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Abstract—Fuzzy production rules (FPRs) have been used
for years to capture and represent fuzzy, vague, imprecise and
uncertain domain knowledge in many fuzzy systems. There have
been a lot of researches on how to generate or obtain FPRs.
There exist two methods to obtain FPRs. One is by painstakingly,
repeatedly and time-consuming interviewing domain experts
to extract the domain knowledge. The other is by using some
machine learning techniques to generate and extract FPRs from
some training samples. These extracted rules, however, are
found to be nonoptimal and sometimes redundant. Furthermore,
these generated rules suffer from the problem of low accuracy
of classifying or recognizing unseen examples. The reasons for
having these problems are 1) the FPRs generated are not powerful
enough to represent the domain knowledge, 2) the techniques used
to generate FPRs are pre-matured, ad-hoc or may not be suitable
for the problem, and 3) further refinement of the extracted rules
has not been done. In this paper we look into the solutions of
the above problems by 1) enhancing the representation power of
FPRs by including local and global weights, 2) developing a fuzzy
neural network (FNN) with enhanced learning algorithm, and
3) using this FNN to refine the local and global weights of FPRs.
By experimenting our method with some existing benchmark
examples, the proposed method is found to have high accuracy
in classifying unseen samples without increasing the number of
the FPRs extracted and the time required to consult with domain
experts is greatly reduced.

I. INTRODUCTION

FUZZY logic and fuzzy sets invented by Zadeh [1]–[3] in
1960s help people develop machines which could capture

and represent approximate reasoning capability used by human
beings. The outcome is that fuzzy logic and fuzzy sets not only
increase the reasoning power of many machines but are also
easy to implement in many areas. The most widely used area
is in fuzzy controllers [4], [5]. The fuzzy controllers with many
fuzzy control rules will capture the reasoning process of human
operators. Nowadays many useful commercial products with in-
telligent (approximate reasoning) and automatic control have
been developed. FPRs have been the most popular and easiest
way to capture and represent fuzzy, vague, imprecise and uncer-
tain domain knowledge. They could be found in different kinds
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of fuzzy systems, no matter whether it is a fuzzy controller or a
fuzzy expert system. The brain or heart of these fuzzy systems
is their knowledge (the FPRs) it captured or stored in the knowl-
edge base. Traditionally, these FPRs are provided and extracted
from domain experts. It is very difficult and time-consuming to
obtain accurate and reasonable FPRs.

In recent years there have been a lot of researches on how to
use powerful computers to help us generate and produce FPRs
from a set of sample data. Many machine learning techniques
could be found in the literatures [6]–[14]. An automated fuzzy
knowledge base generation and tuning method is presented in
[6]. In [7] Hong et al. provide a method to construct member-
ship functions for FPRs generation, while in [8] a way to process
individual fuzzy attributes for fuzzy rule induction is given. A
GA method to select fuzzy if-then rules for classification prob-
lems could be found in [9]. Kao et al. propose a method to
generate FPRs from training data with noise for classification
problems [10]. In [11] Ravi et al. present a method for genera-
tion of fuzzy rule base and its optimization by using modified
threshold accepting. An interpolation technique is used to learn
fuzzy rules [12]. Wang et al. present a method to optimize and
simplify fuzzy rules [13]. A fuzzy decision tree induction tech-
nique is proposed to generate fuzzy rules [14]. Although these
machine learning techniques allow us to generate a set of FPRs,
these extracted rules, however, are found to be far from optimal
and sometimes redundant. Using machine learning techniques
to generate and produce approximately optimal and useful FPRs
should include two phases. The first phase involves generating
a set of rough, crude and raw FPRs by using one or more ma-
chine learning techniques from a set of training sample while
the second phase involves using other techniques to refine, tune
or enhance the initial rough FPRs so that approximately op-
timal and accurate FPRs are obtained. This paper focuses on
the second phase by using an enhanced FNN.

