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OFFSS: Optimal Fuzzy-Valued Feature Subset
Selection

E. C. C. Tsang, D. S. Yeung, and X. Z. Wang

Abstract—Feature subset selection is a well-known pattern ~ An extensive amount of research has been conducted over
recognition problem, which aims to reduce the number of features the last two decades to obtain reliable approaches for feature
used in classification or recognition. This reduction is expected gglection. Blum [3] had given an excellent survey for selection
to improve the performance of classification algorithms in terms of relevant features in machine learning. These approaches are

of speed, accuracy and simplicity. Most existing feature selection . . .
investigations focus on the case that the feature values are real or different in the evaluation of feature subsets. A number of eval-

nominal, very little research is found to address the fuzzy-valued Uation criteria such as gain-entropy [25], relevance [1], contin-
feature subset selection and its computational complexity. This gency table analysis [26] have been developed for feature values
paper focuses on a problem called optimal fuzzy-valued feature which can be real, symbolic, categorical or nominal.

subset selec_tion (C_)FFSS), in which the quality-measur_e of a subset Neuro-fuzzy approaches, e.g., [20], [21], [38], and [7] are
of features is defined by both the overall overlapping degree g a1y hased on an overall feature evaluation index (OFEI).

between two classes of examples and the size of feature subset. Th h h . h cl f bset d
main contributions of this paper are that: 1) the concept of fuzzy ese approaches view each class as a Tuzzy subsel, an

extension matrix is introduced:; 2) the computational complexity of according to the classification information entropy, define an

OFFSS is proved to be NP-hard; 3) a simple but powerful heuristic overall feature evaluation index for a subset of features, and
algorithm for OFFSS is given; and 4) the feasibility and simplicity then use some searching technique to approximately find the
of the proposed algorithm are demonstrated by applications of sp|ution. Neural network feature selector [29] and fuzzy feature
OFFSS to fuzzy decision tree induction and by comparisons with geaction [28] should be special cases of neuro-fuzzy technique.
three different feature selection techniques developed recently. The main drawback of neural network feature selector is that

Index Terms—Computational complexity, data mining, feature  the network usually suffers from the local minimum and slow
subset selection, fuzzy-valued feature, learning. convergence.

Appropriate features can be selected by genetic algorithms
|. INTRODUCTION (GASs) [4], [27] where each feature subset (called a chromo-

I some) is evaluated by a fitness function during an optimization
EATURE subset_sel_ectlon IS av_vell-known pattern_rgcogn&cle. In contrast to other feature selection techniques, GA can
tion problem which is usually viewed as a data mining en:

hancement technique. This technique aims to reduce the nun%%ger_ate apprommately_a number of opt_lma_l feature subsets.
different approach in feature selection is based on neural

of features to be used, i.e., to reduce the entire feature space {

) - . . CHetwork output sensitivity, which uses a feature quality index
a highly predictive subset of the space. Th|s_ reduction may Ir{]:'QI) for each feature and sorts the features according to FQI
prove the performance of data mining algorithms to be used,in

terms of speed. accuracy. and simolicity. In addition. becaus va{ues. The method to evaluate the value of FQI can be different.
. peed, acc Y, an plicity. . ' r example, Zurada in [42] and Engelbrecht in [8] used partial
this reduction, the identification of features which do not nee

Do X . derivatives of the output with respect to the input to define the
to be stored, collected or bought, may bring financial savinds - i : ;
[19]. ensitivity measure and compute its value by Taylor approxi-

. . .rr]ate expansion. Yeung in [39] used the variance of the output
The previous study on feature subset selection focused main Y . . . )
erfor with respect to the input perturbation to define the sen-

on the Stat'St'C.al approaches such as the typ|cal pr|.nC|pIe_ Cogl‘livity measure and Zeng in [41] used the expected value of
ponent analysis (PCA) method [18] and the linear discriminant . .
output error with respect to the input change.

analysis (LDA) method [3]. These methods attempt to reduceThe mutual information-based feature selector [2] and [22] is

the dimensionality of input data by creating new features that. . i
: o i ; universally accepted as a promising method to feature selection.
are linear combinations of the original ones. The main draws;

back of these methods is that the new features (compared Wi{HS method considers mainly the dependence between features

the original ones) do not have true meaning. Moreover for chxnd selects some features with high independence. It can be

simply scaling of the features can cause serious changes to H%fly formulated as a FR&-problem: Given an initial sef
results. with n features and’ set of all output classes, find the subset

S in F with k features that minimize the entropgy(C|S), i.e.,
maximize the mutual informatiof(C|S).
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considered database contains many records. Most researcirenghich v and A denote max and min, respectively, and
on feature subset selection try to show that their methods @é/(A, B) denotes the distance measuresdfind B and is
computationally efficient in these two aspects. The means dédfined as
research is usually restricted to experiments and comparisons.
Obviously, they often suffer from the lack of theoretical analysis n

due to the fact that the study of an important theoretical issue, DM (A, B) = 7| Y |A(z;) — B(ai)[”  (r > 1).
i.e., the computational complexity of optimal feature subset i=1

selection, is neglected. One may want to know, for example,. i , o
whether or not there exists an exact feasible algorithm to fily'S clear that the aforementioned distance equation is Eu-
the best subset for fuzzy-valued features. clidean metric whem = 2. Our study on OFFSS is based on a

With the development of knowledge-based systems, the ig{milarity measure between two fu.zz_y ;ets. It is worth noting
precise data such as “about 28,” “young,” “very big,” “hot,” andhat there exist many forms of similarity measure between
so on is considered in the learning phase of constructing exp¥f® f‘j'zzy sets. We cannot guarantee that. our _selected two
systems. The imprecise feature-values in traditional data minifiguations have the best performance for the investigated feature
are usually regarded as either real numbers (the continuous c&§#ction problem. However, some experiments have shown
or nominal symbols (the discrete case). There seems to be a Hg OUr proposed method is not much sensitive to the choice of
between the two cases since real numbers have linear ordefiifgilarity measure. . _
and nominal symbols has no ordering at all. This gap may beNOW, let us consider a group of examples (objects, instances,
filled by viewing the imprecise data (linguistic terms) as fuzzgases) and a feature spaké = {F, F,..., I, }. EachF;
sets. So far, very little work is found to address the selectiéh < ¢ < m), called a fuzzy-valued feature or a fuzzy-valued
of optimal fuzzy-valued feature subsets and its computatiorfifribute, is supposed to take valuefiQX;) (X; is a universe of
complexity. The only found references are [30], [32] where tHéiscourse). Each exampies characterized by the: features,

focus is the fuzzy target (model) selection by using fuzzy clufhatis,e = (v1, vz, ..., vm) inWhichv; = e(F;) is the value of
tering (fuzzy c-means) technique, rather than the fuzzy-valuegample: with respect ta”; (: = 1,2, ..., m). For any feature,
feature selection. the similarity measure between two feature-values is written as

