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Abstract. It is well recognized that support vector machines (SVMs) would
produce better classification performance in terms of generalization power. A
SVM constructs an optimal separating hyper-plane through maximizing the
margin between two classes in high-dimensional feature space. Based on statis-
tical learning theory, the margin scale reflects the generalization capability to a
great extent. The bigger the margin scale takes, the better the generalization ca-
pability of SVMs will have. This paper makes an attempt to enlarge the margin
between two support vector hyper-planes by feature weight adjustment. The
experiments demonstrate that our proposed techniques in this paper can en-
hance the generalization capability of the original SVM classifiers.

1 Introduction

Statistical learning theory (SLT) [1], a new theory for small-sample learning prob-
lems, was introduced in the 1960°s by Vapnik et al, which can deal with the situation
where the samples are limited.

Most machine-learning methods perform empirical risk minimization (ERM) in-
duction principle [1], which is effective when samples are enough. However, in most
cases of real world, the samples are limited. It is difficult to apply expected risk
minimization [2] directly to classification problems. Most expected risk minimization
problems are converted to minimize the empirical risk. Unfortunately empirical risk
minimization is not always equivalent to expected risk minimization. It implies that
ERM cannot lead to a good generalization capability but expected risk minimization
can. The statistical learning theory has shown a clear relationship between expected
risk and empirical risk, and shown that the generalization can be controlled by the
capacity of learning machine.

Support vector machines (SVMs) are a new classification technique based on SLT
[2]. Due to its extraordinary generalization, SVMs have been a powerful tool for solving
classification problems with two classes. A SVM first maps the original input space into
a high-dimensional feature space through some predefined nonlinear mapping and then
constructs an optimal separating hyper-plane maximizing the margin between two
classes in the feature space. Based on SLT, we know that, the bigger the margin scale
takes, the better the generalization capability of SVMs will have. Therefore we al-
ways expect that the margin is as large as possible for two-class problems.
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Feature weight learning, which assigns a weight to each feature to indicate the im-
portance degree of feature, is an extension of feature selection. This paper adopts a
feature weight learning technique introduced in [4]. We expect to enlarge the margin
between two support vector hyper-planes by using this technique for generalization
capability improvement.

The rest of this paper is organized as follows. In section 2, we review the relation-
ship between the margin of two hyper-planes and the generalization capability of SVMs.
In section 3, the detailed technique of feature weight learning is introduced. Two ex-
periments, which show that the feature weight learning’s effect to margin enlargement,
are presented in section 4. Section 5 gives some remarks and concludes our paper.

2 Relationship Between the Margin and the Generalization
Capability

Firstly, we consider a function, i.e., the growth function of the set of indicator func-
tions [2]

G*()=In sup NA(ZI,ZZ,"',ZI) (1)

1
where N*(z,,z,,-++,z,) evaluates how many different separations of the given sample
2,524, ++,z,€an be done using functions from the set of indicator functions. From

SLT, we know the following conclusion: any growth function satisfies
G () =11n2 or GA() < h(ln%Jrl) (2)
where A is an integer for which
G*(h)y=hIn2 and G"(h+1)# (h+1)In2 3)
We now review the definition of VC dimension [3]: The VC dimension of the set

of indicator function Q(z,&), e A equal A if the growth function is bounded by a

logarithmic function with coefficient /. VC dimension is a pivotal concept in the
statistical learning theory.

For a two-class classification problem, the A-margin separating hyper-plane is de-
fined in SLT [1]. The following theorems are valid for the set of A-margin separating
hyper-planes [2].

Theorem 1. Let vector x€ X belong to a sphere of radius R. then the set of A-
margin separating hyper-plane has the VC dimension /2 bounded by the inequality

hSnﬁnHi—z},n]+l (4)

From inequality (4), we know that larger the margin of the set of functions is, the
more less VC dimension is.
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Theorem 2. With probability at least 177, the inequality

R(@) <R (a)+32€[1+ 1+4Rm1;(a)] s

emp
£

holds true, where R(q), R, (a) are the expected risk and the empirical risk func-

tional respectively [1],/is the size of training set, £ is VC dimension of the set of
functions. £ is formulated in [2]. For simplicity, we write (5) as follow:

R@) <R, (@) +ol) ©6)

@ is called confidence interval, which is monotonic increasing function of h, and
monotonic decreasing function of /.