In this paper, a set of rough, crude and raw FPRs are assumed
to have been extracted or generated by some machine learning
techniques. These FPRs, like traditional FPRs, are obtained
without any weights (local and/or global) assigned. In order
to enhance the representation power of FPRs, the knowledge
representation parameters (KRPs) such as local and global
weights are included in these FPRs. These local and global
weights had been proposed by Yeung et al. [15], [16]. A fuzzy
neural network (FNN) is proposed to refine or tune the local
and global weights of FPRs. A set of weighted FPRs (WFPRs)
obtained will be more optimal and accurate in recognizing
and classifying unseen samples. It is because those weights
with values more or less equal to zero could be deleted so that
smaller number of propositions in the antecedent of WFPRs
(so-called simple WFPRs) are generated. Furthermore, the
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extracted WFPRs with local and global weights capturing
more domain experts’ knowledge will have higher accuracy
in solving recognition and classification problems. A FNN
offers advantages of allowing us to map these KRPs (local and
global weights) of FPRs into the connection weights of a FNN
and with a modified backpropagation (BP) learning algorithm,
we are able to tune, refine and even acquire these parameters.
In [17] eleven categories of FNNs have been identified. The
FNN used in this paper is similar to the fuzzy-like neuro model
where a neural network is used to represent fuzzy rules. The
difference is that our FNN is used to represent WFPRs which
could be refined or tuned so that approximately optimal rules
and higher testing accuracy could be obtained. In [18], [19] two
FNN models are proposed to solve parameters tuning of fuzzy
membership functions. The problem settings of ANFIS in [19]
is that it is used to represent three types of fuzzy inference
systems used in fuzzy controlled systems whose rules are
parallel in nature, whereas our proposed method could handle
multi-level WFPRs and extends the traditional method to a
more general one.

This paper is organized as follows. In Section II a WFPR
together with its reasoning method is presented. Section III
presents a mapping architecture of how a WFPR could be
mapped into a FNN. Section IV provides the convergence of
fuzzy learning rule and derives the back-propagation learning
algorithm for the FNN. In Section V experimentation with some
benchmark examples are used to demonstrate the workability
of our proposed method. The final section presents a conclusion
and future work. Throughout this paper, the notation is used
to denote min operation.

II. A WFPR AND ITS REASONING ALGORITHM

A. A Weighted Fuzzy Production Rule

A crisp production rule takes a form of “IF A THEN B”,
where A, which is called propositions of the antecedent, is a
conjunction or disjunction of several crisp subsets, B which is
the consequent of the rule, is also regarded as a crisp subset.
The propositions and the consequent in a FPR can be linguistic
terms such as “big”, “high”, which are regarded as fuzzy sub-
sets. Usually, all propositions in the antecedent are assumed to
have equal degree of importance and a number of rules leading
to the same consequent are also regarded as having the same rel-
ative degree of importance.

To enhance the knowledge representation power of fuzzy pro-
duction rules, a generic form of FPRs is suggested in [15], [16]
where a threshold value and a local weight are assigned to each
proposition while a global weight is assigned to the entire rule.
This paper discusses a type of FPRs in which two important
knowledge parameters the local and global weights are empha-
sized. For instance, a conjunctive Weighted Fuzzy Production
Rule takes the form of:

where and are attributes and and
are the values of these attributes, which are fuzzy.

is the local weight of the proposition “ is ” and each
is nonnegative. denotes the global weight assigned to

the entire rule .
The local weight is introduced for the purpose of indicating

the relative degree of importance of a proposition contributing
to its consequent while the global weight concept is used to rep-
resent the relative degree of importance of each rule’s contribu-
tion to reach a final goal.

B. Max-Min Fuzzy Matching Algorithm

When the given fact for an antecedent in a FPR does not
match exactly with the antecedent of the rule, the approximate
matching and reasoning should be used to draw the consequent.
The following is a frequent-used max-min fuzzy matching al-
gorithm [14].

Let be a set of fuzzy classification rules without weight
and be an observed object to be classified.

Step 1) For each rule, calculate the membership degree of
the observed object in the antecedent. The member-
ship degree of each proposition in the antecedent is
a similarity degree between the observed attribute
value of the object and the proposition. The overall
membership degree of the antecedent is regarded as
the minimum among all the proposition member-
ships (in a conjunctive FPR). The membership of
the consequent (the classification to one class) will
be set equal to the membership degree of the an-
tecedent.

Step 2) When two or more rules are applied and classify the
observed object into the same class with different
membership degrees, take the maximum of these
membership degrees as the membership degree of
the class (consequent).