This paper focuses on a problem of optimal fuzzy-valued fe&@M. This group of examples is supposed to be classified into
ture subset selection (OFFSS). The measure of the quality dfw classesP and N, called positive class and negative class,
set of features is defined by the overall overlapping degree wespectively.
tween two classes of examples and the size of feature subsebDefinition 2: Lete = (v1,v9,...,v,,) be an example and
The computational complexity of OFFSS is investigated by the= {F;,, F},, ..., F;_ } a given feature subsef (C F'S, n <
introduction of fuzzy extension matrix. A heuristic search algox). The notatiore|S is used to denotey, , v;,, ..., v;, ).
rithm is proposed for the optimal feature subset selection. ThisDefinition 3: Let S be a given feature subset (C F'S),
algorithm finds a path in the extension matrix. Applications gf. a positive examplep(, € P), andn. a negative example
OFFSS are discussed for fuzzy decision tree induction scherfita. € N). The similarity degree between andn. on S is
The present paper has the following organization. Sectiondéfined as
gives a formal definition of OFFSS, Section Ill investigates the
computational complexity of OFFSS, Section IV proposes our SM(pe|S, ne|S) = Ar,esSM (pe(F), ne(F;))
heuristic algorithm for OFFSS, Section V studies the applica-
tion of OFFSS to fuzzy decision tree induction and the compan which the notation A denotes Min. Particularly,
ison with three different feature selection techniques develop®Ml(p., n.) = SM(p.|F'S, n.|F'S).
recently, and the last section offers conclusions of this paper. Definition 4: For a given feature subsét(S C FS), the

overlapping degree of the positive clddsand the negative class
II. DEFINITION OF OFFSS Nis defined as

Before giving a rigorous definition of OFFSS problem, we OV(P,N|S) = Vyp.ep Vn,en SM (pc|S,n.|S)
first review some notations and concepts used in this paper.

Throughout this paper, for a given universe of discoukse N Which the notation/ denotes Max.

F(X) denotes the set of all fuzzy subsets definedian To make Definition 4 clear, we restrict ourselves to crisp case.
Definition 1: A mapping fromi(X)x F(X)to [0, 1],SM,is For two given examples andb, a given feature subsst and a
called a similarity measure $M satisfies that (13M(A4, B) = 9ivensimilarity measurgM, one can consider that the degree of
SM(B, A) foranyA, B € F(X)and (2)SM(A, B) = 1 when- similarity betweern:|S andb|S is equal to 1 ifand only if:| S =
everA — B. b|S and is equal to O if and only if|.S # b|.S. This consequent

The similarity measure between two fuzzy subsets can be d@plies thatOV (P, N|S) = 0if and only if (P N N)|S = ¢
fined by their membership functions. Discussions on similari§dOV (P, N|S) > 0if and only if (P N N)|S # ¢ where¢

metrics can be found in many articles [43], [33], [24], [13], [35]denotes empty set ardV (P, N|S) is the overlapping degree
The following are two frequently used forms: given in Definition 4. That is, Definition 4 shows whether the

intersection of two sets is empty for crisp case. Therefore, when

. fuzzy case is considered, Definition 4 can naturally be regarded

(1). SMi(A, B) =(1+ DM(A, B)) as the maximal degree of overlapping (intersection) of two fuzzy
(2). SMy(A, B) = Vi, (A(z;) A B(x;)) sets.
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From Definition 3, one can see that the similarity degree TABLE |
SM(p.|S, n.|S) will become small as the cardinality of feature GROUP OFEXAMPLES WITH FOUR FUZZY-VALUED FEATURES
subsets increases. Hence, the overlapping degﬁé’é(P, N|S) Case. Feature A FeatureB FeatureC_ Feature D Class
will also decrease as the cardinality Sfincreases. For an 1 Small Mid Mid Small Positive
appropriate threshol@ (T > OV (P, N|FS) in which F'S is 2 e o B S TR
the entire feature set), there always exists at least one feat 4 gmag gm:ﬁ ﬁ% SBiag11 Negative
subsetS with properties: 1)S C F'S; 2) OV(P,N|FS) < T} . Big Bl Small Vil Nerive
and 3) the cardinality of attains minimum. This is the concept
of OFFSS which is formulated in the following Definition 5. Membership

Definition 5 (OFFSS): Let P denote a given class of positive
examples)V a class of negative exampldssS the entire set of ' '
fuzzy-valued features, arida given threshold. The problem of Small Mid Big
OFFSS is to seek a feature subS&t(S* C F'S) such that 1.0 v

|S*| = Minscps {|S| : OV(P,N|S) < T} 05
0.0 ] x

where|e| denotes the cardinality of a crisp set.
We use the following simple example to illustrate the above
notations and definitions.

Example 1: Consider a set of examples shown in Table I.
This set of examples is classified info = {1,2} and N = subsets {4, B}, {B,C},{4,B,C},.... {4, B,C, D} satis-

{3,4,5,6} and is described by four fuzzy-valued features. Tl"fé('ng_ O‘_/ P, N|S) < 0.25. Step 5: The subsets with minimum

entire feature set i$'S = {A, B,C, D}. Each feature takes carghnahty are {1, B} and {B,C}. Therefore, the output

value from three fuzzy linguistic terms (fuzzy sets), Small, Mi(JOpt'mal feature .SUbSEtS ara{B} and {B, C}. . .

and Big, of which the membership functions are shown in Fig. % Itis worth noting that the previous enumeration algorithm for
4

We would like to find the optimal feature subsets for threshof'ding optimal feature subsets is not practical due to its expo-
T — 0.95. nential complexity. Developing heuristic algorithms are neces-

sary.

Now, let us give a geometrical explanation of the OFFSS
problem (Definition 5). It can be obtained by considering ex-
amples E1 and E2, shown in the following table:

. 1. Three membership functions.

