
D.S. Yeung et al. (Eds.): ICMLC 2005, LNAI 3930, pp. 871 – 879, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Parallel Genetic Algorithm for Solving the Inverse
Problem of Support Vector Machines

Qiang He, Xizhao Wang, Junfen Chen, and Leifan Yan

Faculty of Mathematics and Computer Science,
Hebei University, Baoding 071002, Hebei, China
{heq, wangxz}@mail.hbu.edu.cn

Abstract. Support Vector Machines (SVMs) are learning machines that can
perform binary classification (pattern recognition) and real valued function ap-
proximation (regression estimation) tasks. An inverse problem of SVMs is how
to split a given dataset into two clusters such that the maximum margin between
the two clusters is attained. Here the margin is defined according to the separat-
ing hyper-plane generated by support vectors. This paper investigates the in-
verse problem of SVMs by designing a parallel genetic algorithm. Experiments
show that this algorithm can greatly decrease time complexity by the use of par-
allel processing. This study on the inverse problem of SVMs is motivated by
designing a heuristic algorithm for generating decision trees with high generali-
zation capability.

1 Introduction

Support vector machines (SVMs) are a classification technique of machine learning
based on statistical learning theory [1, 2]. Considering a classification problem with
two classes, SVMs are used to construct an optimal hyper-plane that maximizes the
margin between two classes. According to Vapnik statistical learning theory [1, 3],
the maximum of margin implies an extraordinary generalization capability and good
performances of SVM classifiers [4, 5]. So far, SVMs have already been successfully
applied to many real fields. This paper aims to make preparation for SVM’s applica-
tion to decision tree generation.

Given a training set, a general procedure for generating a decision tree can be
briefly described as follows:

The entire training set is first considered as the root node of the tree. Then the root
node is split into two sub-nodes based on appropriate heuristic information. If the
instances in a sub-node belong to one class, then the sub-node is regarded as a leaf
node, else we continue to split the sub-node based on the heuristic information. This
process repeats itself until all leaf nodes are generated. The most popular heuristic
information used in the decision tree generation is the minimum entropy. This heuris-
tic information has many advantages such as small leaf numbers and less computa-
tional effort. However, it has a serious disadvantage – the poor generalization
capability.

872 Q. He et al.

The investigation into the inverse problem of SVMs is motivated by designing a
new decision tree generation procedure to improve the generalization capability of
existing decision tree programs based on minimum entropy heuristic. Due to the rela-
tionship between the margin of SVMs and the generalization capability, the split with
maximum margin may be considered as the new heuristic information for generating
decision trees.

This paper has the following organization; Section 2 briefly reviews the basic con-
cept of support vector machines. Section 3 proposes the inverse problem of SVMs
and designs a parallel genetic algorithm to solve this problem. Section 4 gives some
experiment results to demonstrate the feasibility and effectiveness of the parallel ge-
netic algorithm, especially in the way of time complexity. And the last section briefly
concludes this paper.

2 Support Vector Machines

2.1 The Basic Problem of SVMs

Let { }1 1 2 2(,), (,), , (,)N NS x y x y x y= L be a training set, where n
ix R∈ and

{ 1,1}iy ∈ − for 1,2, ,i N= L . The optimal hyper-plane of S is defined

as () 0f x = , where

()0 0()f x w x b= ⋅ + (1)

0
0 1

N

j j jj
w y xα

=
=∑ (2)

()0 01

n i i

i
w x w x

=
⋅ = ⋅∑ is the inner product of the two vectors, where

1 2
0 0 0 0(, , ,)nw w w w= L and 1 2(, , ,)nx x x x= L . The vector 0w can be determined

according to the following quadratic programming [1]

()1 , 1

1

1
Maximum ()

2

Subject to 0; 0, 1, 2, ,

N N

i i j i j i ji i j

N

j j ij

W y y x x

y C i N

α α α α

α α

= =

=

⎧ = − ⋅⎪
⎨
⎪ = ≥ ≥ =⎩

∑ ∑

∑ L

 (3)

where C is a positive constant. The constant 0b is given by

()0
0 1

N

i i j j jj
b y x y xα

=
= − ⋅∑ (4)

Substituting (2) for 0w in (1), we have

()0
01

()
N

i i ii
f x y x x bα

=
= ⋅ +∑ (5)

 A Parallel Genetic Algorithm for Solving the Inverse Problem 873

We can identify separability of two subsets by checking whether the following ine-
qualities

()0 1; 1,2, ,i iy w x b i N⋅ + ≥ = L (6)

hold well[1].
A procedure to compute a maximum margin for two subsets is described below.

