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Abstract—Rough sets and fuzzy sets have been proved to be pow-
erful mathematical tools to deal with uncertainty, it soon raises a
natural question of whether it is possible to connect rough sets and
fuzzy sets. The existing generalizations of fuzzy rough sets are all
based on special fuzzy relations (fuzzy similarity relations, -sim-
ilarity relations), it is advantageous to generalize the fuzzy rough
sets by means of arbitrary fuzzy relations and present a general
framework for the study of fuzzy rough sets by using both con-
structive and axiomatic approaches. In this paper, from the view-
point of constructive approach, we first propose some definitions of
upper and lower approximation operators of fuzzy sets by means of
arbitrary fuzzy relations and study the relations among them, the
connections between special fuzzy relations and upper and lower
approximation operators of fuzzy sets are also examined. In ax-
iomatic approach, we characterize different classes of generalized
upper and lower approximation operators of fuzzy sets by different
sets of axioms. The lattice and topological structures of fuzzy rough
sets are also proposed. In order to demonstrate that our proposed
generalization of fuzzy rough sets have wider range of applications
than the existing fuzzy rough sets, a special lower approximation
operator is applied to a fuzzy reasoning system, which coincides
with the Mamdani algorithm.

Index Terms—Approximation operators, completely distributive
lattice, fuzzy rough sets, fuzzy topology, rough sets.

I. INTRODUCTION

THE concept of rough set was originally proposed by
Pawlak [1] as a mathematical approach to handle im-

precision, vagueness, and uncertainty in data analysis. This
theory has amply been demonstrated to have its usefulness and
versatility by successful applications in a variety of problems
[6]–[8]. The theory of rough sets deals with the approxima-
tion of an arbitrary subset of a universe by two definable or
observable subsets called lower and upper approximations.
By using the concepts of lower and upper approximations in
rough set theory, knowledge hidden in information systems
may be unraveled and expressed in the form of decision rules
[2]–[5]. Another particular use of rough set theory is that
of attribute reduction in databases. Given a dataset with dis-
cretized attribute values, it is possible to find a subset of the
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original attributes that are the most informative. This leads to
the concept of attributes reduction which can be viewed as the
strongest and most characteristic results in rough set theory to
distinguish itself from other theories. However, as mentioned
in [32], in the existing databases the values of attributes could
be both of symbolic and real-valued. The traditional rough
set (TRS) theory will have difficulty in handling such values.
There is a need for some methods which have the capability
of utilizing set approximations and attributes reduction for
crisp and real-values attributed datasets, and making use of the
degree of similarity of values. This could be accomplished by
combining fuzzy sets and rough sets, i.e., fuzzy rough sets [10].

Theories of fuzzy sets and rough sets are generalization of
classical set theory for modeling vagueness and fuzziness re-
spectively, it is generally accepted that these two theories are re-
lated but distinct and complementary with each other [9]–[12],
[33]–[35]. Fuzzy rough sets encapsulate the related but distinct
concepts of fuzziness and indiscernibility, both of which occur
as a result of uncertainty in knowledge or data, thus a method
employing fuzzy rough sets should be adopted to handle this un-
certainty. There are at least two approaches for the development
of the fuzzy rough set theory, the constructive and axiomatic ap-
proaches. In constructive approach, fuzzy relations on the uni-
verse is the primitive notion, the lower and upper approximation
operators are constructed by means of this notion. Dubois and
Prade [10] was one of the first researchers to propose the con-
cept of fuzzy rough sets from the constructive approach, they
constructed a pair of upper and lower approximation operators
of fuzzy sets with respect to a fuzzy similarity relation by using
the -norm Min and its dual conorm Max. Noticed that Min and
Max are special -norm and conorm, Radzikowska and Kerre
[13] presented a more general approach to the fuzzification of
rough sets. Specifically, they defined a broad family of fuzzy
rough sets with respect to a fuzzy similarity relation, each one
of which is determined by an implicator and a -norm. On the
other hand, the axiomatic approach takes the lower and upper
approximation operators as primitive notions. In this approach,
a set of axioms is used to characterize approximation operators.
Moris and Yakout [14] studied a set of axioms on fuzzy rough
sets. However, their works were restricted to fuzzy -rough set
defined by fuzzy -similarity relations. The same approxima-
tion operators were also studied in [15]. By comparing with the
constructive approach, the axiomatic approach aims to investi-
gate the mathematical characters of fuzzy rough sets rather than
to develop methods for applications.

Another valuable generalization of rough set theory to fuzzy
case is that the fuzzy neighborhood system can be viewed as a
generalized approximation theory of fuzzy sets [36], [37].
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Fuzzy rough sets have been applied to solve practicial prob-
lems such as being used in neural networks [26]–[28], med-
ical time series [29], case generation [30], mining stock price
[31], and descriptive dimensionality reduction [32]. For the pur-
pose of making fuzzy rough set theory complete and further ex-
ploring its applications, it is necessary to conclude what have
been mentioned in the literatures and present a unified frame-
work for it. This will be presented in the first part of this paper
which includes Sections III–V.

As we mentioned before, the most important concept of rough
set theory is the attribute reduction in databases. In the fuzzy
rough set theory, less efforts have been put on the attribute re-
duction in fuzzy databases. In the crisp rough set theory [1],
all definable (or observable) sets form a Boolean algebra of
a partition, which is a “trivial” kind of -algebra, this state-
ment is the theoretical foundation of the attribute reduction in
databases. However, for the fuzzy rough set one may notice that
the Boolean algebra would not be suitable since a fuzzy (not
crisp) set does not satisfy and .
On the other hand the fuzzy set theory always deals with infi-
nite cases while the crisp rough set theory deals with finite cases.
Here we suggest the completely distributive lattice to replace the
Boolean algebra for the definable fuzzy sets. The second part of
this paper, found in Section VI, is to study the lattice structure
of fuzzy rough sets and to set up a theoretical foundation for our
future work of developing algorithms for attributes reduction in
fuzzy databases.

The relationship between fuzzy rough set and fuzzy topology
was firstly studied by Boixader in [15], they proved that the
lower and upper approximation operators with respect to a fuzzy

-similarity relation were fuzzy interior operator and fuzzy clo-
sure operator respectively. In [18], the fuzzy topology defined
by a special approximation operator of fuzzy sets were studied
and applied to fuzzy automata. For the fuzzy rough sets with
respect to arbitrary fuzzy relations, it is worth investigating the
sufficient and necessary conditions that the lower and upper ap-
proximation operators could be fuzzy interior operators [19] and
fuzzy closure operators [19], respectively. This will be presented
in the third part of this paper, found in Section VII.