According to Definition 5, we can use the following algo-
rithm to find the optimal feature subsets.

Step 1. Determine the similarity measure.
Step 2. For each pair of different lin-

guistic terms, evaluate the similarity. No. X y Class
Step 3. For each feature subset S, use El. Small Mid Positive
Definition 3 to evaluate OV (P, N|S). E2. Big Mid Negative

Step 4. Determine feature subsets, of

which the value OV(P,N|S) is less than or
equal to T.

Step 5. From the feature subsets obtained

in Step 4, select the ones with minimum
cardinality.

with two features: andy.

Intuitively or by the Definition 5, the feature can be re-
garded as the best (optimal feature subset). Fig. 2 gives us a
very clear geometrical explanation for the OFFSS.

. . I1l. COMPUTATIONAL COMPLEXITY OF OFFSS
Now, we illustrate the algorithm by Example 1.

Step 1. Define a similarity measure &M(A, B) = In this section, we investigate the computational complexity
Max e x (min(A(a:)7B(a:)))2. Step 2: According to of OFFSS problem using the concept of extension matrix. The
the defined similarity measure, evaluate similaritiextension matrix, which plays an important role in studying the
SM(Small, Small) = SM(Mid, Mid) = SM(Big, Big) = 1, theory of learning from crisp examples [11], is initially intro-
SM(Small, Mid) =  SM(Mid,Big) = 0.25, and duced for crisp case in [10] and is extended to fuzzy case in this
SM(Small, Big) = 0. Step 3: Following Step 2, evaluatepaper by using similarity measure.

the value of overlapping degré&V (P, N|S) for subsetS. For . )

instance A. Extension Matrix of Fuzzy Case

We continue to use the notations introduced in the previous

OV(P,N|{A,B}) =(0 A1)V (1A0.25) v (1A 0.25) section. ThatisP denotes the positive class,denotes the neg-

V(0A0.25) vV (0 A0.25) ative class, and”S denotes the entire feature space. Each ex-
V(IAO0)V(LAO)V(0AT) ample takes value in the form of m-dimensional vector in which
—0.95. components are fuzzy sets, anll denotes a given similarity

measure between fuzzy sets.
The results are listed in Table Il. Step 4: Determine feature Definition 6: Let7" be a given threshold andS be the entire
subsets withOV (P, N|S) < 0.25. Table Il shows 7 feature set of featuresS C FS, et = (vf,v5,...,v}) € P, and

m
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TABLE I ya
FEATURE SUBSETS ANDDEGREES OHNTERSECTIONHOODABOUT TABLE | B
182
S OV(PN|S) S OV(PN]S)
¢ | — {B,C} 0.25
{A} 1.00 {B, D} 1.00
{B} 1.00 {C,D} 1.00
{C} 1.00 {A,B,C} 025
{D} 1.00 {A,B,D} 025 Small .
{A,B} 025 {A,C,D} 025 Small Mid Big R
{A,C} 1.00 {B,C,D} 025 i
{A,D} 1.00 FS 0.25 Fig. 2. Geometrical explanation of OFFSS (feature subsgi{the best).
e = (v{,vy,...,v,) € N.et ande  are said to bel’ ( 1.00 025 1.00 )
consistent with respect t§ if SM(et|S,e™|S) < T. et and
N are said to b& consistent with respect 9 if e™ ande™ are 1.00 0.2 025 0.00
T consistent with respect t for arbitrarye™ € N. P and N
are said to b&" consistent with respect 9 if e™ ande™ areT 1.00 (0.2» 1.00 1.00
consistent with respect t6 for arbitraryet™ € P and arbitrary
~€N. \ 025 0.25 025 )

From Definitions 5 and 6, one can easily see fhandN are
T consistency with respect to the optimal fuzzy-valued featuk@. 3. ExtensiorEM(ef, V) about Table I.
subsetS*.

Definition 7: The extension matrix of a positive ex- [0.00 1.00 025 1.00]

ample et = (v, v, ..., v}) with respect to a neg-
ative examplee™ = (vi,v5,...,v;) IS defined as 1.00 0.25 0.25 0.00
EM(et,e™) = (r1,r2,...,7m) Wherer; = SM(v},v;") for 1.00 0.25 1.00 1.00

j=12,....m.Ifr; < T(1 < j < m), thenr; is called an

undery element of extension matrix. (In the crisp case [10], 000025 025 0.25

theundery element is called nondead element). 0.00 025 1.00 025
Definition 8: Let P = {ef,ef,....ef} and N = 1.00 0.00 1.00 0.25
{6;76;, N ei} The extension matrix Oij (1 <j< K) 1.00 0.00 0.25 0.25
with respect taV is defined asiM(e, N) and the extension
: : . . J ; 0.00 1.00 0.00 1.00
matrix of P with respect taV is defined a&EM(P, N), where L Joxa

Fig. 4. Extension matri£M(P, N) about Table I.

[EM(ef,e;)

77 Proof: Let P = {ef,ed, ... ef),
EM(e;‘,N): N ={ef,e5,...,ep el = (i, v, ..., 1)(21<z<1§()
LEM(efer) | pum ande; = (v;1,V5,.+,05,) (1 < j < L) If there exists
[EM(ef, N) at Ieaet 0neunderT element in theS place of each row of
EM(P, N) = : extension matrix ofP with respect toN, then for eachi(
’ : ) 1 <i< K)andeach (1 < j < L)there eX|sts at least one
L EM(e N) | g psm integerk (k € {i1,is,...,in}) such thatSM(vj},v5,) < T.