Procedure 1. The constant C in equation (3) is selected to be large at first.

Step 1. Solve the quadratic programming (3).
Step 2. Determine the separating hyper-plane (5) according to (4).
Step 3. Check the separability between two subsets according to inequalities (6).
Step 4. Let the margin be 0 if the two subsets are not separable.

Step 5. Compute the maximum margin according to ()0 01 w w⋅ for the separable

case where the vector w is determined by (2).

2.2 Generalization in Feature Space

In practice, the performance of SVMs based on the previous section may not be very
suitable for the nonlinear-separable cases in the original space. To improve the per-
formance and to reduce the computational load for the nonlinear separable datasets,
Vapnik [1] extended the SVMs from the original space to the feature space. The key
concept of the extension is that a SVM first maps the original input space into a high-
dimensional feature space through some nonlinear mapping, and then constructs an
optimal separating hyper-plane in the feature space. Without any knowledge of the
mapping, the SVM can find the optimal hyper-plane by using the dot product function
in the feature space. The dot function is usually called a kernel function. According to
the Hilbert-Schmidt theorem [1], there exists a relationship between the original space
and its feature space for the dot product of two points. That is

1 2 1 2() (,)z z K x x⋅ = (7)

where it is assumed that a mapping Φ from the original space to the feature space

exists, such that 1 1()x zΦ = and 2 2()x zΦ = , and 1 2(,)K x x is conventionally

called a kernel function satisfying the Mercer theorem [1]. Usually the following three
types of kernel functions can be used: polynomial with degree p, radial basis function

and sigmoid function [1]. Replacing the inner product ()1 2x x⋅ in (5) with the kernel

function ()1 2,K x x , the optimal separating hyper-plane becomes the following

form:

()0
01

() ,
N

i i ii
f x y K x x bα

=
= +∑ (8)

It is worth noting that the conclusion of section 2.1 is still valid in the feature space if

we substitute ()1 2,K x x for the inner product ()1 2x x⋅ .

 SVMsof

874 Q. He et al.

3 An Inverse Problem of SVMs and Its Solution Based on Genetic
Algorithms

For a given dataset for which no class labels are assigned to instances, we can ran-
domly split the dataset into two subsets. Suppose that one is the positive instance
subset and the other is the negative instance subset, we can calculate the maximum
margin between the two subsets according to Procedure 1 where the margin is equal
to 0 for the non-separable case. Obviously, the calculated margin depends on the
random split of the dataset. Our problem is how to split the dataset such that the mar-
gin calculated according to Procedure 1 attains the maximum.

It is an optimization problem. We mathematically formulate it as follows:

Let { }1 2, , , NS x x x= L be a dataset and n
ix R∈ for 1,2, ,i N= L ,

{ }| is a function from to {1, 1}f f SΩ = − . Given a function f ∈Ω , the dataset

can be split into two subsets and the margin can then be calculated by Procedure 1.
We denote the calculated margin (the functional) by Margin()f . Then the inverse

problem is formulated as

()Maximum Margin()f f∈Ω (9)

Due to the exponentially increased complexity, it is not feasible to enumerate all
possible functions in Ω for calculating their margins according to Procedure 1. It is
difficult to give an exact algorithm for solving the optimization problem (9). Here we
can design a genetic algorithm to solve (9).

First, we briefly review the main steps of a general simple genetic algorithm [9].

Procedure 2. A general procedure of genetic algorithms for solving an optimization
problem with several variables:

Step 1. Determine the encoding mechanism for representing the optimization prob-
lem’s variables.