Inequality (6) gives bounds on the generalization ability of learning machine. Our
purpose is to minimize the left side of (6), i.e., R(¢). Minimization of R(e) implies

the optimal generalization capability of learning machines. In fact, minimizing R(¢)
is not feasible due to its integral formulation. Practically, in place of minimizing
R(e), we do minimize R («). Inequality (6) shows the relationship between
R(e) and R

is clear that the minimization of R, (o) cannot guarantee the minimization of

emp

() . Due to the existence of the second term of the right side of (6), it

emp

R(ex) . It is expected that the second term of the right side of (6) is as small as possi-
ble since the small confidence interval possibly implies the small actual risk R(a),
i.e., possibly implies a good generalization capability.

Noting that @ is a monotonic increasing function of /4 which is decreasing with
the increase of A where A is the margin of separating hyper-planes (see Inequation
(4)), enlarging A possibly leads to an improvement of generalization capability of the
learning machine.

The traditional ERM principle only minimizes empirical risk without considering
confidence interval, so it perhaps cannot get good generalization capability. SVMs
based on SLT perform structural risk minimization (SRM) induction principle [1][2],
not only minimizes the empirical risk, but also considers confidence interval by
maximizing the margin between two classes in high-dimensional feature space.

3 Feature-Weight Learning

Each feature is considered to have an importance degree called feature-weight. Feature-
weight assignment is an extension of feature selection. The latter has only either O-
weight or 1-weight value, while the former can have weight values in the interval [0,1].
The feature-weight learning depends on the similarity between samples. There are
many ways to define the similarity measure, such as the related coefficient and
Euclidean distance, etc. Here the similarity measure Py is defined as follows:
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1
()
) @
" 1+ B*d,
where [ is a positive parameter in the interval [0,1]. It can adjust the similarity de-
grees distributed around 0.5, i.e., fis required to satisfy the following:

2 1
~05
n(n—1)21+ﬂ*d,.j ®

pP<q

where d i is commonly used Euclidean distance, and d,g-w) is the weighted Euclidean

distance defined as follows:

di;'W) = \/( 2 Wlf('xik X )2j ©)]

k=1---s

where w=(w,,---,w,)is the feature-weight vector. Its component is the importance
degree corresponding to each feature. Larger W, is, more important the k —rh feature

is. When  =(1,---,1), the space {de/_”” <} is a hyper-sphere with radius r (called

original space) and di(jw) is d; and pi(/.w) isp, - When y# (1,-..1), it means that the
axes would be extended or shrunk in accordance with W, . Thus the space

{ Hdi(jW) < r } 1s hyper-ellipse, called the transformed space. The lower the value of W,

is, the higher the flattening extent is. A good partition should have the following
property: the samples within one cluster are more similar and dissimilar samples are
more separate, which implies that the fuzziness of the partition is low. Therefore we
hope that by adjusting W, Pé'w) tends to one or zero if Py is greater or less than 0.5,

respectively.
Based on above discussion, we learn the feature-weight value by minimizing an
evaluation function E(w) [4] defined as follows:

E(w)=—2 ZZ%(P?jW)(l—p;,)+p,~,(1—pf,w>)) (10)

nn-1)%5 i
where n is the number of samples.
. oo o
From equation (10), we can say that () decreases as the similarity degree p;
tends to O or L'if p, <0.5 or p, >0.5. Therefore we expect that feature-weight learn-
ing by minimizing £(w) can lead to P close to 0 or 1, which obviously can improve

the performance of FCM.
To minimize the evaluation function E(w), we use the gradient descent tech-

nique. First of all, let Aw, be the change of w, , compute as follows:
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JE(w)
A -
Wik n aWk (11)

where 7 is the learning rate. An appropriate value of 77 could speed up the conver-
gence of the algorithm since too small 77 leads to low computational efficiency but
too big 7 results in divergence of the algorithm. Through one dimensional searching
technique [5], 7 is determined by:

JE (w) JE(w)