) ) _ ~ From Definition 3, one can obtain that
Example 2: Let us continue to discuss the six examples given

in E>_<ample 1 whereK_ = 2, L = 4, andm = 4. The ex- SM(eH]S, e7|S) = Ares SM ( '-"(F)./e;(F))
tension matrix of the first positive example with respecf\Mo
EM(ef, N), is shown in Fig. 3; and the extension matrix/f = Ni=1 SM ( Vi, ) <T 1)
with respect taV, EM(P, N), is shown in Fig. 4.
Definition 9: Let ¢ = (vy,vy,...,v,,) be an ex- which results in th&" consistency of” and N with respect to
ample denoting a row of the extension matrix and. Conversely, ifP and N are1 consistent with respect t6,
S = {F,,F,,...,F; } be a given feature subset. Thehen (1) is valid for alli and allj (1 < i < K,1 < j <
term “S place ofe is used to denoted, is, ..., .} L). This implies that there eX|sts at least one integdk €
Theorem 1l:Let T be a given threshold andd = {i1,d2,...,i,}) such thatSM(v}; vy,) < T foralli andj
{F;,,F;,,...,F; } be a feature subsetP and N areT (1<i< K,1<j<IL). Therefore according to Definition

consistent with respect t8 if and only if there exists at least 7, there exists at least onaidery element in theS place of
oneundery element in theS place of each row of extensioneach row of the extension matrix &f with respect taV. This
matrix of P with respect tav. completes the proof.
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B. Path of Extension Matrix and Feature Subset of Rif UY_| S, D R. We sayU* is an optimal cover of? if U*
Definition 10: A path of an extension matrix refers to a coniS @ CoVer off and|U*| < |U] for any arbitraryR's coverU/

nection of itsundery elements which are obtained by selectin/N€réle| denotes the cardinality of a set.

oneunder; element from each row of the extension matrix.  VVithout loss of generality, we explicitly give the process of
Example 3:Consider the extension matri€M(ef, N) constructing the transformation (from the problem of optimal

shown in Fig. 3. If we take the threshald = 0.25 theé fhere set cover to the problem of searching for a path with the least

exist several paths in this extension matrix. One of them can $UMNS in extension matrix) via examples [10] f”d [6]-

I11 — T99 — T35 — 41 Which is indicated by arrows in Fig. 3. ConS|der:31un|verse of discour®e= {1, 2, 3,4,5,6,7} and
The following theorem gives us the relation between an of-9roup Off's subsetsSy = {1,4,5,7}, S» = {3747;’}* S3 =

timal feature subset and a path of extension matrix. {2,7}, 84 = {1,2,6}, S5 = {1,3,7}, andS = {3,5,6}. Itis
Theorem 2: Let 7' be a given threshold arEM(P, N) be clear this group of subsets constitutes a cove?.dy arranging

the extension matrix oP with respect taV. Then Iodking for these six subsets, Table Il can be formed. From Table Il, one

an optimal feature subset is equivalent to searching for a pat$&1 find that {1, 52, 54} constitutes an optimal cover af.

the extension matriE£M(P, N') which involves the minimum Now we replace the six subsets in Table Il with their charac-

number of columns. ’ teristic sets, e.g., replac® with 1/1 +0/2+0/3 +1/4 +

Proof: Let S be a feature subseS(C FS). Then, ac- 1/540/6+1/7. The result of replacement is shown in Table IV.
cording to Definition 5 and Definition 6, one knows théis Consequently, searching for an optimal set cover in Table Il is
an optimal feature subset if and only if P)and N areT con- equivalent to searching for a group of characteristic sets with

sistent with respect t¢' and 2) the cardinality of reaches a the minimum cardinality in Table IV such that there is at least
minimum. oneundert element in each row of Table IV restricted in these

characteristic sets. For examplé;{ F5, F,} is such a group of

characteristic sets. Therefore, we have given the validity of the
conclusion that searching for an optimal set cover in Table Il is
equivalent to searching for a path involving the least number of

1) By Theorem 1P andN areT consistent with respect to
S if and only if there exists at least omaderr element
in the S place of each row of extension matrix Bfwith
respect toN. Therefore, the given feature subsetan .

. . columns in Table IV.
correspond to a path of extension matiixI (P, N). This T
path can be obtained by selecting one 1-element from theThe remaining is to show that Table IV can be regarded as
S place of each row of the extension matrix an extension matrix o with respect taV. We regard the six

2) Each column, which s involved in the process of selectiffPtionsky, £, ..., Fs in Table 1V as six features and regard

: . <
underr elements, corresponds to a feature. Hence, tf eCh row in Table IV as a negative example denotee; iy <

number of involved columns is the number of considere’dS 7). €.0.e1 = (1,0,0,1,1,0). Define the negative example

g iy A
features. Furthermore, the minimum cardinality s SeV = {ex, €3, €7}, the positive example sét = {e* } in

: . . whichet = (0,0,0,0,0,0), the similarity measurgM(0, 0) =
equivalent to the minimum number of involved columnSSM(1 1) = 1, SM(L,0) = 0, denote themder, element by 1
This completes the proof. ) =4 0) =10, idery y

and the normundery element by 0 < 1" < 1), one can directly

According to Theorem 2, the OFFSS problem can be trangsyity that Table IV is justEM( P, N), the extension matrix of
formed into a search ilM(P, N) for a path which involves p i respect taV. The proof is completed.

the least columns. The heuristic search algorithm established in
Section IV is based on this transformation. In the following, we
prove that the search for a path is NP-hard. IV. HEURISTIC ALGORITHMS FOROFFSS

. From Theorem 3, one can find that obtaining a practically
C. OFFSS Problem is NP-Hard exact algorithm for the OFFSS problem is unrealistic. So, we
The following theorem gives the computational complexithiave to look for heuristic algorithms. From Theorem 2, we know

of selecting an optimal fuzzy-valued feature subset. that the OFFSS problem is equivalent to a search for a path in-
Theorem 3: The OFFSS problem described in Definition 5/olving the least columns iEM (P, N) which is the extension
is NP-hard. matrix of P with respect taV (P is the positive class anl is

Proof: Noting that “If problem (A) is NP-hard and the negative class). Definition 10 shows that a palilfy P, V)
problem (A) can be reduced into problem (B) within polynomeans that a connectionwifider elements which are obtained
mial time, then Problem (B) is also NP-hard,” we completby selecting on@nderr element from each row &M (P, N).
the proof by constructing a transformation which can redu&ne can expect that, “the biggh¥ is, the smalletV, is” where
a known NP-hard problem into the OFFSS problem withiV; denotes the number afhder elements in each column of
polynomial time. By Theorem 2, the OFFSS problem ia path andV is the number of columns involved in this path.
equivalent to the problem of searching for a path with the leadence, an intuitive idea of searching a path involving the least
columns, so we only need to reduce a known NP-hard probl@mlumns is to gradually select the column with the mostery
into the problem of searching for a path with the least columnslements in the extension matrix. In detail, one can select one
The problem of optimal set cover described below is a knovaolumn with the mostinder elements in the current extension
NP-hard problem [17]. matrix and then remove the rows which includevanlers ele-