Step 3) An object may be classified into several classes with
different membership degrees. When classification
to only one class is required, select the class with
the highest membership degree.

From Steps 1 and 2, it is easy to see the classification result
of the observed object is a vector in which each component cor-
responds to a degree of belonging to a certain class. In the fol-
lowing paragraph, we present an example to show that if weights
are not assigned it is very difficult to provide a sound crisp de-
cision.

Example 1: Consider the following three fuzzy rules R1, R2,
R3 and one observed case F:

R1: IF (T is Hot ) AND (O is Sunny) THEN is Swim-
ming

R2: IF (T is Hot ) AND (O is Cloudy) THEN is Swim-
ming

R3: IF (T is Mild) AND (W is Not-windy) THEN is
Volleyball

Case:
. (T: Temperature =

Hot, Cool, Mild}, O: Outlook = Sunny, Cloudy, rain},
W: Wind = {Windy, Not-Windy}).
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The matching process is as follows:

. One may notice that it is difficult to make a crisp
decision because Swimming and Volleyball have the same
membership degree.

C. Weighted Fuzzy Reasoning Method

Now Let us state our weighted fuzzy reasoning method. We
can regard the method as a kind of similarity-based reasoning
algorithm. The similarity degree between the attribute values
of an example and the antecedent of the rule is considered as
the membership value that indicates to what degree the example
belongs to the corresponding term. For instance, the similarity
between attribute value “ ” and
the antecedent “ ” is 0.6.

Consider a set of fuzzy production rules
where takes the form of

The observed object has attribute values in the following form:

For each rule within , the similarity between the proposition
and the observed attribute-value , denoted by ,

is defined as the membership value that indicates to what degree
the example belongs to the corresponding term. The overall sim-
ilarity is defined as

Let there be fuzzy sets of conclusions ( fuzzy clus-
ters in the learning from fuzzy examples). The conclusions of
the given rules can be classified into groups, denoted by

. The inferred result is regarded as
a vector . The degree is determined by the
following equation:

The normalized form of the inferred result is defined
as where is the value which in-
dicates to what degree the observed object belongs to

When the crisp inferred result is needed, one can take the con-
sequent with maximum .

The max-min fuzzy matching algorithm presented in the
previous subsection could easily be modified or enhanced to

Fig. 1. Generic FNN for a conjunctive WFPR.

accommodate such changes. In the following paragraph, we
present example 2, which is the same as example 1 but with
weights assigned, to indicate how we could obtain a crisp
decision by using assigned weights.

Example 2: If the three rules in example 1 are changed into
the following three WFPRs:

R1: IF (T is Hot [1.0]) AND (O is Sunny [0.6]) THEN
is Swimming, [1.0].

R2: IF (T is Hot [0.9]) AND (O is Cloudy [1.0]) THEN
is Swimming, [0.8].

R3: IF (T is Mild [0.4]) AND (W is Not-windy [0.9])
THEN is Volleyball, [1.0].

Then the normalized inferred vector of the case is (1/Swim-
ming, 0.3/Volleyball). It is easy for us to make a crisp decision.

III. MAPPING A WFPR AND ITS REASONING

ALGORITHM TO A FNN

A set of WFPRs and the proposed weighted fuzzy reasoning
algorithm can exactly be mapped into a three-layer FNN. These
three layers are called Term layer, Rule layer, and Classification
layer. We describe the structure of the mapped FNN as follows.

Term layer: This is the input layer (layer ). Each node in this
layer represents a linguistic term of an attribute. Since each lin-
guistic term corresponds to an attribute value, the input of each
node is regarded as the similarity degree between the observed
attribute value and the corresponding term (proposition) of the
antecedent in a WFPR. The similarity degree can also be the
membership value that indicates to what degree the observed
fact belongs to the linguistic term.

Rule layer: This is the only hidden layer (layer ). Each node
in this layer represents a given antecedent part of a rule. Ac-
cording to linguistic terms (propositions) appeared in the an-
tecedent part of a rule, the connections between the term layer
and the rule layer are determined.