When the theories of our proposed fuzzy rough sets men-
tioned in the previous three parts have been established, we can
present a unified framework for fuzzy rough sets theory and set
up its mathematical foundation for extending its applications.
In Section VIII, we will apply a special lower approximation
operator to fuzzy reasoning. It is well known that the existing
fuzzy reasoning algorithms were all based on Zadeh’s CRI rule,
in which the Mamdamni algorithm was the most popular one.
Our algorithm can be shown to be just equal to the Mamdamni
algorithm for single input and single output fuzzy control sys-
tems. Our algorithm could also handle multiple inputs and single
output fuzzy control systems. In the same section, we will also
discuss other possible applications of generalized fuzzy rough
sets.

This paper is organized as follows. In Section II, first we re-
call basic notions of crisp rough sets; then we give definitions
and properties of fuzzy logical operators; some former works on
fuzzy rough sets are also listed and compared. In Section III, we
define two upper and two lower approximation operators with

respect to an arbitrary fuzzy relation and study their properties.
In Section IV, the relations between special fuzzy relations and
fuzzy approximation operators are examined. In Section V, var-
ious classes of fuzzy approximation operators are characterized
by different sets of axioms. In Section VI, we study the lattice
structure of fuzzy rough sets. In Section VII, we study the fuzzy
topological structure of fuzzy rough sets. In Section VIII, we
apply a special lower approximation operator to a fuzzy rea-
soning system and discribe other possible applications. Finally,
a conclusion is given.

II. PRELIMINARIES

A. Rough Approximations and Rough Sets

Let denote a finite and nonempty set called the universe.
Suppose is an equivalence relation on , i.e., is
reflexive, symmetric, and transitive. The equivalence relation
partitions the set into disjoint subsets. Elements in the same
equivalence class are said to be indistinguishable. Equivalence
classes of are called elementary sets. Every union of elemen-
tary sets is called a definable set [1]. The empty set is considered
to be a definable set, thus all the definable sets form an Boolean
algebra. is called an approximation space. Given an arbi-
trary set , one can characterize by a pair of lower and
upper approximations. The lower approximation is the
greatest definable set contained in , and the upper approxima-
tion is the least definable set containing . They can
be computed by two equivalent formulas

The lower approximation and upper approximation
satisfy the following properties:

P1)
P2)

P3)
P4)
P5)
P6)

.
From these six properties, one can obtain many properties of
rough sets, we only list these six properties because they can
be treated as axiomatic characteristics of rough sets. This was
pointed out in [16] and [17], and the operator-oriented approach
to rough sets was also proposed. In [16], some axioms were ap-
plied to present the axiomatic rough set theory when the uni-
verse is a general set. They had proved that if a pair of set op-
erators satisfy their axioms (1 –6 ) which were adopted
from the axioms of Kuratowski’s closure operator

1 ) ;
2 ) ;
3 ) ;
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4 ) ;
5 ) ;
6 ) ;

then there is an equivalence relation such that
. Similar results were also obtained for

neighborhood systems (a generalized rough set theory), so the
results in [16] can be viewed as the beginning of an axiomatic
rough set theory. The axiomatic rough sets were considered
in more detail in [17] when the universe was finite. Sup-
pose is a finite universe, an arbitrary binary relation on

, then for every , the
general lower and upper approximations of with respect to

are defined as follows:

It is pointed in [17] that if a pair of dual set operators
satisfied

then there exists a binary relation on such that
. Furthermore, if satisfied

, respectively, then there
exists a reflexive, symmetric, and transitive relation on
such that respectively.

It can be summarized that P1), P2), and P3) are elementary
for rough sets and P4), P5), and P6) correspond to the reflexivity,
symmetry, and transitivity of relation , respectively.

On the other hand, it is worth mentioning that there are more
general approximation theories called neighborhood systems
than the above mentioned generalized rough set theory. For de-
tails of neighborhood systems theory, we refer the readers to
[36] and [37].

B. Fuzzy Logical Operators

This subsection summarizes fuzzy logical operators found in
[13], [14], [20], and [25].

A triangular norm, or shortly -norm, is an increasing, asso-
ciative and commutative mapping that
satisfies the boundary condition . The
most popular continuous -norms are

• the standard min operator (the
largest -norm [13]);

• the algebraic product ;
• the bold intersection (also called the Lukasiewicz

-norm)

It is easy to prove that if a -norm is lower semi-continuous,
then there exists such that . A trian-
gular conorm (shortly -conorm) is an increasing, associative,
and commutative mapping that sat-
isfies the boundary condition . Three
well-known continuous -conorms are

• the standard max operator
(the smallest -conorm [13]);

• the probabilistic sum ;
• the bounded sum .

It is easy to prove that if a -conorm is upper semi-contin-
uous, then there exists such that . A
negator is a decreasing mapping satisfying

and . The negator is usu-
ally referred to as the standard negator. A negator is called
involutive iff for all , every involu-
tive negator is continuous and strictly decreasing [20]. Given a
negator , a -norm and a -conorm are dual with respect
to iff De Morgan laws are satisfied, i.e.,

.

For every , where is the fuzzy power set
on , the symbol will be used to denote fuzzy com-
plement of determined by a negator , i.e., for every

.

Given a triangular norm , the binary operation on
, is

called a -implicator based on . If is lower semicontin-
uous, then is called the residuation implication of , or
the -residuated implication. The properties of -residuated
implication are listed as follows [14] ( is simplified as

). For all , we have

and
is monotone in the right argument;
is antimonotone in the left argument;

iff

;
.

For a -conorm , an operator is defined as
.

If and are dual with respect to an involutive negator ,
then and are dual with respect to the involutive negator

, i.e.,
.
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If is lower semicontinuous, then is upper semi-contin-
uous, we can get the dual properties of by the properties of
as follows:

;
is monotone in the right argument;

is antimonotone in the left argument;
;

;

;
;
;

;

;

;

;
.

C. Fuzzy Rough Sets and Fuzzy Rough Approximations

In Pawlak rough set theory [1], an equivalence relation is a
key and primitive notion. For fuzzy rough sets, a fuzzy simi-
larity relation is used to replace an equivalence relation. Let
be a nonempty universe. A fuzzy binary relation on is called
a fuzzy similarity relation if is reflexive , sym-
metric and sup-min transitive (

, the similarity class with
is a fuzzy set on defined by

for all . The concept of fuzzy rough set was first pro-
posed by Dubois and Prade [10], their idea was as follows. Let

be a nonempty universe and a fuzzy binary relation on
the fuzzy power set of . A fuzzy rough set is a pair

of fuzzy sets on such that for every

It was proved that the approximation operators and have
the following properties:

FP1) ;
FP2)
FP3) ;
FP4)
FP5)

FP6) ;
here

In [13] the above Dubois and Prade fuzzy rough sets was gen-
eralized from Max, Min to a border implicator and a -norm

with respect to a fuzzy similarity relation. By a border im-

plicator they mean a function sat-
isfying , and

for every . Their lower and upper ap-
proximation operators were defined as for every

They also refer to three special lower approximation operators
with respect to three special border implicators called -im-
plicator, -implicator and -implicator. The composition,
duality, and interactions with union and intersections of fuzzy
rough set were examined.

