

(qðwÞ
ij ! 1) in the transformed space, and the

dissimilar objects (qij < 0:5) in the original space

are more separate (qðwÞ
ij ! 0) in the transformed

space. It is expected to lead an improvement of

FCM’s performance.

Based on the above discussion, we learn the

feature-weight value by minimizing an evaluation

function EðwÞ which was first introduced in (Basak

et al., 1998) and then was applied to clustering
performance improvement (Yeung and Wang,

2002). EðwÞ is defined as follows:

EðwÞ ¼ 2

nðn� 1Þ

�
X
i

X
j6¼i

1

2
qðwÞ
ij ð1

�
� qijÞ þ qij

�
1� qðwÞ

ij

	�
ð3:2Þ

We can use the gradient descent technique to

minimize EðwÞ. Let Dwk be the change of wk,

compute as follows:

Dwk ¼ �g
oEðwÞ
owk

ð0 < k < sÞ ð3:3Þ

For the procedure and related details, one can

refer to Yeung and Wang (2002).

After obtaining feature-weight values by above
learning, we can use the weighted Euclidean dis-

tance to replace the common Euclidean distance in

FCM. In this way, the objective function J ðwÞ given

in Eq. (2.1) will become the following:

J ðwÞðU ; v1; . . . ; vc;X Þ ¼
Xc
i¼1

Xn
j¼1

umijðd
ðwÞ
ij Þ2 ð3:4Þ

Minimizing (3.4) subject to (2.2), we then can ob-

tain uij and vi as follows

vi ¼
Pn

j¼1 u
m
ijxjPn

j¼1 u
m
ij

ð3:5Þ

uij ¼
1

Pc
k¼1

dðwÞ
ij

dðwÞ
kj

 !2=ðm�1Þ ðm 6¼ 1Þ ð3:6Þ



Table 2

The FCM clustering result

Number

of clusters

The value of validity functions

Vpc Vpe Vxb Vfs

2 0.81 0.45 0.16 )3.66
3 0.90 0.34 0.02 )26.66
4 0.94 0.18 0.36 )32.02
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The other parts of the algorithm are same as FCM

given in Section 2.

For the weighted distance with learned feature-

weight values, the FCM algorithm described in

Section 2 is still available. We call the FCM with
learned feature-weight values weighted FCM, in

short, WFCM. The only difference between FCM

and WFCM is the different distance metrics. Like

the FCM, WFCM algorithms also input all sam-

ples and output the cluster centers and the parti-

tion matrix U ðwÞ.

From existing references such as Gustafson and

Kessel (1979) and Krishnapuram and Kim (1999),
some works related to weighted fuzzy c-mean

algorithm can be found. Comparing our proposed

WFCM with G–K algorithm and AFC proposed

in (Gustafson and Kessel, 1979; Krishnapuram

and Kim, 1999), we find the following similarity

and difference.

Similarity:

(A) Three clustering algorithms are of FCM
type, minimizing an objective function of the type

JðB;U ;X Þ ¼
Xc
i¼1

Xb
j¼1

ðuijÞmd2ðxj;miÞ

¼
Xc
i¼1

Xb
j¼1

ðuijÞm xj
�

� mi

	T
Ai xj
�

� mi

	
where Ai is a diagonal and positive definite matrix

and other symbols have the same meaning as refer-

ence (Krishnapuram and Kim, 1999).

(B) The three algorithms use, directly or indi-

rectly, the weighted Euclidean distance

d2ðxj;miÞ ¼ xj
�

� mi

	T
Ai xj
�

� mi

	
:

Difference:

(A) The weights are fixed in our proposed
WFCM, but are variant for different clusters in G–

K and AFC.

(B) In WFCM, the weights are learned from

minimizing Eq. (3.2). But in G–K and AFC, the

weights (Ais) are learned from minimizing the

objective function.

(C) Minimizing the objective function may lead

to such a situation that two objects are very similar
(dissimilar, resp.) in Euclidean space (the original

metric space) but dissimilar (very similar, resp.) in
weighted Euclidean space (the transformed metric

space). It is an obvious defect. Eq. (3.2) is designed

in order to overcome this defect.

(D) jAij is fixed a priori in G–K, and is esti-

mated from data in AFC. But in our proposed

WFCM, this problem does not exist.
(E) G–K and AFC are derived based on the

covariance matrix of each cluster and, therefore,

both are suitable for well-distributed data sets.

WFCM is derived based on the weighted Eucli-

dean distance.

A detailed comparative study on the three

algorithms will lead to the very complicated

equation derivation and algorithm implementation
but will be very interesting. We will later sepa-

rately report comparative results of the perfor-

mance for the three algorithms.
4. Experimental demonstration

In this section, we would like to experimentally
demonstrate the improvement of performance by

comparing the FCM and WFCM. Here, the per-

formance of clustering is measured by the four

validity functions listed in Section 2.