Problem of Optimal Set Covertet R be a finite setl/ = ment in the selected column. This process is repeated when the
{51, Sa2,...,S,} beagroup of subsets & We sayl/ isacover extension matrix is not empty. The result is expected to have a
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TABLE Il
SET COVER PROBLEM

R S & 8 S 8 S

11 1 1

2 2 2

3 3 33

4 4 4

5 5 5 5

6 6 6

7 7 7 7

TABLE IV

CHARACTERISTIC SETS OF ACOVER

R F, F, F; F, Fs F;

1 1 0 o0 1 1 o0

2 0 0 1 1 0 0

30 1 0 o0 1 1

4 1 1 0 0 0 0

5 1 1 0 0 0 1

6 0 0 0 1 0 1

7 1 0 1 0 1 0

207

A. Example 4

Consider the OFFSS problem of the group of examples given
in example 1 (Table I). The extension matrixBfwith respect
to N has been shown in Fig. 4. From Fig. 4, one can find that
the second column has the maatler; elements (the threshold
valueT is set to 0.25). So the current feature sulisas set
to be {B}. After removing the rows which include amderr
element in the second column, the current extension matrix only
includes the first row and the last row of the original matrix.
Both the first and third columns are two columns with the most
undery elements, hence, the first feature A or the third feature
Cis aggregated t8. Consequently, two optimal feature subsets,
S; = {A,B} andS, = {B,C}, are obtained. Intuitively, the
feature subsef; is better tharbs due tory; = 0 andri3 = 0.25
in the extension matrix (Fig. 4).

Essentially, the OFFSS problem proposed in this paper is to
search for such significant features that the overlapping degree
of P and N does not exceed a given threshold. From Defini-
tion 4, one can see that the “maximum” degree of overlapping
is used. The maximum operation may result in inflexibility of
the heuristic algorithm to some extent. Moreover, the Step 4 in
the above algorithm does not allow noisy example appearing in
P and N where the noisy example refers to such an example

smaller number of columns (features). The following heuristi¢hich appears simultaneously ihand inN. To illustrate the
algorithm is formed according to this idea. In fact, this is a kintpflexible case and the noisy case, we consider the following

of greedy algorithm.

Heuristic algorithm
Step 1. Initialization:
feature space; S is he feature subset
to be searched; P is the given positive
class; N is the given negative class;
EM(P, N) is the current extension matrix

of P with respect to N; and S is ini-
tially set to an empty set.

Step 2. From the current extension matrix
EM(P, N), find a column with the most
undery elements. Use F; to denote this
column, and then replace
Step 3. From EM(P, N), remove the rows
which include an underr element in the
selected  j-th column, and then form a new
EM(P, N) which is regarded as the current
extension matrix.

Step 4. If EM(P,N) is empty, then regard
S as the final result [stop]; else, go to

Step 2.

FS is the entire

S with SU{F]}

two examples.

B. Example 5

Consider the examples given in Table V where two qualifiers
“Very” and “More-or-less” are defined as

Very (A(z)) = (A(x))* and More-or-leséA(z)) = /A(x)

for any term with membership functioA(z). The similarity
measure between two termdsand B is defined as the equation
shown at the bottom of the page. One can directly compute the
extension matrix ofP with respect toN, which is shown in
Fig. 5.

By settingT’ = 0.40, it is easy to see from Fig. 5 that, except
for the last column, each column of the extension matrix has six
underr elements. The maximal numberwiderr elements is
reached at three columns simultaneously. The aforementioned
heuristic algorithm does not know which column should be
selected.

C. Example 6

Consider the examples given in Table VI where only one pos-
itive example exists. The last negative example which is iden-
tical to the positive example is possibly noisy. The extension
matrix is shown in Fig. 6. According to the above heuristic al-

Example 4 illustrates clearly the computed process of tlgerithm, the selection process of feature subset is described as

above heuristic search algorithm.

Empty — {A} — {A, B}. The remaining extension matrix

SM(A4, B) = {0.85,

Max,ex (min(A(z), B(z)))?,

if B = Very(A) or B = More-or-les§A)
otherwise )
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TABLE V TABLE VI
GROUP OFEXAMPLES WITH QUALIFIERS GROUP OFEXAMPLES WITH NOISE
Case. Feature A Feature B Feature C Feature D  Class Case. Feature A FeatureB FeatureC FeatureD Class
1 Mid Small Small Mid Positive 1 Mid Mid Mid Mid Positive
2 Very Big Mid More-or-less ~ More-or-less Positive 2 Big Mid Mid Mid Negative
Big Small 3 Mid Big Mid Mid Negative
3 Very Small Big Mid Mid Positive 4 Big Mid Big Mid Negative
4 Small Small Small Big Negative 5 Big Mid Mid Big Negative
5 Big Big Mid Mid Negative 6 Mid Mid Mid Mid Negative
6 Mid Mid Big Mid Negative

[0.25 1.00 1.00 1.00]
1.00 0.25 1.00 1.00
0.25 1.00 0.25 1.00

[0.25 1.00 1.00 0.25]
0.25 0.00 0.25 1.00
1.00 0.25 0.00 1.00 025 1.00 1.00 025
0.00 0.25 0.00 0.00 100 100 1.00 1.00],
0.85 0.25 0.38 0.38 B B

0.15 1.00 0.85 0.38 Fig. 6. Extension matriEM(P, N) corresponding to Table VI.
0.85 0.00 0.25 0.25
0.00 1.00 1.00 1.00

It is worth noting that, in the process of implementation of
the revised heuristic algorithm, the extension madiM (P, N)
1015 025 025 1.00] , does not need to be really generated in memory and only the
number ofundery elements needs to be aggregated. It shows
that the algorithm has no much computational effort and space
consumption that implies the implementation is easy and cheap.
EM(P, N) includes only the last row in which there exists né\nother benefit may be that the proposed heuristic algorithm
undery elements (the threshold valliedoes not exceed 1), sodoes not like GA and is not time consuming. In addition, one
EM(P, N) cannot become empty. point needed to be shown is that the OFFSS problem described

To overcome the shortcomings as shown in Examples 5 andhis paper will degenerate to the crisp case proposed in [6] if
6, we revise the previous heuristic algorithm as shown here. all features are restricted to nominal values.

Fig. 5. Extension matriEM(P, N) corresponding to Table V.