In [14] the -similarity relation was used to define fuzzy
rough sets. Suppose is a nonempty universe. By a -sim-
ilarity relation they mean a fuzzy relation on which
is ,
and , for every

. If is the -residuated implication of a lower
semi-continuous -norm , then the lower and upper approx-
imation operators were defined as for every

can be equivalently characterized by axioms ;
; ;

;
.

can be equivalently characterized by axioms ;
; ;

; .
These axioms are not distinguishable in terms of their degree
of importance to fuzzy rough sets. Some of them are not inde-
pendent, i.e., some of them can not be independently applied
to characterize the basic properties of the fuzzy relation . For
example, can not characterize the -transitivity of , it
need as an additionally condition. Without
alone can not characterize the -transitivity of . Without
and , both and can not ensure a fuzzy relation

such that . These have been clearly indicated in the
Proof of Theorem 4.5 found in [14].

The fuzzy rough sets presented in [13] and [14] are closely
related and they produce similar upper and lower approxima-
tion operators. The difference is that in [13] for every -norm
they all use the same fuzzy similarity relation while in [14] they
match a -similarity relation for every -norm . The above-
mentioned generalizations of fuzzy rough sets can be summa-
rized by the following three characteristics:

1) They are defined by means of different special fuzzy
relations (fuzzy similarity relation or fuzzy -simi-
larity relation) respectively, so a unified framework for
fuzzy rough sets has not been developed.

2) Their methods to define the upper approximation op-
erator are similar, roughly speaking, there is only one
kind of upper approximation operator.
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3) In [14] axioms of fuzzy approximation operators
guarantee the existence of fuzzy -similarity relations
that produce the same operators, these axioms are not
distinguishable in terms of their degree of importance
to fuzzy rough sets and some are not independent.

According to 1), a natural extension of the existing ap-
proaches is to consider fuzzy rough sets which are defined
relatively to arbitrary fuzzy binary relations. In the crisp case,
this problem was broadly discussed in the literature [17]. By
2) it leads us to consider other kind of upper approximation
operators. From 3) we should distinguish which axioms are
primitive for the approximation operators and which axioms
guarantee the existence of special fuzzy relations.

The main purpose of the present paper is to construct two
pairs of lower approximation operators and upper approxi-
mation operators respectively by the constructive approach
and characterize them by some axioms using the axiomatic
approach, thus we can set up a unified framework for fuzzy
rough sets theory which is of both theoretical and practical
importance. For example, the open problem concerning a
complete operator-oriented characterization of Lukasiewicz
fuzzy rough sets proposed in [13] will be solved completely
by our axiomatic approach, and a special lower approximation
operator can be used to develop a fuzzy reasoning algorithm.

III. APPROXIMATION OPERATORS WITH RESPECT TO AN

ARBITRARY FUZZY RELATION

In this section we assume and to be a lower semi-con-
tinuous -norm and an upper semi-continuous -conorm respec-
tively and they are dual with respect to an involutive negator .

and are defined as in Section II-B. The main content of this
section is to define approximation operators of fuzzy sets with
respect to the above logic operations, study the relations among
them and investgate their basic properties such as the distribu-
tive properties.

Suppose is a nonempty universe (may not be finite), an
arbitrary fuzzy relation on , we define the following approxi-
mation operators for every fuzzy set ,

1) -upper approximation operator:
.

2) -lower approximation operator:
.

3) -upper approximation operator:
.

4) -lower approximation operator:
.

Obviously and are the generalizations of approximation
operators in [14]. In [13] for every -norm they all use the
same fuzzy similarity relation, here is an arbitrary fuzzy rela-
tion, so by this means is the generalization of lower approxi-
mation operator with respect to a -implicator in [13], is the
generalization of lower approximation operator with respect to a

-implicator in [13], is the generalization of upper approx-
imation operator in [13]. is a new definition. First we study
the relations among them.

Proposition 3.1: For every , the following state-
ments hold.

1)
;

2) .
Proof:

1)
For any

2) It is similar to1) since and aredualwith respect to .
The above proposition shows that and and are
dual with respect to the involutive negator . Generally
and and are not dual with respect to the involutive
negator , but they satisfy the following proposition. For every

, we denote to be
the fuzzy sets of given by

to be the fuzzy sets of given by
to be the fuzzy set of given by

to be the fuzzy set of
given by , and to be the fuzzy set
of given by .

Proposition 3.2: For every and , the
following statements hold:

1)
;

2)
.

Proof:
1) For every
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2) For every

Hence, we complete the proof.
By Propositions 3.1 and 3.2, we have the following obvious

results which present the connections between and
and .

Proposition 3.3: For every and , the
following statements hold:

1)

2)

By these three propositions, the connections among
, and are clear. In the following we study

their basic properties.
Proposition 3.4: For any ,

and have the following properties:

1)
;

2)
;

Proof:

1) For each

2) For each
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Proposition 3.4 indicates that these approximation operaters are
all distributive.

Proposition 3.5: For every , the fol-
lowing statements hold,

1) ;
2)

.

Proof:

1) For each

2) For each

The above Propositions 3.1–3.5 are the basic properties of
our four approximation operators. Certainly we can get more

properties by these basic properties such as the monotone prop-
erties. It is worth noting that the dualities of and and
are only used in the Proofs of Propositions 3.1–3.3, this means
that Propositions 3.4 and 3.5 have no relation with the dualities
of and and . Propositions 3.1–3.5 will be used as basic
axioms of approximation operators in Section 5. Another thing
we should mention is that some properties of this section such as
the distributive properties with respect to union and intersection
have also been studied in [11], [35], [36], [39] under a general
framework of neighborhood systems.