Example 1. Let CL be a set of vectors CL ¼
fX1;X2;X3;X4;X5g, where X1 ¼ f4:8; 5:0; 3:0; 2:0g,
X2 ¼ f2:0; 3:0; 4:0; 5:0g, X3 ¼ f5:0; 5:0; 2:0; 3:0g,
X4 ¼ f1:0; 5:0; 3:0; 1:0g, X5 ¼ f1:0; 4:9; 5:0; 1:0g.
The FCM clustering result is shown in Table 2

and the WFCM clustering result is shown in Table

3. The performance is evaluated by four evaluated

indexes given in Section 3. The number of clusters

ranges from 2 to 4, from which we can choose the

clustering with best number of clusters, i.e., the

clustering with optimal validity function values.
We can draw a conclusion that the performance

of Table 3 is generally better than that of Table 2.



1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 3. Clustering of Iris database by FCM based on feature-

weights ð0:0001; 0:0002; 1:0; 0:164Þ.

Table 4

The error rate for clustering of Iris database by FCM, FCM

based on features SL and SW, FCM based on features PL and

PW and WFCM

Feature name Feature-weight Error rate

(SL, SW, PL, PW) 1; 1; 1; 1 15/150

(SL, SW) 1; 1; 0; 0 28/150

(PL, PW) 0; 0; 1; 1 8/150

(SL, SW, PL, PW) 0:0001; 0:0002; 1:0; 0:164 8/150

Table 5

Compare clustering results of Iris database by FCM, FCM

based on features SL and SW, FCM based on features PL and

PW, and WFCM

Feature-weight The value of validity functions

Vpc Vpe Vxb Vfs

ð1; 1; 1; 1Þ 0.78 0.57 0.13 �442.94

ð1; 1; 0; 0Þ 0.70 0.78 0.18 �353

ð0; 0; 1; 1Þ 0.86 0.38 0.06 �518.85

ð0:0001; 0:0002;
1:0; 0:164Þ

0.86 0.36 0.05 �529.11

Table 3

The WFCM clustering result with weight ð0:488; 1; 0; 0Þ
Number

of clusters

The value of validity functions

Vpc Vpe Vxb Vfs

2 0.87 0.31 0.027 )15.00
3 0.99 0.01 0.00009 )32.39
4 0.91 0.23 0.002 )30.24
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For both 2 and 3 clusters, the WFCM is better

than FCM for the mentioned 4 indexes. One may

use the 4 index values to determine the number of

clusters. The optimal index values correspond to

the best numbers of clusters. The best number of

clusters is 4 in Table 2 and is 3 in Table 3. The
latter is much better than the former. So we think

the samples should be clustered into 3 clusters. It is

noted that the optimal values of the 4 indexes may

not be attained simultaneously. In this situation, a

fused result for the 4 indexes may be used to

determine the best number of clusters.

Example 2. Compare the clustering result of Iris
database by (1) FCM, (2) FCM based on features

SL and SW, (3) FCM based on features PL and

PW and (4) WFCM. Because Iris database has

four features, the FCM clustering result cannot be

shown in graph. FCM clustering based on features

SL and SW of Iris database is shown in Fig. 1, and

FCM clustering based on PL and PW is shown in

Fig. 2. The learned feature-weight vector is
ð0:0001; 0:0002; 1:0; 0:164Þ. Due to the first two

features-weight values too small, we omit them in

the graph and in this way the WFCM clustering

result is shown in Fig. 3. The error rate for the four

clustering result is shown in Table 4. The values of

evaluation functions shown in Table 5 are used to

evaluate the clustering performance. We have the

following conclusions:

(1) From Table 4, we can see the error rate for

FCM is 15/150. The performance of FCM

clustering based on features SL and SW is

the worst case whose error rate is 28/150. On

the other hand FCM clustering based on fea-

tures PL and PW and WFCM have a better

performance than that of FCM. They have
the same error rate: 8/150. Therefore we think
of that features PL and PW for Iris database

are more important (than other two features)

in clustering and FCM clustering based on fea-

tures PL and PW and WFCM can improve

FCM clustering performance.



Table 6

The characters of some UCI databases

Database

name

Number of

samples

Number of

features

Category of

features

Bupa 345 6 Numerical

Boston 506 12 Numerical

Iris 150 4 Numerical

MPG 392 7 Numerical

Pima 768 8 Numerical

Thyroid 215 5 Numerical

Table 7

The feature-weight learning time of the six UCI databases (s)

Data-

base

name

Boston Bupa Iris MPG Pima Thyroid

Time 521.7 132.1 5 200 640 33

Table 8

The WFCM clustering results of Boston database

Number of

clusters

The value of validity functions

Vpc Vpe Vxb Vfs

2 0.90 0.27 0.06 48,365,212

3 0.81 0.52 0.27 24,788,088

4 0.83 0.48 0.11 )3,546,293
5 0.78 0.64 0.23 )7,369,325
6 0.77 0.70 0.18 )8,859,375
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(2) It is easy to see that Figs. 2 and 3 are more

crisp than Fig. 1. We can get the same conclu-

sion as that in (1).