Revised heuristic algorithm V. EXPERIMENTS AND COMPARISONS

Step 1. Initialization is same as the In this section, we investigate applications of OFFSS to fuzzy
original heuristic algorithm. decision tree induction, and compare the performance of OFFSS
Step 2. From the current extension ma- with three selected feature selection methods by experiments.
trix  EM(P,N), find a column with the most

under; elements. Use  F; to denote this A. Selected Three Feature Selection Methods

column, and then replace S with S U {F}. We select three types of feature selection methods in compar-

If there is more than one column with the ison with our OFFSS. The three are neuro-fuzzy method, neural
most underr elements, select one column network output sensitivity-based method, and mutual informa-
such that the sum of its undery elements tion-based method, respectively.

IS minimum. o o Neuro-fuzzy approaches [e.g., [20], [21], [38], and [7]] are
Step 3. Same as the original heuristic usually based on an overall feature evaluation index (OFEI).
algorithm. Each class is considered as a fuzzy subset. In this paper we select

Step 4. If the number of ‘underr ele- the [7] definition on OFEI which is given for thgth feature by
ments of the remaining extension matrix

EM(P,N) is less than a given small number Q

(threshold value), then regard S as the . k—;x;éka

final result and regard the remaining ex- OFElq = ? _C’;

amples as noise [stop]; else go to Step 2. S Hy,
j=1

By using the revised heuristic algorithm to handle the abovehere() is the number of classef,,; is the value of classifica-
Examples 4, 5, and 6, one can obtain the results 1) in Examfitn entropy of thejth feature with respect to thgh class, and
4,81 = {A, B} is the first optimal feature subset asd = H,;; is the value with respect to theth and thekth classes.
{B,C} isthe second one; 2) in Example®, = {A, B} isthe Itis easy to see that the lower the value of OFEI, the better the
first optimal feature subset arfty = { A, C'} is the second one; feature is.
and 3) in Example 65, = {A, B} is the only optimal feature  Neural network output sensitivity-based approaches use a
subset and the last negative example is regarded as noise. feature quality index (FQI) for each featureand then the
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features can be sorted according A@)I,. After training a by four numerical features which are sepal length (SL),
feed-forward neural network, the FQI for thth feature refers sepal width (SW), petal length (PL), and petal width
usually to the value of output’ sensitivity to theth feature (PW). Five linguistic terms, i.e., very small (VSM),

perturbation. The method to evaluate the value of FQI can be small (SM), medium (MED), large (LRG) and very large
different. For example, Zurada in [42] and Engelbrecht in [8] (VLRG), are used to fuzzify every feature.

used partial derivatives of the output with respect to the inputto 2) Mile per gallon (MPG) dataset: This is another
define the sensitivity measure and compute its value by Taylor bench-mark dataset which comes from a nonlinear
approximate expansion. Yeung in [39] used the variance of the  regression model where several features (input variables)
output error with respect to the input perturbation to define the  are used to predict another feature (output variable).
sensitivity measure and Zeng in [41] used the expected value of The MPG problem has six input variables which are
output error with respect to the input change. De in [7] defined  no. of cylinders (discrete), Displacement (continuous),

the FQI as follows. For each training data point the ¢-th Horsepower (continuous), Weight (continuous), Ac-
component is set to zero. ;bfl(q) denotes the modified point, celeration (continuous) and Year-model (discrete). The
then except for thgth component the other componentsipf output variable is the fuel consumption in MPG. After
andz{? are the same. Let; ando{”) denote the output vectors removing examples with missing values, the data set is
obtained from the neural network with respecttoand(?, reduced to 392 entries. One purpose of the research on
respectively. If theqth feature is not salient, the difference this problem is to select several important input variables
betweeno; and O§q> should be small. Therefore, the FQI is (to find the degree of importance of inputs with respect
defined as to the output).

3) Pima diabetes dataset: The Pima Indian Diabetes dataset
FQI, = Z ‘ contains 768 examples. Each example representing a pa-
tient who may show signs of diabetes is described by
The important feature should correspond to big FQI. This paper ~ eight features which are: a) number of times pregnant, b)
selects the aforementioned De [7] method to compute the FQI  plasma glucose concentration, c) diastolic blood pressure,
for comparison. d) triceps skin fold thickness, e) two-hour serum insulin,
Mutual information-based feature selector [2] and [22]is uni-  f) body mass index, g) diabetes pedigree function, and h)
versally accepted as a promising method to feature selection. age. There are 500 examples from patients who do not
This method considers mainly the dependence between features have diabetes and 268 examples from patients who are
and selects some features with high independence. It can be known to have diabetes.
briefly formulated as follows. 4) Breast cancer diagnosis problem: The University of Wis-
consin Breast Cancer data set consists of 699 patterns
which are classified two classes, 458 benign examples

2
0; — qu) .

1) Let F denote the initial set of fea-

tJres and S be empty " and 241 malignant examples. Each example is described

2) Compute the mutual information 1(C, ), b_y nlnefee.ltures_: a) clump thickness, b) gnlformltygfcell
size, ¢) uniformity of cell shape, d) marginal adhesion, €)

for each feature feF. inal ithelial cell size. f b lei bland ch

3) Find the feature f that maximizes single epithelial cell size, f) bare nuclei, g) bland chro-
matin, h) normal nucleoli, and i) mitoses. In the dataset,

I(C,f), set F«— F—{f}, S~ {f}. . S

4) Repeat until IS| = k: a) For all pairs thevaluesofthesmthfeatureoflGexampIesqremlssmg.

(f.s)) f € F, s e S, compute I(f,s). b) We neglect the 16 examples when conducting experi-

Choose feature f as the one that maxi- 5 rglents. q This d q ibes diff

mizes I(c.f) — B3 e I(f.5), set F — F — {f}, ) Sleep state :altaset. is dataset describes different states

S — SU{fl. about human’s sleep contains 1236 examples with eleven

5) Output the set S containing the se- attributes and is initially classified to six classes.

lected features. .
C. Feature Subset Selection

We first use both our proposed OFFSS and the three methods
mentioned in Section V-A to select feature subsets based on
B. Databases Used the each dataset. Since our OFFSS is with respect to two-class

] ) ) roblem, we need to transfer more than two class problems to
We select five databases for comparing our OFFSS with the,_-|ass problems. We illustrate this transformation via the Iris

approaches mentioned in Section V.A. The five databases, igtaset. The similarity measure between two linguistic terms is
Iris [34], MPG [34], Pima [34], Breast cancer [34], and Sleefqfined as

state [23], are briefly summarized here.
1) Iris dataset: This is a well-known benchmark dataset SM(A, B) = Max,cx (min(A(z), B(z)))*
which is widely used to test a learning algorithm in the
field of machine learning. This dataset has 150 examplés A, B € {VSM, SM, MED, LRG, VLRG}. The computed
which are classified into three classes, i.e., Setogapcess and the result for given threshible: 0.25 are listed as
Versicolor and Virginical. Each example is characterizefbllows.