IV. CONNECTIONS BETWEEN APPROXIMATION OPERATORS

AND SPECIAL FUZZY RELATIONS

The fuzzy rough sets with respect to fuzzy similarity relation
[13] or -similarity relation [14] had been proved to have many
properties, but these properties were not distinguishable in terms
of their degree of importance to the fuzzy rough sets. As what
we have studied in the previous section, some of them are basic
while others may be relative to special fuzzy relations. The main
purposes of including this section are to examine the relation-
ships between special properties and special fuzzy relations. In
this section we also assume and to be a lower semi-con-
tinuous -norm and an upper semi-continuous -conorm respec-
tively and they are dual with respect to an involutive negator .

and are defined as in Section 2.2. To begin with, we first
introduce a useful lemma.

Lemma 4.1: Suppose is a fuzzy relation on , then for
every

1) ;
2)

Proof:

1) For every

.
The left part follows 1) of Proposition 3.2

2) For every
.

The left part follows 2) of Proposition 3.2.
The following Theorem 4.1–4.3 present the relationships

between special properties of approximation operators and
reflexivity, symmetry and transitivity of fuzzy relation
respectively.

Theorem 4.1: Suppose is a fuzzy relation on , then
for the following statements are equivalent.
1) is reflexive; 2) ; 3) ; 4) ;
5) .

Proof: If is reflexive, then for every
. We have

If for holds, for every let
, then we have

Hence 1) 2).
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If 2) holds, by 1) of Proposition 3.2 we have

If 3) holds, by 1) of Proposition 3.2 we have

Hence 2) 3).
2) 4), 3) 5) follow from Proposition 3.1.
If is reflexive, then for every , each pair of

, and
will be called a , and fuzzy rough
set respectively.

Theorem 4.2: Suppose is a fuzzy relation on , then for
the following statements are equivalent.

1) is symmetric;
2) ;
3)

;
4) ;
5)

.

Proof: It follows from Lemma 4.1.
Lemma 4.2: Suppose is a fuzzy relation on , then

for , the following statements hold:
1) ; and 2) .

Proof:

1) For each

2) For each

Theorem 4.3: Suppose is a fuzzy relation on , then for
the following statements are equivalent: 1) is

-transitive; 2) ; 3) ;
4) ; and 5) .

Proof: Suppose is -transitive. For each , we
have

Suppose 2) holds. For each , let ,
we have

. Hence,
1) 2) holds.

Suppose 3) holds. By 1) of Proposition 3.2, we have

Hence, 3) 2) 1) holds.
Suppose 1) holds. For every

Hence, 1) 3) holds. 2) 4), 3) 5) follows from the dual-
ities of and and , respectively.

First it should be pointed out that 1) of Lemma 4.1 and Lemma
4.2 have been proved in [14] when is a -similarity relation.
Another thing is the dualities of and and are not the key
property for Theorems 4.1–4.3. If we do not use their dualities
we can also prove these theorems. When we consider the approx-
imations of fuzzy sets with respect to a norm , we match the
same norm to characterize the -transitivity of , this is dif-
ferent from the ones in [13] where they match the same Min-
similarity relation for every . Theorems 4.1–4.3 propose the
deep connections among special properties of approximation
operators and special fuzzy relations. By Theorems 4.1–4.3, we
have the following theorem.
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Theorem 4.4: Suppose is a fuzzy relation on . The fol-
lowing statements are equivalent.

1) is a -similarity relation;
2)

;
3)

;
4)

;
5)

.

Now, we know that the properties in Propositions 3.1–3.5 are
basic for the approximation operators, and the properties of ap-
proximation operators in Theorems 4.1–4.3 correspond to spe-
cial fuzzy relations. By combining them together, we can get
other properties of approximation operators with respect to a

-similarity relation, we list them as follows.
Theorem 4.5: Suppose is a -similarity relation, then

the approximation operators , and have the
following properties.

1)
.

2) .
3) All of , and are monotone.
4)

.
5) .

The statements with respect to and are proved in [14],
and the statements with respect to and can be proved by
the -dualities of and and .

V. AXIOMATIC APPROACHES OF FUZZY ROUGH SETS

In crisp rough set theory, the axiomatic approaches of ap-
proximation operators had been studied in details. However, in
fuzzy rough set theory, less efforts have been put on studying the
axiomatic approaches. In [14], some axioms were proposed to
characterize upper and lower approximation operators of fuzzy
sets with respect to a -similarity relation, but they are not dis-
tinguishable in terms of their degree of importance and are not
independent. This section focuses on the axiomatic characteri-
zations of , and by some independent axioms. In
Theorems 5.1–5.4, first we present the axioms for each approx-
imation operator that guarantee the existence of a fuzzy relation
which produces the same operator.

Theorem 5.1: Let be an upper semi-continuous -conorm,
an involutive negator, and be a fuzzy

set operator, then there exists a fuzzy binary relation such that
if and only if satisfies

Proof: By Propositions 3.4 and 3.5 is clear.

Suppose the operator satisfies 1) and 2). With
define a fuzzy relation as ,
then . For each ,
if , then we have

, so

Hence, .

For every , we have

which implies .
Theorem 5.2: Let be a lower semicontinuous -norm, and

be a fuzzy set operator, then there exists
a binary fuzzy relation such that if and only if
satisfies

Proof: By Propositions 3.4 and 3.5 is clear.
Suppose satisfies 1) and 2). By using , we

define a fuzzy relation on as
. For each , if we have

so

, hence .

For every , we have

which implies

.
Theorem 5.3: Let be a lower semicontinuous -norm, the

-residuated implication, and be a fuzzy
set operator, then there exists a binary fuzzy relation such that

if and only if satisfies

Proof: By Propositions 3.4 and 3.5 is clear.
Suppose satisfies 1) and 2). By using

, we define a fuzzy relation on as
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, then by 2) we
have for any .

For each , if , we have
,

so and

.

For every , we have

which implies .
Theorem 5.4: Suppose is an upper semicontinuous

-conorm, an involutive negator, and is defined as in
Section II-B. Let be a fuzzy set operator,
then there exists a binary fuzzy relation such that if
and only if satisfies

.
Proof: By Propositions 3.4 and 3.5 is clear.

Suppose satisfies 1) and 2). By using
, we define a fuzzy relation on as

, then
, for any .

For each , if , we have

so and

.

For every , we have

which

implies .
Using Theorems 5.1–5.4, we have proposed the axiomatic ap-

proaches for the lower and upper approximation operators re-
spectively and every approximation operator is characterized by
two axioms. In Theorems 5.5–5.8, we set up the connections
among these approximation operators. First, we provide a useful
lemma.

Lemma 5.1: Let be two fuzzy relations on , then
if and only if for any , one of the statements

holds: 1) ; 2) ; 3) ; and 4)
.