E(w, — T
(wy =7 w, w, =11 . ) "
=Min ;.0E(w; — 4 OF () T lm)
ow, ow,
The derivate of E(w) can obtained from following:
IE(w) 1 dpy"” d."
= 1-2p. ! !
S, N-D 2172 3d™ ow, (13)
api(jw) —IH
o " (14)
ady”  (1+pB-df)’
adi(jw) _ Wk(‘xik_x/k) (15)

)
ow, d,

i
The algorithm is described briefly as follows:

(1) Initialize all weight values with 1. And solve f from equation (8);
(2) Compute P by equation (7) and e by equation (9).
(3) Let Aw, be the change of w, . Compute Aw __naE(w) by (13-15);

==

ow,

(4) If 12w, +Aw, >0 is satisfied, then w; =w, +Aw,;;

(5) Go to (3) until E(w) is less than a given threshold or the times of iteration reach
the user specified number.

4 Enlarging the Margin by Feather Weight Adjustment for
Generalization Capability Improvement

In this section, for the purpose of generalization capability improvement, we would
like to experimentally demonstrate the enlargement of margin between two hyper-
planes by the feature weight adjustment mentioned in previous section. We select two
databases to complete the demonstration.

The first one is the well-known toy example, i.e., Iris database from UCI, which
includes 150 cases with 3 classes. Since the SVM is only for two-class classification
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problems, we delete the cases belonging to class one and the remaining 100 cases
with two classes are used to demonstrate. The second one, called Pima India Diabe-
tes, is also from UCI. The two databases’ characters are shown in table 1. According
to the feature weight learning algorithm given in the end of section 3, we can learn
the weights for the selected two databases. Table 2 shows the result of feature weight
leaning for the two selected databases.

Applying SVM Toolbox (http://www.isis.ecs.soton.ac.uk/isystems/kernel/svm.zip)
to the original data of the two selected databases, one can obtain the optimal separating
hyper-planes and the corresponding margin. Due to the limit of paper length, we omit
the formulation of hyper-planes and margins. For details, one can refer to [1][2]. Simi-
larly, using the same method, one can evaluate the margins among the separating hyper-
planes after the learned weighs are incorporated into the original databases. Tables 3 and
4 show the size of margin of separating hyper-planes, the training accuracy, and the
testing accuracy for the two databases, where 70% of the databases are randomly se-
lected as the training sets and the remaining 30% as the testing sets. It is worth noting
that the experimental results depend on the parameters chosen in the SVM Toolbox.

From Tables 3 and 4, one can see that the margins are indeed enlarged. However,
the improvement for training and testing accuracy is not significant. We speculate
that the reason is that (1) the data is not enough for Iris database and (2) Pima data-
base is non-linear separable very much. The further investigation to the generalization
capability improvement is in progress.

Table 1. The characters of databases

Database Name Number of Number of Category of
samples features features
Iris 100 4 Numerical
Pima 668 8 Numerical

Table 2. The results of feature-weight learning

Database . .
Name Results of feature-weight learning
Iris 0.0001, 0.0002, 1.0, 0.164
Pima 0.410686,0.000000,0.000000,0.000000,
1.000000,0.001334,0.986665,0.000000
Table 3. Margin enlargement for Iris database
Iris database Margin Training Testing
Accuracy Accuracy
Before feature weight adjustment 0.11136 0.98561 0.92856

After feature weight adjustment 0.16365 0.96666 0.93686
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Table 4. Margin enlargement for Pima database

Pima database Margin Training Testing
Accuracy Accuracy

Before feature weight adjustment 0.38258 0.61412 0.6638
After feature weight adjustment 0.98609 0.68585 0.6638

5 Conclusions

According to SLT, the enlargement of margin of separating hyper-plane can enhance
the generalization capability of the learning machine. This paper makes an attempt to
enlarge the margin by an approach of feature weight adjustment. Initial experiments
show the approach’s effectiveness. We have the following remarks:

(1) Whether the feature weight learning approach can be mathematically proved to
enlarge the margin?

(2) Whether the approach has a difference between linear separable and non-linear
separable data sets?

(3) When evaluating the margin of separating hyper-plane, how to choose the opti-
mal values of parameters in the quadratic program?
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