Step 2. Initialize the population, which contains a number of encoded samples
(called chromosomes) based on the encoding mechanism.

Step 3. Specify the fitness function, which normally takes the values in [0, 1] and is
defined in the set of all chromosomes.

Step 4. Select parents (chromosomes) from the current population according to
their fitness values.

Step 5. Produce their offspring via the crossover operation, which usually means to
partially exchange genes of two parent chromosomes.

Step 6. Conduct mutation operation, i.e., genes of the offspring chromosome
change with a certain probability.

Step 7. Consider all offspring as the new population and check whether a termina-
tion criterion is reached. If yes, go to step 8, else, go to step 4.

Step 8. Stop.

 875

Then, we can design a genetic algorithm to solve the proposed inverse problem of
SVMs according to the above Procedure 2.

Procedure 3. A general procedure of genetic algorithms for solving the proposed
inverse problem of SVMs:

Step 1. Each function f ∈Ω corresponds to a binary partition of the dataset S.

Therefore each f can be viewed as a N-dimensional vector such as 100011101L01
with N bits. Each bit taking value 0 or 1 is regarded as a gene corresponding to an
instance in S. Thus, each chromosome (a bit string such as 100011101L01) consist-
ing of N genes represents a function in Ω where, if a bit is 1, it means that the corre-
sponding instance is positive; and a value 0 represents that the corresponding instance
is negative. The fixed length of each chromosome’s coding is N, the number of in-
stances of the initial dataset.

Step 2. Given an integer M denoting the size of the population, uniformly generate
N random numbers (0 or 1), which constitute a chromosome. Repeat M times and
hence generate M chromosomes.

Step 3. Noting that each chromosome can determine a training set given in Section
2, we define the fitness value for each chromosome as the margin value computed by
Procedure 1. Here the fitness value is 0 if the chromosome corresponds to a non-
separable training set, and is the real margin of the SVM if the chromosome corre-
sponds to a separable training set.

Step 4. Reproduction. This is a process in which individual strings are copied in
terms of their fitness values. In traditional textbook manner, the reproduction is con-
ducted by a technique of roulette-wheel parent selection, which indicates that the
probability with which an individual is selected is proportional to its fitness value.
This technique can be implemented algorithmically as follows [7]:

(1) Let the population be{1,2, , }ML and ()f j denotes the fitness value of the j-th

individual. Compute
1

() (1,2, ,)
i

i j
s f j i M

=
= =∑ L .

(2) Generate a random number α uniformly distributed in the interval [0, Ms].

(3) Return the first individual whose fitness value plus the values of fitness of the
previous individuals are greater than or equal to α . That is, this step returns the k-th

individual with the property 1k ks sα− < ≤ .

The reproduction is used to generate M parent candidates. We suppose that the M
parent candidates contain the individual with the highest fitness. (If not, we can spec-
ify the individual with the highest fitness as a candidate).

Step 5. Crossover. Reproduction results in a mating pool consisting of M parent
candidates. Then 2M pairs of parents are randomly selected from the pool. The

crossover site (a bit position) is also selected randomly. The crossover happens with

probability cp for each selected pair. This crossover operator leads to 2M pairs of

offspring, i.e., M new chromosomes.
Step 6. Mutation. It means that a bit of an offspring chromosome is replaced with a

randomly chosen bit. The mutation is performed with probability mp for each chro-

mosome.

A Parallel Genetic Algorithm for Solving the Inverse Problem SVMsof

876 Q. He et al.

Step 7. Calculate the M parents’ fitness values and place them with their M chil-
dren to form a set of 2M chromosomes. Sort the 2M chromosomes based on their
fitness values from big to small, and then choose the first M chromosomes with the
highest fitness values as the population of the next generation.

Step 8. The predefined maximum number of generations, T, is chosen as the termi-
nation criterion. If the generation number is less T then go to Step 4; else go to Step 9.

Step 9. Output the first chromosomes and its fitness value. According to this chro-
mosome, in which value 1 corresponds to a positive instance and value 0 corresponds
to a negative instance, the final partition (split) of the initial dataset is obtained. And
the outputted fitness value is the maximum margin. Stop.