The proof follows from Lemma 4.1.
Theorem 5.5: Suppose is a lower semicontinuous -norm,
is an upper semicontinuous -conorm and are dual with re-

spect to an involutive negator . Let
be fuzzy set operators. If satisfies 1) and 2), and
satisfies 1) and 2), then there exists a binary fuzzy rela-
tion such that and if and only if and

satisfy one of the following statements:

Proof: is clear by Proposition 3.1, and Theorems 5.1
and 5.2.

Suppose and satisfies 1). Let us define
, and

, then by Theorems 5.1 and 5.2 we
have and . By 1) we have

,
hence, and . Let . This
completes the proof.

Similarly, we can get the proof when and satisfy
2).

Theorem 5.6: Suppose is a lower semicontinuous -norm,
is an upper semicontinuous -conorm and are dual with re-

spect to an involutive negator , and and are defined as in
Section II. Let be fuzzy set operators.
If satisfies 1) and 2) and satisfies 1) and 2),
then there exists a binary fuzzy relation such that
and if and only if and satisfies one of

Proof: is clear by Proposition 3.1 and Theorems 5.3
and 5.4.

Suppose and satisfies 1). We define
and

, then by Theorems
5.3 and 5.4, we have and . By 1)
and Proposition 3.1 we have

, hence and
. Let . This completes the proof.

Similarly, we can get the proof when and satisfy
2).

Theorem 5.7: Let be an upper semicontinuous -conorm,
an involutive negator, be fuzzy set

operators. If satisfies 1) and 2), and satisfies 1)
and 2), then there exists a binary fuzzy relation such that

and if and only if and satisfy one
of the following statements:

Proof: is clear by Proposition 3.2 and Theorems 5.1
and 5.4.

Suppose and satisfy 1). We
define

,
then by Theorems 5.1 and 5.4 we have
and . By 1) and Proposition
3.2 we have

, hence
and . Let . This completes the proof.

Similarly, we can get the proof when and satisfy
2).

Theorem 5.8: Let be a lower semicontinuous -norm and
its residuation implication, be fuzzy
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set operators. If satisfies 1) and 2), and satisfies
1) and 2), then there exists a binary fuzzy relation such

that and if and only if and satisfy
one of the following statements:

Proof: is clear by Proposition 3.2 and Theorems 5.2
and 5.3.

Suppose and satisfies 1). We define

then by Theorems 5.2 and 5.3 we have
and . By 1) and Proposition 3.2,
we have

, hence .
Let . This completes the proof. Similarly, we can
prove that and satisfy 2).
By Theorems 5.5–5.8, we have the following conclusion.

Theorem 5.9: Suppose is a lower semicontinuous -norm,
is an upper semicontinuous -conorm and they are dual with

respect to an involutive negator , and are defined as in
Section II-B. Let be fuzzy
set operators, If satisfies 1) and 2), satisfies 1)
and 2), satisfies 1) and 2) and satisfies 1)
and 2), then there exists a binary fuzzy relation such that

and if and only if
one of the following two statements hold.

1)

.
2)

.
The following Theorem 5.10–5.13 present the axiomatic

characterizations of approximation operators with respect to
special fuzzy relations.

Theorem 5.10: Suppose is a lower semicontinuous -norm,
is an upper semicontinuous -conorm and they are dual with

respect to an involutive negator . Let
be a fuzzy set operator satisfying 1) and 2), then the fol-
lowing statements hold.

1) There exists a reflective fuzzy relation such that
if and only if .

2) There exists a symmetric fuzzy relation such that
if and only if

.
3) There exists a -transitive fuzzy relation such that

if and only if .
The proof follows immediately from Theorems 5.1, 4.1–4.3.

Theorem 5.11: Let be a lower semicontinuous -norm, and
be a fuzzy set operator satisfying 1)

and 2), then the following statements hold.

1) There exists a reflective fuzzy relation such that
if and only if .

2) There exists a symmetric fuzzy relation such that
if and only if .

3) There exists a -transitive fuzzy relation such that
if and only if .

The proof follows immediately from Theorems 5.2 and 4.1–4.3.
Theorem 5.12: Let be a lower semicontinuous -norm,

the -residuated implication, and be a
fuzzy set operator satisfying 1) and 2), then the following
statements hold.

1) There exists a reflective fuzzy relation such that
if and only if .

2) There exists a symmetric fuzzy relation such that
if and only if

.
3) There exists a -transitive fuzzy relation such that

if and only if .
The proof follows immediately from Theorems 5.3 and 4.1–4.3.

Theorem 5.13: Suppose is a lower semicontinuous
-norm, is an upper semi-continuous -conorm and they are

dual with respect to an involutive negator is defined as in
Section II-B. Let be a fuzzy set operator
satisfying 1) and 2), then the following statements hold.

1) There exists a reflective fuzzy relation such that
if and only if .

2) There exists a symmetric fuzzy relation
such that if and only if

.
3) There exists a -transitive fuzzy relation such that

if and only if .
The proof follows immediately from Theorems 5.4 and 4.1–4.3.

In the concluding remarks of [13], the authors proposed an
open problem concerning a complete operator-oriented char-
acterization of Lukasiewicz fuzzy rough approximations deter-
mined by where (the
Lukasiewicz -norm) and is the
residuation implication of . It was also pointed out in [13]
that was an -implicator based on and , which means
that . If is a fuzzy similarity rela-
tion on , then the upper approximation operator with respect
to by the definition in [13] is

By the definition in [13], the lower approximation operator with
respect to is

An example was constructed in [13] to indicate that it was
possible not to produce a pair of fuzzy set operators by
any fuzzy relation even they satisfy Lin and Liu’s axioms [16].
By the axiomatic approach in this section, we have the operator-
oriented characterization of Lukasiewicz fuzzy rough approx-
imations operators determined by as the following
theorem.

Theorem 5.14: Suppose are two
fuzzy set operators, then there exists a fuzzy similarity relation
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such that and if and only if and
satisfy the following axioms.

1)
.

2)
.

3) .
4)

.
5)

.
By Theorems 5.2, 5.3, 5.11, and 5.12, we know there ex-
ists a reflexive and symmetric fuzzy relation such that

and if and only if and satisfy
axioms 1)–4), where is defined as

. It is clear that axiom 5) is
equivalent to the sup-min transitivity of , thus we have the
operator-oriented characterization of Lukasiewicz fuzzy rough
approximations operators determined by . It should
be noticed that if and satisfy axioms 1)–4) and axiom

and , then the above
defined is a -transitive relation and not a sup-min transitive
relation, so cannot be characterized by the
axioms proposed in [16] and [17].