Classification layer: This is the output layer (layer ). Each
node in this layer represents a fuzzy cluster. Since the inferred
result of a WFPR has generally the form of vector (discrete
fuzzy set defined on the space of cluster labels), the output of the
network has more than one value. The meaning of each output
value after normalization is the membership value that indicates
to what degree the training object belongs to the cluster corre-
sponding to the node.

Connection weights: The local weights (shown as ) of a
set of WFPRs are regarded as the connection weights between
the term layer and the rule layer. The global weights (shown
as ) of the set of WFPRs are regarded as the connection
weights between the rule layer and the classification layer.

Fig. 1 presents a generic conjunctive WFPR mapped to a FNN
which could be used to refine and tune local and global weights.
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Fig. 2. ^; � operator network.

IV. BACK-PROPAGATION ALGORITHM AND THE CONVERGENCE

OF THE FUZZY LEARNING RULE

A. The Convergence of the Fuzzy Learning Rule

Let us consider a two-layer feed forward FNN as shown in
Fig. 2 in which the neuron unit is a fuzzy neuron with fuzzy
operators .

The training method is presented as follows.

Step 1) Setting the initial connection weights

Step 2) Calculating the actual output

where
is the vector of pattern’s inputs.

is the vector of pattern’s out-
puts. is the actual response
for the input pattern . stands for the connec-
tion weight from node in to node in .

Step 3) Adjusting the connection weight

where denotes the learning rate.
Step 4) Go to Step 3 until hold for all and

.
Step 5) Repeat Step 2 for the new input and output pattern.

This algorithm is called the fuzzy learning rule. To the fuzzy
learning rule, we have the following theorems.

Theorem 1: The fuzzy learning rule is convergent.
Proof: This theorem is an extension of -rule found in

[24]. From the steps 1 to 5, it is easy to see that this learning
rule converges.

Theorem 2: If a solution to the following equation-group ex-
ists:

then the fuzzy learning rule algorithm can converge to the
( is an matrix) such that satisfy the above equa-
tion-group.

Proof: From the theory of fuzzy relation equation [25],
one may notice that in each iteration when this neural network

learns, it searches for a matrix of weights so that
, i.e., it tries to find a

solution for the fuzzy relation equation-group. If (an
matrix) exists and is the solution of this fuzzy relation equation-
group, then it is true that the fuzzy learning rule converges to
this . This completes the proof.

Theorem 2 shows that a two-layer FNN with operators
can produce the fuzzy relation:

by learning.

B. Generic Example of a FNN

To formulate the back-propagation algorithm, let us consider
a generic case of our proposed FNN as shown in Fig. 1, where
there are Term nodes, Rule nodes and Classification
nodes. For a given input vector, e.g. the th input vector, the
feed forward propagation process is described as follows:

(1)

(2)

Let there be training sample data. Then, the total error
function is usually defined as

(3)

where is a normaliza-
tion value of the -th actual output of the -th training sample

. It is easy to see from (1), (2), and (3) that the
error is a function with respect to the local weight and
the global weight

. The main objective of learning is to adjust these
weights so that the error function reaches minimum or is less
than a given small value .

C. Enhanced Back-Propagation Algorithm for the FNN

A back-propagation, one of the most popular and powerful
learning algorithms, has been proposed for years to learn a mul-
tilayer neural network with three or more layers. In our proposed
FNN, we establish an enhanced back-propagation algorithm by
modifying the smooth derivative introduced in [20], which is
briefly described as follows.

The usual derivatives and

are regarded as the crisp truth

degree of the proposition “ is less than or equal to ” and the
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crisp truth degree of the proposition “ is greater than or equal
to ,” respectively. To improve the performance of training,
these crisp behaviors will be replaced by fuzzy behaviors
which are able to capture the real meaning of and

in a vague context [20]. Since the relative position of
with respect to is softened, the relative position could be

regarded as the minority degree of with respect to , denoted
by . Noting that when then ,
whereas when it is reasonable to consider the minority
degree of to be equal to . The Godel implication is
the most suitable one. Consequently, two enhanced derivatives
are defined as follows:

(4)
Let us now derive the standard back-propagation equations.

According to the principle of gradient descent, the back-propa-
gation equations for the FNN as shown in Fig. 1 can be written
as

(5)

where and are the learning rate. Therefore, the problem of
derivation is how to evaluate the two partial derivatives appeared
in (5).