The decision function f obtained through the above algorithm denotes the optimal
or approximately optimal solution of problem (9) when the parameters in GA are
selected properly. In addition, it is worth mentioning that genetic algorithms cannot
be guaranteed to obtain the optimal solution every time, so it is expected they will
have a big probability for obtaining the optimal or approximately optimal solution. To
raise the probability of obtaining the optimal solution, one needs to increase the popu-
lation size or the maximum number of generations, which obviously is at the price of
increased running time.

One main reason that the proposed genetic algorithm has large time complexity is
the process of solving quadratic programs; that is, calculating each chromosome’s
fitness value. How to reduce the time complexity of the algorithm (for large databases
especially) is a very important issue to be investigated. Here we use the method of
parallel processing on Linux Clusters to solve this problem.

Procedure 4. A parallel procedure of genetic algorithms for solving the proposed
inverse problem of SVMs:

Step 1. Choose the same encoding mechanism as Procedure 3. Specify the penalty
factor C, the maximum number of generations MaxG, the population size M, the

crossover probability cp , the mutation probability mp and the fixed length of each

chromosome’s coding N, which is the number of instances of the initial dataset.
Step 2. Let the master process generate M chromosomes as the first population on

the master node of Linux Clusters.
Step 3. Calculate each chromosome’s fitness value on slave nodes by parallel

method, that is, the margin value computed by Procedure 1. We describe it in detail
by pseudo codes as follows:

for i = 1 to numtask par-do
calculate each chromosome’s fitness value;

end for
This is a parallel statement, where numtask is the number of chromosomes proc-

essed by every slave process on the corresponding slave node, and i is the number of
slave processes (slave node). It is important that a synchronization mechanism is used
in order to avoid any problems when parallel computation is completed.

Step 4. Reproduction. This is the same as Procedure 3; however, it is only done on
the master node. The reproduction will generate another set of M parent candidates,
which are put into the buffer called a mating pool.

 877

Step 5. Crossover. This operation is just for the M candidates from the mating
pool, and is done on the master node.

Step 6. Mutation. It is also for the M candidates and is done on the master node.
Step 7. Calculate the M candidates’ fitness values as in Step 3. In succession, sort

the 2M chromosomes based on their fitness values from big to small, and then choose
the first M chromosomes with the highest fitness values as the population of the next
generation.

Step 8. If the generation number is less MaxG then go to Step 4; else go to Step 9.
Step 9. Output the final result, the first chromosome and its fitness value, i.e., the

best chromosome and the maximum margin. Stop.

Here our parallel algorithm is a global single-population master-slave genetic algo-
rithm [8]. In a master-slave genetic algorithm there is a single population (just as in a
simple genetic algorithm), but the process to get each chromosome’s fitness value,
which consumes more time, is distributed among slave nodes and done by means of
parallel processing. Since in this type of parallel genetic algorithm, selection and
crossover consider the entire population, it is also known as a global parallel genetic
algorithm.

4 Experimental Results

Experimental environment refers to Table 1(a) & (b).
To verify the effectiveness of the parallel genetic algorithm, we construct a small

dataset with 20 2-dimensional points (Table 2). The parameters specified in the paral-
lel algorithm are shown in Table 3. Table 4 is the experimental results of the above
dataset on the original space for the parallel genetic algorithm, which shows the rela-
tionship between the running time and the number of computing nodes. From Table 4
one can see that the running time of the parallel genetic algorithm is significantly
reduced with the number of computing nodes increased.

A well-known dataset called Iris [9] is selected to verify the advantage of the paral-
lel algorithm. We used 50 samples of the dataset (25 from the second class and an-
other 25 from the third class) for the verification. Table 5 shows the running time
change with the increase of computing nodes. From Table 5 we observe that the run-
ning time rapidly decreases with the computing nodes. The decrease is significant,
because the process to get each chromosome’s fitness value, which has larger time
complexity, is done by means of parallel processing.