In the crisp rough set theory [16], [17] the lower approx-
imation operator and the upper approximation operator
are just required to satisfy and

, respectively. But for the fuzzy case,
is not equivalent to

and is not equiva-
lent to even the universe is finite.
So, if a fuzzy set operator just satisfies finite distributive prop-
erty it is possible that this operator cannot be produced by a
fuzzy relation. This implies the necessarity of

and in the definition
of our lower approximation operator and the upper approx-
imation operator . Here we do not mean to attribute the
and ’s distributive properties with respect to union and inter-
section (respectively) to the finite-ness of the universe, but we
only want to show the difference between finite and infinite dis-
tributive properties of and in the fuzzy case and give some
examples of fuzzy set operators which can not be produced by
fuzzy relations. Let us observe the following examples.

Example 5.1: Let be
defined as

then it is clear and satisfy

On the other hand,
, and , so

. We also have
, and

, so .
Example 5.2: Let be an infinite universe,

be defined as

then it is clear and satisfy
.

Recall in the proof of Theorem 5.1 axiom 2) just
needs to hold for every . So, for the operator
in this example we have since

, and we also have
since . Thus, satisfies 2) for every

. At the mean time, in the proof of Theorem 5.2
axiom, 2) just needs to hold for every . Similarly, to the
case of we can have the operator in this example satisfy

2) for every . For every , we have
since . We also have
which implies , hence we have

and satisfy 2) in
Theorem 5.3. Similarly, to the case of we can prove that
satisfies 2) in Theorem 5.4.

On the other hand, we have
and , so

. We also have
and , so

.
For every fuzzy binary relation , an involu-

tive negator and an upper semicontinuous -conorm
, suppose , then

.

1) If and there exists such that
, then . If we take

, then . We have

, so .
2) Suppose and for every

. Since is upper semi-
continuous, there exists such that

. Let us take such
that , then and

, so
.

3) If , then , for any ,
we have

, so .
Hence, for every fuzzy binary relation , every involutive
negator and every upper semicontinuous -conorm

holds.
For every residuation implication , suppose

, let us take such that , then
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and , so
.

For every fuzzy binary relation and a lower semicon-
tinuous -norm , suppose .

1) Suppose and there exists
such that . If we take , then

.

We have

, so .
2) Suppose and for every

. Since is lower semicontinuous,
there exists such that . Let us
take such that , then

and

, so .
3) If , for any , we have

,
so .

Hence, for every fuzzy binary relation and lower semi-
continuous -norm , we have . For every with
respect to an upper semicontinuous -conorm and involu-
tive negator , suppose , if we take

such that , then and
, so .

The previous example proposes a pair of operators which can
not be produced by a fuzzy relation. In the following example,
we will provide another example which can not be produced by
a fuzzy relation.

Example 5.3: Suppose is a nonempty universe. For every
, if , we

define . If , then
define . For any , we define

, then and
can not be produced by a fuzzy relation. Otherwise, we assume
that there exists a fuzzy relation and a lower semi-continuous
-norm such that , since for every

, we know is reflexive, so for any .
But if and , then , so the above
assumption could not be true.

VI. LATTICE STRUCTURES OF FUZZY ROUGH SETS

For the preliminaries of lattice theory, we refer the readers
to the Appendix. The main purpose of this section is to de-
termine which kind of fuzzy sets are elementary to approxi-
mate other fuzzy sets and offer a lattice structure for these el-
ementary fuzzy sets. In this section, we always assume and

to be a lower semicontinuous -norm and an upper semi-
continuous -conorm, respectively, and they are dual with re-
spect to an involutive negator . and are defined as in Sec-
tion II-B, is a -similarity relation. By Theorem 4.5, we know

and . Let

, we have the following theorem.
Theorem 6.1: and are CCD lattices and for

any if and only if .

Proof: Since and are subsets of and
is a CCD lattice, to prove and are CCD

lattices we only need to prove they are complete. If
, then and

hold by Proposition 3.4. This completes the proof of complete-
ness of . The completeness of can be proved sim-
ilarly. For any

, so if and
only if .

Corollary 6.1:

By Theorem 6.1, we know the invariant fuzzy sets with re-
spect to and and possess the same lattice struc-
ture, respectively. In the following, we study the structures of

and . First, we begin with . It is well
known that for any and , we have

. Let
, then for any is the join of some ele-

ments in , we have the following theorem.
Theorem 6.2: Every element in is a join-irreducible el-

ement of .
Proof: For every , if

, then we have and .
Since , we have .
Assume , then , thus ,
hence and is a join-irreducible element of

.
It is naturally desirable to have every join-irreducible element

of belong to , but this is not really true. Indeed there
may exist a join-irreducible element of which is not in

. Let us observe an example after presenting a lemma.
Lemma 6.1: For every , we have:

1) ; and 2) if and only if
.

Proof:

1) .
2) If , then we have

.
If , then for every

.
Similarly we can prove .

Example 6.1: Let be an infinite
set and a fuzzy relation defined on by

for every and
. It is clear that is a fuzzy Min-similarity relation.

Let us denote by . Then, for every ,
if and by Lemma 6.1, we have
since , so
and . Thus, we have a chain

. Let , it is
clear and for every

. For every , suppose , if ,
then so ; if , then

and , hence .
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If and , suppose
then . Since

and , there exists such that
when holds. Otherwise, there exists an infinite
subsequence such that which implies

. If ,

suppose , then there exists such that
when holds. If we assume , then
when which implies

, it is a contradiction, hence holds which
implies is a join-irreducible element.

Theorem 6.3: If is a finite set, then every join-irreducible
element belongs to .

Proof: For every join-irreducible element , let
, then there exists such that

. Let

then , and . Since
is a finite set by Lemma 6.1 we have

,
so and which implies .

For , let , similarly
to we can get every element in to be the union
of some elements in and every element in to be a join-
irreducible element.

For two different -similarity relations and , we have
the following theorem.

Theorem 6.4: Suppose and are two different -simi-
larity relations, then the following statements are equivalent.

1) ; 2) ; and 3) for each
.

Proof: If and , then for every

, so and
which implies .

If , for every
, since , we have

, so for every
. Hence, 1)

is equivalent to 2).
If , for each , we have

If for each , then
for each , we have , so

. Hence, 2) is equivalent
to 3).

Similarly, we have the following theorem.

Theorem 6.5: Suppose and are two different -simi-
larity relations, then the following statements are equivalent.

1) ; 2) ; and 3) for each
.

By Theorems 6.4 and 6.5, we know for two different -sim-
ilarity relations and , if , then a -definable
( -definable) fuzzy set with respect to and is also a -de-
finable ( -definable) fuzzy set with respect to . This state-
ment implies that a smaller fuzzy relation may approximate the
fuzzy sets more precisely, so when consider the aggression of

-fuzzy relations the aggression operator Min may be a reason-
able choice.