The detailed derivation are provided in the Appendix I and
the derived results are as shown in the equation at bottom of
page where the attached has been omitted from each

, and all notations have the same meaning as
that in (1) and (2).

Theorem 3: The enhanced Back-Propagation Algorithm for
FNN converges.

Proof: From Theorem 1 and the traditional gradient de-
scent learning method of a neural network, it is easy to see that
our enhanced Back-Propagation algorithm for FNN converges.

V. APPLICATIONS TO CLASSIFICATION PROBLEMS

In the following first three experiments, we target to increase
the testing accuracy by tuning the local and global weights but
with no intention of reducing the number of rules of the ex-
tracted rules. It is because the rules we extracted from these
three experiments are not large enough for us to test the number
of rules that could be reduced. In the fourth experiment we aim
to test whether it is possible to reduce the number of proposi-
tions in the antecedent of a rule without sacrificing the testing
accuracy of the extracted rules.

We choose some well known and widely used machine
learning classification problems to verify our enhanced
back-propagation learning algorithm found in Section IV for
tuning and refining the local and global weights in conjunctive
WFPRs.

A. Iris Data

The Iris data set [21] comprises 150 examples with four nu-
merical attributes which are Sepal Length (SL), Sepal Width
(SW), Petal Length (PL), and Petal Width (PW). The whole
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Fig. 3. Three linguistic terms.

data is categorized into three classes: Setosa, Versicolor and Vir-
ginica. The main task of our study is to generate a set of WFPRs
from the 100 training examples so that the number of fuzzy rules
generated is as small as possible and the testing accuracy of
these WFPRs with the remaining 50 examples is as high as pos-
sible. We set .

Fuzzifying initial Iris data: First of all we need to fuzzify
numerical numbers into linguistic terms. Fuzzy clustering based
on self-organized learning can be used to generate membership
functions [22]. Y. Yuan [14] describes a simple algorithm for
generating some type of membership functions.

For the Iris data, the number of linguistic terms for each
of the four attributes can be assumed to be three. A simple
version of this method is suggested in [23] where three mem-
bership functions for each input variable are given. The used
abbreviations are as follows: SM—Small; MED—Medium;
LRG—Large (Fig. 3).

Extracting initial FPRs and mapping them to a FNN: Ac-
cording to the linguistic terms SM, MED, and LRG, a set of
FPRs can be generated by using one of machine learning tech-
niques. We expect the number of generated rules to be as small
as possible and the generated fuzzy rules to have as high pre-
dictive power as possible. For the Iris data, we quote four fuzzy
rules extracted in [23]. These four rules will be regarded as four
initial FPRs and are shown in the following rules R1 to R4.

R1: IF (PL is SM ) and (PW is SM ) THEN
Setosa

R2: IF (PL is MED ) and (PW is MED ) THEN
Versicolor

R3: IF (PL is LRG ) and (PW is LRG ) and (SL
is MED ) THEN Virginica

R4: IF (PL is LRG ) and (PW is LRG ) and (SW
is MED ) THEN Virginica

In rules R1 to R4, we assume that they are not assigned with
any weights, i.e., local and global weights (
for all and ) are assumed to be equal to 1. These rules are
used to test 50 unseen examples of Iris data by means of the
frequently used max-min fuzzy matching algorithm presented
in Section II. The testing accuracy of the four generated rules
is 86.7%. The FNN obtained by mapping the FPRs, R1 to R4,
is shown in Fig. 4. In this FNN, we want to refine and tune the
local and global weights.

Training the FNN and obtaining WFPRs: We can train the
FNN as shown in Fig. 4 by using the back-propagation learning
algorithm proposed in the previous section. Iris classification
problem is a crisp one and the main objective of generating
fuzzy rules is to classify each object correctly. After training the

FNN as shown in Fig. 4 with 100 examples, a set of connection
weights are obtained. Four WFPRs are shown in the following
rules, R1 to R4.

R1: IF (PL is SM [0.70]) and (PW is SM [0.89]) THEN
Setosa [0.60].

R2: IF (PL is MED [0.33]) and (PW is MED [0.84]) THEN
Versicolor [0.01].

R3: IF (PL is LRG [0.93] and (PW is LRG [0.72] and (SL
is MED [6.77]) THEN Virginica [0.43].