In our experiments, the parametein step 4) is assumed 0.5.
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Step 1. Setosa U Versicolor = P, Virginica = N.
The process of feature selection is

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 2, APRIL 2003

TABLE VII
GROUP OFEXAMPLES WITH FIVE FUzzY-VALUED FEATURES

Empty _set — {PW} — {PW,PL}

Case.

Feature A Feature B Feature C  Feature D Feature E _ Class

Step 2. Setosa = P, Versicolor = N.

The process of feature selection is

Empty _set — {PL}.
Step 3. The optimal feature subset for the
classification task is determined to be

S = {PL,PW}.

For MPG dataset, since the output of this problem is contin-
uous, a discretization should be done. Output values are roughly

categorized into three classes in this paper, that is, Class 1:

{MPG < 18}, Class 2: {I8 < MPG < 30}, and Class 3:
{30 < MPG}. The definition of similarity measure between
two fuzzy numbers are the same as that in the above Iris classi-

1 VLRG LRG LRG LRG LGR P
2 LRG LRG LRG LRG LRG P
3 MED SM MED LRG MED P
4 VLRG MED LRG LRG LRG P
5 LRG SM SM LRG LRG P
6 SM SM SM LRG SM N
7 VLRG LRG VSM MED MED N
8 MED SM SM LRG SM N
9 SM SM MED MED MED N
10 SM MED LRG MED MED N
TABLE VIII

FEATURE SUBSET SELECTION BY DIFFERENT APPROACHES

Iris MPG Pima Breast Cancer _Sleep state
OFEL {43}  {4,5,6,2}  {2,3,6} {6,1,3,2} {9,6,5,10,8,1}
FQI {4,3}  {4,6,3,2} {8,2,1} {6,1,8,3} {5,6,9,8,3,10}
MIFS {43} {4,621}  {2,6,8} {6,3,2,7} {5,1,9,10,8,3}
OFFSS {4, 3} {6,2,5,4} {2,6,7} {6,3,1,2} {5,7,4,10,1,9}

fication problem. For given thresholfl = 0.25, the computed
process and the result are listed here.

Fuzzy decision tree induction is an important way of learning

from fuzzy examples. Since the generation of optimal (fuzzy)

Step 1. Class _1UClass 2 = P, Class 3 = N. The

process of feature selection is shown as: [36]

Empty _set :;ize
—{Year _model }

—{Year _model , Displacement

¥

—{Year _model , Displacement , Acceleration

}

, Weight } [25]

, Acceleration
has

—{Year _model , Displacement

Step 2. Class _1 = P, Class 2 = N. The process
of feature selection is shown as:

decision tree has been proved to be NP-hard problem(s) [12],
, itis unrealistic to find an exact algorithm for the optimal

. It forces people to generate relatively better decision trees
using heuristic information. One popular and powerful

heuristic for generating crisp decision trees is called ID3. The
earlier version of ID3, which is based on minimum information
entropy to select expanded attributes, was proposed by Quinlan

in 1986. Fuzzy ID3 is a fuzzy version of crisp ID3, which
been suggested by some authors [37], [31], [14]. The fuzzy

decision tree induction based on ID3 can be summarized as
follows.

1) Fuzzifying the training data: For each feature of each

Empty _set
—{Displacement

}

—{Diplacement ,Year _-model, }

—{Diplacement ,Year _mode, Acceleration }
—{Displacement ,Year _model , Acceleration ,Weight }
Step 3. The optimal feature subset for the

classification task is determined to be S =
{Year _model , Displacement ,Acceleration ,Weight }.

2)

Moreover, for the Sleep state dataset, the third class (688 ex-
amples) is considered as the negative class and the other five
classes are regarded as the positive class. The feature subse
selection results given by difference approaches are listed in
Table VIII where the number of features is given in advance.

D. Application to Fuzzy Decision Tree Induction

Each selected dataset is first split into two parts, the training
and testing sets by randomly choosing examples. For all datasets
80% of the examples are randomly selected as the training se
and the remainder as the testing set. We would like to use fuzzy
decision tree induction to check the performance difference be-
tween before and after feature selection, and to compare the
performance of our proposed OFFSS with the other three ap-
proaches mentioned in Section V.A.

dataset, we use five linguistic terms which are VSM, SM,
MED, LRG, and VLRG (Fig. 7). It is worth noting that,
for anyz (a real value of any feature), one linguistic term
F (F € {VSM,SM, MED, LRG, VLRG}) can be se-
lected such thaf'(xz) > 0.5. One may argue the number

of used linguistic terms. In fact one can conduct the ex-
periments using different number of linguistic terms (say,
SM, MED, and LRG) and obtain a similar result. This
paper aims to investigate the feature selection and does
not investigate in detail the used linguistic terms.
Training: Based on the training dataset, we can generate
a fuzzy decision tree. (Of course, one can use Quinlan’s
SEES software to generate a crisp decision tree directly
from the continuous training data, but in this paper we
generate a fuzzy decision tree in terms of our imple-
mented fuzzy ID3 algorithm). By changing each path
from root to leaf to a fuzzy production rule, we can get
a set of fuzzy rules. The training will be conducted on
the training dataset both before and after the feature
selection.