In the crisp rough set theory [1], a set is called definable if
its lower and upper approximations are equal. A set is defin-
able if and only if its complement is definable. Every equiva-
lence class is definable. All the definable sets form a Boolean
algebra which is generated by all the equivalence classes, and
this is the foundation of the attribute reduction of databases.
For the fuzzy case, it is quite different. In our study, we can de-
fine two kind of definable fuzzy sets, one is called -definable
and their collection is , while the other is called -defin-
able and their collection is . A fuzzy set is -definable if
and only if its dual with respect to is -definable. It is clear
that the Boolean algebra is not able to characterize the struc-
tures of -definable sets and -definable sets. So we propose
the CCD lattice in this section for this purpose. It should be men-
tioned that the Boolean algebra is also a special CCD lattice. In
rough set theory as well known, attributes reductions of infor-
mation systems keep every definable set invariant while relative
reductions of decision systems keep the lower approximations
of equivalence classes of the decision attributes invariant. In this
section, we present which kind of fuzzy sets can be applied to
approximate other fuzzy sets as elementary granules and offer
a suitable algebra structure for them, thus results in this section
is the mathematical foundation to develop algorithms for the re-
duction of fuzzy databases which is our future work.

VII. RELATIONSHIPS BETWEEN APPROXIMATION OPERATORS

AND FUZZY TOPOLOGIES

In the crisp rough set theory, the relationships between rough
sets and topological space have been studied in detail. Suppose

is a universe, an arbitrary binary relation on
, in [22] and [23] it is proven that is reflexive

and transitive if and only if is
a Kuratowski saturated close operator on (a Kuratowski clo-
sure operator on is called saturated if the usual
requirement is replaced by

, for ), thus the crisp rough set can
introduce a special topological space. For the fuzzy rough sets,
in [14] it was pointed out that the upper approximation oper-
ator belongs to a very special subclass of the fuzzy closure
operators of the class of fuzzy topological spaces called “fuzzy

-neighborhood spaces [24],” and the lower approximation op-
erator belongs to a very special subclass of the fuzzy in-
terior operators of the class of fuzzy topological spaces called
“fuzzy -locality spaces [25],” here is a lower semi-contin-
uous triangular norm and is a -similarity relation. It is also
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pointed out in [15] that the above and were fuzzy clo-
sure operator and fuzzy interior operator in Lowen’s sense [19]
respectively when is continuous and and define two
different fuzzy topologies. But the fuzzy interior operator with
respect to and the fuzzy closure operator with respect to
are not presented, the converse problem, i.e., give an arbitrary
fuzzy topological space, under what conditions that this fuzzy
topology can be induced by approximation operators, are also
not studied. Another thing we should point out here is that in
[18], a fuzzy approximation operator is
defined as , here is an ar-
bitary crisp relation on . It is easy to prove that is a special
case of our when is a crisp relation and . It is
proven in [18] that is a fuzzy Kuratowski saturated close op-
erator if and only if is reflexive and transitive, and the fuzzy
topology defined by have been applied to fuzzy automata.
So the study on the relationship between approximation oper-
ators and fuzzy topologies is both of theoretical and practical
importance.

The purpose of this section is to study the relationships be-
tween approximation operators and fuzzy topologies in detail
by using our constructive and axiomatic approaches of fuzzy
rough sets. It will be shown in this section that for a fuzzy rela-
tion being reflexive and transitive is enough to ensure the ap-
proximation operators to be fuzzy closure operators and fuzzy
interior operators respectively.

For the preliminaries of fuzzy topology theory we refer the
readers to the Appendix. By our constructive approaches of ap-
proximation operators of fuzzy sets we can have the following
theorems.

Theorem 7.1: Let be a lower semicontinuous -norm,
a fuzzy relation on , then the following statements are

equivalent.
1) is reflexive and -transitive; 2) is a fuzzy closure

operator; and 3) is a fuzzy interior operator.
Theorem 7.2: Let be an upper semicontinuous -conorm,
an involutive negator, is the dual -norm of with respect

to a fuzzy relation on , then the following statements are
equivalent.

1) is reflexive and -transitive; 2) is a fuzzy interior
operator; and 3) is a fuzzy closure operator.

For the proof of the previous theorems it is only necessary
to point out that the reflexity of is enough to prove

. Thus, by and we can de-
fine two fuzzy topologies, one is

, and the other is . By and
we can also define two fuzzy topologies, one is

, and the other is
. Both and are fuzzy Kuratowski saturated

closure operators. The fuzzy closure operators with respect to
and are also fuzzy Kuratowski saturated closure opera-

tors, so all of , and are special fuzzy topologies,
i.e., they are closed under the operation of infinite intersection
of fuzzy sets. Generally these fuzzy topologies are not equal to
each other. If and are dual to , then the fuzzy closure op-
erator with respect to is , the fuzzy closure operator with
respect to is , thus we have and .

Furthermore, if is a -similarity relation, then
and , thus and are dual to , i.e., every
open fuzzy set in one fuzzy topology is a closed set with respect
to another fuzzy topology.

On the other hand, the axioms of fuzzy interior operator and
fuzzy closure operator can not guarantee the existence of a re-
flexive and transitive fuzzy relation that produces the same op-
erators since the fuzzy topologies defined by fuzzy interior op-
erator and fuzzy closure operator are just required to be closed
under the operation of finite intersection of fuzzy sets. By our
study on the axiomatic approaches of approximation operators
of fuzzy sets, we have obtained the following theorems.

Theorem 7.3: Let be a fuzzy interior operator, an upper
semicontinuous -conorm, is the dual -norm of with re-
spect to , then there exists a reflexive, and -transitive fuzzy
relation such that if and only if satisfies.

(1) ; (2)
.

Theorem 7.4: Let be a fuzzy interior operator, a lower
semicontinuous -norm, then there exists a reflexive, and -tran-
sitive fuzzy relation such that if and only if
satisfies.

(1) ; (2)
.

Theorem 7.5: Let be a fuzzy closure operator, an
upper semicontinuous -conorm, is the dual -norm of
with respect to , then there exists a reflexive, and -tran-
sitive fuzzy relation such that if and only if
satisfies: 1) ; and
2)

.
Theorem 7.6: Let be a fuzzy closure operator, a lower

semicontinuous -norm, then there exists a reflexive and -tran-
sitive fuzzy relation such that if and only if sat-
isfies: 1) ; and 2)

.