R4: IF (PL is LRG [0.93]) and (PW is LRG [0.72]) and
(SW is MED [0.68]) THEN Virginica [0.43].

We use the above WFPRs, R1 to R4, to test the 50 unseen ex-
amples of Iris data. The result is that there are only two examples
that cannot correctly be classified. That is, the testing accuracy
of the four WFPRs has been increased to 96% from 86.7%. We
have tried to reduce the number of extracted rule by deleting a
rule with small or zero global weight. What we found is that al-
though the global weight of R2 is very small after tuning, R2
cannot be deleted as it represents a distinct classification. If we
deliberately delete this rule (R2), the classification errors will
greatly increase.

B. Rice Data

The Rice data set comprises 105 examples with five at-
tributes. The whole data sets are categorized into two classes.
Furthermore, the values of the five attributes and the classified
classes are assumed to be continuous. Fuzzy ID3 has been used
to extract rules. The five attributes have been fuzzified into three
triangular fuzzy sets. They are Large, Middle, and Small. The
two classes have also been fuzzified into two triangular fuzzy
sets. The 70 examples are used for training while the remaining
35 examples are used for testing. We set . The
extracted rules are listed as follows:

R1: IF Stickiness is Small (LW1), THEN Class 1 (Gw1).
R2: IF Stickiness is Middle (Lw2), THEN Class 1 (Gw2).
R3: IF Stickiness is Large (Lw3), THEN Class 2 (Gw3).

The testing accuracy of this data set before and after tuning
is listed in Table I.

C. Wine Data

The Wine data set comprises 178 examples with 13 attributes.
The whole data sets are categorized into three classes. Fuzzy
ID3 has been applied to extract rules. Furthermore, we fuzzified
the 13 attributes into triangular fuzzy sets. Each attribute has 3
triangular fuzzy sets. They are Large, Middle, and Small. There
are 120 examples used for training while 58 examples are used
for testing. We set . The extracted rules are listed
as follows.

R1: IF Flavanoids is Large (Lw1), THEN Class 1 (Gw1).
R2: IF Flavanoids is Middle (Lw2), THEN Class 2 (Gw2).
R3: IF Flavanoids is Small (Lw3), THEN Class 3 (Gw3).
The testing accuracy of this dataset before and after tuning is

listed in Table I.
The results of the Iris, Rice, and Wine data are summarized

in Table I.
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Fig. 4. FNN representing rules R1 to R4.

TABLE I
TESTING RESULTS OF RICE, WINE, IRIS AND ENJOY-SPORT DATA

D. Enjoy-Sport Data

We use the small training set found in [14] to test whether it is
possible to reduce the number of propositions in the antecedent
of a rule without sacrificing the testing accuracy of the extracted
rules. Four attributes with ten attribute values and three classi-
fication results are found in these 16 training samples. Six rules
are extracted and listed as follows.

R1: IF Temperature is Hot (Lw1) and Outlook is Sunny
(Lw2) THEN Swimming (Gw1).

R2: IF Temperature is Hot (Lw3) and Outlook is Cloudy
(Lw4) THEN Swimming (Gw2).

R3: IF Temperature is Hot (Lw5) and Outlook is Rain
(Lw6) THEN Weight-Lifting (Gw3).

R4: IF Temperature is Mild (Lw7) and Wind is Windy
(Lw8) THEN Weight-Lifting (Gw4).

R5: IF Temperature is Mild (Lw9) and Wind is Not-Windy
(Lw10) THEN Volleyball (Gw5).

R6: IF Temperature is Cool (Lw11) THEN Weight-Lifting
(Gw6).

When the testing accuracy is 81.25%. After
tuning the local and global weights, the testing accuracy in-
creases to 93.75%. The corresponding local and global weights
are listed as follows:

In this Enjoy-sport data one may notice that R2 has a small
global weight (0.01). When R2 is deleted from these extracted
rule, the classification errors will increase, (i.e., the testing ac-
curacy decreases from 93.75% to 75%).

From the Iris and Enjoy-sport data examples, one may notice
that we could not just delete the entire rule with small or zero
global weight from the extracted rule set without considering
the number of rules generated and without considering whether
the rule to be deleted represents a distinct classification or not.
Many factors need to be considered in this issue.