Table 1(a). Node devices configuration

CPU Intel Pentium 4 Xeon 3.06GHz ×2

Memory 512MB DDR
Bus PCI-X
Disk 80G IDE

A Parallel Genetic Algorithm for Solving the Inverse Problem SVMsof

878 Q. He et al.

Table 1(b). Cluster configuration

No. of computing nodes 16
No. of management nodes 2
Network 100M-Ethernet, 2G-Myrinet
Operating system Redhat 9.0
Programming environment MPICH

Table 2. A small dataset

Case Feature1 Feature2 Case Feature1 Feature2
1 0.116 0.710 11 0.422 0.306
2 0.248 0.860 12 0.574 0.396
3 0.362 0.798 13 0.748 0.308
4 0.254 0.642 14 0.560 0.194
5 0.116 0.532 15 0.598 0.308
6 0.150 0.852 16 0.656 0.512
7 0.188 0.760 17 0.626 0.562
8 0.282 0.750 18 0.766 0.436
9 0.168 0.640 19 0.780 0.562
10 0.358 0.640 20 0.666 0.398

Table 3. Parameters in genetic algorithm

POPSIZE=90 Size of population
PC=0.7 Probability of crossover
PM=0.6 Probability of mutation
NB=0.3 Gen mutation proportion
MAXGENERATION=20 Maximum generation
C=100 Penalty factor

Table 4. Experimental results on the original space of the dataset (Table 2)

No. of computing nodes Time (minutes) The best margin
3 9.567 0.421
6 5.825 0.421

15 4.507 0.421

Table 5. Running time with an increase of computing nodes in the Iris dataset

No. of computing nodes 3 6 9 10 15

Time (minutes) 69.971 35.185 28.956 27.125 22.048

 879

5 Concluding Remarks

Motivated by design of a new heuristic procedure of generating decision trees with
higher generalization capability, a genetic algorithm can be used to solve an inverse
problem of SVMs, but its time complexity is larger. To overcome this disadvantage,
this paper proposes an improved version, the parallel genetic algorithm, which can
reduce time complexity significantly.

Acknowledgement

This paper is supported by the National Natural Science Foundation of China(Project
No. 60473045) and the Young Research Fund of Hebei University.

References

1. V. N. Vapnik, Statistical learning theory, New York, Wiley, 1998, ISBN: 0-471-03003-1
2. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York,

2000, ISBN: 0-387-98780-0
3. V. N. Vapnik, An Overview of Statistical Learning Theory, IEEE Transactions on Neural

Networks, Vol. 10, No.5, Pages 88 - 999, 1999.
4. B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin

classifiers,” in Proc. Fifth Annual Workshop on Computational Learning Theory. ACM
Press, Pittsburgh. Guyon, D. Haussler, Ed., 1992, pp. 144-152.

5. R. Schapire, Y. Freund, P. Bartlett, and W. Sun Lee, “Boosting the margin: A new explana-
tion for the effectiveness of voting methods,” Ann. Statist., vol. 26, no. 5, pp. 1651–1686,
1998

6. J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony, “Structural risk mini-
mization over data-dependent hierarchies,” IEEE Trans. Inform. Theory, vol. 44, pp. 1926–
1940, Sept. 1998

7. Chin-Teng Lin and C.S. George Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to
Intelligent Systems, Prentice Hall PTR, 1996, 797 pages ,ISBN 0-13-235169-2.

8. Erick Cantú-Paz, “A survey of parallel genetic algorithms,” Tech. Rep., The University of
Illinois, 1997, IlliGAL Report No. 97003, FTP address: ftp://ftpilligal.ge.uiuc.edu/pub/
papers/IlliGALs/97003.ps.Z.

9. UCI Repository of machine learning databases and domain theories. FTP address:
ftp://ftp.ics.uci.edu/pub/machine-learning-databases.

A Parallel Genetic Algorithm for Solving the Inverse Problem SVMsof

	Introduction
	Support Vector Machines
	The Basic Problem of SVMs
	Generalization in Feature Space

	An Inverse Problem of SVMs and Its Solution Based on Genetic Algorithms
	Experimental Results
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