VIII. APPLICATION TO FUZZY REASONING

In this section, we use a special lower approximation oper-
ator to develop a fuzzy reasoning algorithm for a single input
and single output fuzzy control system and compare it with the
well-known Mamdani algorithm. At the end of this section, we
discuss possible applications of our generalized fuzzy rough sets
to some practial problems. The purpose of including this sec-
tion is to demonstrate that our proposed fuzzy rough set theory,
which generalizes the fuzzy similarity relation in the existing
fuzzy rough sets to an arbitrary fuzzy relation, can have wider
range of applications than the existing fuzzy rough sets.

First, we have to define the approximation operators between
two different universes and . Suppose the fuzzy relation
is defined on and are a lower semicontinuous -norm
and an upper semicontinuous -conorm, respectively, and they
are dual with respect to an involutive negator . and are
defined as in Section II-B, for every and , we
have the following.

1) -upper approximation operator:
.
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Fig. 1.Membership functions of A .

Fig. 2. Membership functions of B .

Fig. 3. Membership function of A .

2) -lower approximation operator:
.

3) -upper approximation operator:
.

4) -lower approximation operator:
.

If , let , then the aforementioned
approximation operators are just the ones defined in Section III
with respect to .

Suppose .
and are defined as shown in
Figs. 1 and 2, the center point of is , they form infer-
ence rules: if is then is ( may not be equal to ). By
Mamdani algorithm the fuzzy implication relation is

, here is a general fuzzy relation de-
fined on without any special properties. If a fuzzy rough
set is developed based on a fuzzy similarity relation, then it can
have limited applications in fuzzy reasoning systems, e.g., since
the previous implication relation is not a fuzzy similary rela-
tion, the existing fuzzy rough sets cannot handle Mamdani al-
gorithm with this fuzzy implication relation . However, our
proposed fuzzy rough sets can handle this kind of Mamdani al-
gorithm. This is one of the important reasons why we generalize
the fuzzy similarity relation to an arbitrary fuzzy relation in this
paper in order for it to have wider applications. For any fuzzy
set , the inference result can be com-

puted by according to
the CRI rule, this is just the Min-upper approximation operator
with respect to . For an input , its usual fuzzification is

If
otherwise

as shown in Fig. 3, by the centroid defuzzifizer its output is
.

If we fuzzify to the triangular fuzzy number ,
as shown in Fig. 4, and let , then we can compute
the lower approximation of by Max-lower approximation
operator
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Fig. 4. Membership function of A .

Let , by using the centroid
defuzzifizer, we obtain the output of as

It is easy to prove that , so
we have , i.e., our fuzzy reasoning
algorithm produces the same results as those produced by Mam-
dani algorithm.

In the Mamdani algorithm, if we fuzzify to the tri-
angular fuzzy number , then the output is

, here ,
and generally . In this section, we only apply the
-conorm Max. Certainly other logical operators can also be

used for fuzzy reasoning and more new algorithms for fuzzy
control systems could be developed by using our proposed
fuzzy rough sets theory.

As mentioned before, the generalized fuzzy rough sets can
easily be generalized to the case of two different universes, so it
may have applications to this case not just limited to fuzzy rea-
soning. On the other hand, when dealing with similar degree be-
tween objects, we require the fuzzy similarity relation ( -sim-
ilarity relation) to have three basic properties: reflexity, sym-
metry, and transitivity ( -transitivity). However, in some real
world situations the propagation of similarity does not hold and
the transitivity property is not required. For example, to a cer-
tain degree a Sphinx is half similar to a human being and half
similar to a lion, but a human being is not similar to a lion to
any degree in the mammal world. Furthermore, as mentioned
in [38], similarity is often considered as similarity from a ref-
erence object, with symmetry not being essential. In [38], even
though only the crisp similarity relation is mentioned, we think
this arugment could be extended to the fuzzy case. For example,
it is generally assumed that North Korea is politically similar to
China, but not so often to say that China is politically similar
to North Korea. So, our generalized fuzzy rough sets may have
applications to deal with these kinds of problems since we relex
the fuzzy similarity relation ( -similarity relation) to an arbi-
trary fuzzy relation.

IX. CONCLUSION

Rough set theory and fuzzy set theory are two mathematical
tools to deal with uncertainty. Combing them together is of both
theoretical and practical importance. This paper studies fuzzy

rough sets and develop a unified framework by constructive and
axiomatic approaches. The connections with lattice theory and
fuzzy topology are also examined. Thus, a mathematical foun-
dation is set up for the further application of fuzzy rough sets. As
an application to fuzzy reasoning, it is pointed out that the CRI
rule of fuzzy reasoning is a special upper approximation oper-
ator and it is possible to apply lower approximation operators
to develop algorithms for fuzzy controller. The future work will
be concentrated on the knowledge discovery methods in fuzzy
information systems.

APPENDIX

SOME DEFINITIONS AND RESULTS ABOUT LATTICE THEORY

AND FUZZY TOPOLOGY

First, we review some basic notions and results of the lattice
theory. A lattice is a partially ordered set in which any two ele-
ments have a least upper bound and a greatest lower bound. We
denote the least upper bound of and by and the greatest
lower bound by . A lattice is said to be complete if any (fi-
nite or infinite) subset has a least upper bound (sup)

and a greatest lower bound (inf) . An element in a
lattice is said to be join-irreducible if and
imply that or . If is a nonzero join-irreducible
element in , then call a molecule of . A lattice is called
completely distributive if it satisfies the following conditions:

where and are nonempty index sets and . In this sec-
tion a complete completely distributive lattice will be denoted as
a CCD lattice. It is well known that each element of a CCD lat-
tice is a join of join-irreducible elements (i.e., molecules) [21].
For example, is a CCD lattice. The collec-
tion of all join-irreducible elements of is

. Now we recall some basic concepts in fuzzy topological
theory.

Definition A [19]: A subset T of is a fuzzy topology
on , if and only if, it satisfies the following.

1) If , then .
2) If , then .
3) For every .
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Definition B [19]: A mapping is a fuzzy
interior operator, if and only if, for all it satisfies
the following.

1) ; 2) ; 3)
; and 4) .

Definition C [19]: A mapping is a fuzzy
closure operator, if and only if, for all it satisfies:
1) ; 2) ; 3)

; and 4) .
The elements of a fuzzy topology are called open fuzzy

sets, and it is easy to prove that a fuzzy interior operator de-
fines a fuzzy topology (so, the
open fuzzy sets of are the fixed points of ). A fuzzy clo-
sure operator defines a fuzzy topology

(so, the closed sets with respect to
are the fixed points of ).
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