On the other hand, from the Enjoy-sport data, when we delete
the condition “If temperature is Mild” from the
R5, the testing accuracy is unchanged (93.75%) when the local
and global weights are considered. These examples indicate that
we could obtain more simple and compact WFPRs.

Since we have assigned the local and global weights to each
proposition in the antecedent of a rule and the whole rule re-
spectively to show the degree of importance, there are a lot of
applications that are suitable for using our proposed algorithm.
For example, in medical diagnosis system, there are many symp-
toms which are combined together and lead to a disease. For
different diseases, the degree of importance of each symptom is
different. So it is very useful to assign a weight to each symptom
to show and capture the degree of importance.

We know that the learning and testing accuracy and the
number of generated rules depend on both the learning algo-
rithm and the selected linguistic terms. When the learning and
testing accuracy cannot satisfy user requirements, one may
improve the learning and testing accuracy by increasing the
number of linguistic terms. However, increasing the number
of linguistic terms will result in increasing the number of
generated rules, i.e., increase the number of linguistic terms
will affect the quality of the generated rules. In our study
we propose another way of improving learning and testing
accuracy by including local and global weights in FPRs while
keeping the number of generated rule constant. This concept
has been demonstrated by using the benchmark examples in
this section. On the other, when a local weight is found to have
small or zero value after refining or tuning by our proposed
FNN, the proposition with small or zero local weight can be
deleted which resulted in reducing the number of propositions
in the antecedent of WFPRs. The advantages of our proposed



416 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004

method are that we could obtain a high learning and testing
accuracy while keeping the number of rules as simple and
compact as possible.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a method to generate and obtain a set of
approximately optimal WFPRs by refining and tuning the local

and global weights with a FNN. The aim of including local and
global weights in FPRs and refinement of these weights is to
improve the learning and testing accuracy without increasing
the number of rules in the learning problem. When a local
weight is found to have small or zero value after refinement,
the corresponding proposition in the antecedent of a rule
could be deleted. Thus a set of approximately optimal WFPRs
could be extracted. We know that the simpler the form of the

therefore
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extracted rules, the stronger the generalization capability of the
extracted rules. As the computational complexity of finding an
optimal set of fuzzy rules is generally NP-hard, the approach
to find approximately optimal set of fuzzy rules becomes very
important. Hence, the set of extracted fuzzy rules, with high
learning and testing accuracy and with small number of the
rules, should be considered to be optimal.

This paper also derives a kind of back-propagation algorithm
for training the proposed FNN. From the experimental results,
one may notice that the representative power of WFPRs is
significantly enhanced and better than that of FPRs without
weights because the testing accuracy of WFPRs is higher than
that of FPRs without weights. Moreover, owing to the learning
capability of the proposed FNN, the time required to consult
with domain experts to extract a set of WFPRs will greatly
be reduced. The proposed back-propagation and the weight
refinement algorithm have been applied to some benchmark
problems—Iris, Rice, Wine and Enjoy-sport classification
problems and the results show that the accuracy of testing the
extracted WFPRs after refinement increases. Furthermore, the
synergy between WFPRs and a FNN offers a new insight into
the construction of better fuzzy intelligent systems in the future.

Our future research work on rule refinement will be on deter-
mining the trade-off and strike a balance between the number
of rules extracted and the testing accuracy of the extracted rules
by using large databases. We will look into the problems of how
we could achieve an optimal number of rules by deleting those
rules with small or zero global weights. We will also develop
an algorithm that will allow us to tune, refine and find optimal
rules from a set of rough, crude and raw rules. The robustness
and statistical property of this algorithm will also be studied.

APPENDIX

EVALUATION OF PARTIAL DERIVATIVES

We know where

(6)

The meaning of notations , , and
has been explained in Section III. The forth-propagation of input
vector is shown in (1) and (2) given in Section III. For simplicity,
we omit the attached [n] in (1), (2), (3) and (6) for fixed n. By
using the enhanced derivative (4) given in Section III, we eval-
uate the two partial derivatives in the (5) as follows:

Similarly, we can evaluate another derivative as
follows:

noting that (see equation at the bottom of the prevous page).
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