Testing: Based on a specified fuzzy reasoning mecha-
nism, we can test the generated fuzzy rules. Here, the rea-
soning mechanism is specified to be max—min operations.
For details, one can refer to [40]. The testing will be con-
ducted on training/testing datasets both before and after
the feature selection.

t

)
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VSM SM MED LRG VLRG TABLE IX
PERFORMANCE COMPARISONAMONG DIFFERENT APPROACHES

Method Training/testing Iris MPG | Pima | Breast | Sleep
Cancer | state
All features: Training | 0.9659 | 0.8266 | 0.7519 | 0.9884 0.9526

‘ Tosting | 09701 | 0.6974 | 07239 | 09222 | 0.9123

Selected features: Training [ 0.9625 | 0.754 | 0.7423 | 0.9879 0.9356
Fig. 7. Five membership functions. OFEI Testing | 0.9533 | 0.7076 | 0.7423 | 09279 | 0.9239
Selected features: Training | 0.9625 | 0.7459 | 0.7216 | 0.9950 | 0.9443

. Testing | 0.9533 | 0.7241 | 0.7267 | 0.9277 0.9287
We repea‘t Steps 1)_3) ten times and record the average for Selected features: Training | 0.9625 | 0.8119 | 0.7447 | 0.9878 0.9401

training and testing with respect to the selected five datasets. The = wmrrs Tovia (09533 07255 | 07376 | 05173 | 05513

result (before and after feature selection) is listed in Table IX. Selocted Feanmmes: Traiming | 09635 07928 | 07437 | 09885 | 09438
OFFSS

FQI

Testing | 0.9533 | 0.7559 | 0.7561 | 0.9358 | 0.9532

E. Comparison and Analysis

For Iris dataset, all methods obtain the same result. That is,
for the classification task, the two important attributes (featureglgorithm are, the better the generated decision trees. Therefore,
are PL and PW. Only these two features are used, several fuptg/expect that the decision tree generated by using optimal fea-
rules with satisfactory accuracy can be extracted. ture subset selected by the heuristic algorithm proposed in this
For the MPG problem, some researchers had investigaaper is superior to the decision tree without optimal feature
the input selection. For example, in [15], the author préubset. Example 7 shows that it is possible to generate a rela-
sented a quick and straightforward way of input selection féively better decision tree after carrying out the feature subset
neuro-fuzzy modeling and tested his algorithm using MP&glection.
problem. After the complicated computation and analysis, Example 7: Consider Table VII (adopted from [6] with
the author gave a result that, for the continuous output, thézification) where the membership functions of the five
attributes Weight and Year-model are the two most importaigrms {VSM, SM, MED, LGR, and VLGR} are shown in
input variables. Fig. 7. The similarity measure between two terms is defined in
One problem appearing in the above selection processSigction Il. Using our revised heuristic algorithm proposed in
whether the feature entering the feature subset earlier is m&ection IV for the given threshold@ = 0.25, one can obtain
important than the feature entering later. We do not think si\e optimal feature subset), £}. It is easy to verify that there
The heuristic does not provide such information. Our obtainé@de three optimal feature subsets, they ated}, { D, E} and
result has a few differences in comparison with the results {al, £}. Using fuzzy ID3 algorithm on the entire feature space
[15]. Itis due to the fact that the MPG problem was discussed{rl, B, C, D, E} and the selected feature subsé?{E}, one
[15] as continuous output but our discussion about this problei@n obtain two decision trees as shown in Figs. 8 and 9. From
is based on a roughly discrete classification of outputs. It ige view point of minimum number of leaves, one can see that
easy to see that our selected optimal feature subset includedftgedecision tree with OFFSS (Fig. 9) is superior the decision
two features Weight and Year-model which are considered tage without OFFSS (Fig. 8).
the two most important input variables by many investigators. From Example 7, we know that our heuristic algorithm for
However, the information offered only by these two features f@FFSS does not find all optimal feature subsets. The group
our roughly discrete classification are not enough to separ@feexamples shown in Table VII has three total optimal fea-
the three classes, although they are the two most import&ite subsets for the given threshdld= 0.25 {4, C}, { D, E}
input variables of this problem. and {A, EY). Our heuristic only finds the second one but fuzzy
From Table VIII, one can see that the feature subsets $83 algorithm on the entire feature space uses the third one. A
lected by using the four methods are different (except for ttoblem is whether or not the expanded features in fuzzy ID3
Iris dataset). always constitute an optimal feature subset. Example 8 gives us
From Table IX, we can obtain the following comparative rea negative answer.
sults. After feature selection, our proposed OFFSS is slightlyExample 8: Consider Table V where the membership func-
superior to the other three methods in terms of testing accuraié§ns of the three terms {Small, Mid, and Big} are shown in
It may be due to the fact that the OFFSS can select the apprbig. 1. The similarity measure between two terms is defined
imately optimal feature subset. Although the four methods hssExample 5. It is easy to check that, for the given threshold
no obvious difference in training accuracy and for each methdd= 0.25, { A, B} and { A, C} are the only two optimal feature
the selected features have the almost same performance asuibet. However, the expanded attribute at the root is selected
features, the computational complexity of selection of OFFS® the attributeD which has not been included in any optimal
is much less than the other three. feature subset. The attribute selection of fuzzy ID3 at the root is
based on the following computation of fuzzy entropy:

F. Some Notes

Usually, fuzzy ID3 algorithm uses partial features of feature Entropy(4) =0.690

space which is enough to complete the generation of decision Entropy(3) = Entropy(C') = 0.693
trees. Generally speaking, the fewer features to be used in the Entropy D) =0.638.
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Feature: E
SM MED LRG
Feature: A
SM MED VLRG
Fig. 8. [Fuzzy decision tree on feature space B. C, D, E}.
Feature: E
SM MED LRG
Feature: D
MED LRG

Fig. 9. Fuzzy decision tree on feature subsBt £7}.

(8]

9]
(20]

[11]
[12]
[13]
[14]
[15]

[16]

(17]
(18]

(19]

Many researchers had pointed out that the overloaded number[gP]
features would seriously affect the quality of inductive learning
and the accuracy on extracted rules and irrelevant features wouft!
enlarge the noise of the training set [5], [16]. Therefore, we
expect that the number of features used in the learning pha$]
can be reduced via optimal feature subset selection such thﬁg]
the performance of learning can be improved. The testing on

hand-written number recognition reported in [6] verified this ex—[

pectation under the crisp environment.

VI. CONCLUSION

24]

(25]

This paper investigates a problem of OFFSS. The computd26]
tional complexity of OFFSS is proved to be NP-hard; OFFSS is
shown to be equivalent to a search for a path in fuzzy extensiopn7]
matrix; a heuristic algorithm for OFFSS is given; and the feasi-
bility and simplicity of the proposed algorithm are demonstrated®®
by applications of OFFSS to fuzzy decision tree induction angag]

by comparison with three different feature selection technique[sé 0

developed recently.
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