(3) From four evaluation function values in Table

5, it can be found out that the performance of
WFCM is slightly better than that of FCM

clustering based on features PL and PW.

Example 3. We do experiments on six UCI data-

bases. The six databases’ names and attributes are

shown in Table 6. Table 7 is the running time of

the feature-weight learning algorithm for the six

UCI databases. Table 8 is a WFCM clustering
result for Boston database. Table 9 is the cluster-

ing results by FCM and WFCM algorithm for the

six databases. We can conclude that:

(1) Not all validity functions in Table 9 are simul-

taneously best. The Boston database’s cluster-

ing result, for example, is shown in Table 8.

When the number of clusters is 2, values of
three validity functions are best and the value

of Vfs is not best. We tend to choose this situa-

tion as the best, which has the most optimized

indexes.

(2) The amount of improvement for these validity

functions is dependent on the specified data-

base and the specified features. For example

the improvement of MPG database is quite
significant.
Table 9

Compare the clustering results of the six UCI databases by FCM and WFCM algorithm

Vpc Vpe Vxb Vfs Number of clusters

Boston FCM 0.88 0.30 0.07 55,390,708 2

WFCM 0.90 0.27 0.06 48,365,212 2

Bupa FCM 0.83 0.42 0.13 81,700.12 2

WFCM 0.84 0.40 0.12 65,016.43 2

Iris FCM 0.78 0.57 0.13 )442.94 3

WFCM 0.86 0.36 0.05 )529.11 3

MPG FCM 0.74 0.69 0.14 )35 3

WFCM 0.86 0.41 0.04 )48 3

Pima FCM 0.82 0.43 0.12 )82,6046 2

WFCM 0.87 0.31 0.08 )2,297,120 2

Thyroid FCM 0.64 0.89 0.26 )9490 4

WFCM 0.69 0.80 0.23 )2190 3
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(3) Time complexity is the main problem. WFCM

algorithm which improves the performance of

FCM is at the price of learning feature-weight.

Table 7 shows the feature-weight learning time

for the six selected UCI databases. The time
complexity of WFCM is Oðcn2Þ where n is

the number of samples and c is a constant asso-
ciated with the number of features. The learn-

ing algorithm can be divided into two parts.

One part is searching an appropriate value

for b and g which is completed by the one-

dimensional searching technique, for example

Fiboonacci algorithm. The time complexity
of this part is OðnÞ. The other part is ((3.4)–

(3.6)) and its time complexity is Oðcn2Þ. In this

part, the time complexity depends on the con-

vergence of iterations which are the traditional

gradient-descent technique. It is well-known

that the gradient-desent algorithm is conver-

gent if the steps are appropriately small. But

too small steps will make the convergence
rate very slow. Therefore we use Fiboonacci

one-dimensional search technique to speed up

the convergence rate. Table 7 experimentally

shows that the convergence rate for six selected

databases. Overall, the time complexity of

WFCM is Oðcn2Þ and its convergence rate is

acceptable when the database is not quite big.

From the above three examples we could see

that WFCM algorithm indeed improves the per-

formance of FCM.
5. Conclusions

FCM is one of the most well-known clustering
algorithms. But its performance has been limited

by Euclidean distance. In this paper we propose

Weighted FCM algorithm which is based on

weighted Euclidean distance. The weighted

Euclidean distance incorporates feature-weights

into the commonly used Euclidean distance. It

shows that an appropriate assignment for feature-

weights can improve the performance of FCM
clustering. Experiments on some UCI databases

illustrate the improvements. We have the following

remarks:
(1) Feature-weight learning is an extension of fea-

ture selection. Intuitively feature-weight learn-

ing techniques are expected to have a better

performance than feature selection techniques.

(2) The proposed WFCM can improve the perfor-
mance of FCM. The improvement is at the

price of feature-weight learning which has

Oðcn2Þ time complexity.

(3) The amount of improvement of WFCM over

FCMdepends on the specific structures of data-

bases.

(4) The investigation to the proposed WFCM can

be extended to a sensitivity study of perfor-
mance of FCM to the selection of distance

metric.

(5) A number of extensions of FCM, such as G–K

and AFC which use the Mahalanobis distance

metric, have been given in literatures. The

comparative study on these FCMs based on

different metric is in progress.
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