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Abstract—The fuzzy-rough set (FRS) methodology, as a useful tool to handle discernibility and fuzziness, has been widely studied.

Some researchers studied on the rough approximation of fuzzy sets, while some others focused on studying one application of FRS:

attribute reduction (i.e., feature selection). However, constructing classifier by using FRS, as another application of FRS, has been less

studied. In this paper, we build a rule-based classifier by using one generalized FRS model after proposing a new concept named as

“consistence degree” which is used as the critical value to keep the discernibility information invariant in the processing of rule

induction. First, we generalized the existing FRS to a robust model with respect to misclassification and perturbation by incorporating

one controlled threshold into knowledge representation of FRS. Second, we propose a concept named as “consistence degree” and by

the strict mathematical reasoning, we show that this concept is reasonable as a critical value to reduce redundant attribute values in

database. By employing this concept, we then design a discernibility vector to develop the algorithms of rule induction. The induced

rule set can function as a classifier. Finally, the experimental results show that the proposed rule-based classifier is feasible and

effective on noisy data.

Index Terms—Knowledge-based systems, fuzzy-rough hybrids, rule-based classifier, IF-THEN rule.

Ç

1 INTRODUCTION

REAL-WORLD applications in the areas of artificial intelli-
gence, such as pattern recognition and machine learn-

ing, require that their tools be able not only to reduce
dimensionality of large databases, but also build classifiers
on classification problems. The fuzzy-rough set (FRS)
methodology [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17] is one widely studied class of
tool for reducing database dimensionality (also known as
attribute reduction) and building classifiers [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33]. There have been some approaches proposed that used
FRS to build classifiers but most of the resultant classifiers
either required the support of other classifiers or had not
been shown to have a mathematical foundation or were not
robust to misclassification or perturbation [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45].

The approaches of classifier building with either Rough

Sets (RSs) or FRS can be roughly divided into three

categories. The first category has been to use FRS (or RS)

as a preprocessing tool [35], [36], [37], [38]. For example, in

[35], FRS was not used to induce rules, but merely to reduce

features. This was a two-step process in which each of the
steps was independent. Its first step used RS to select
features and the second step built a rule-based classifier by
extracting some fuzzy rules from a perceptron network
classifier in the reduced space.

The second category uses RS or FRS as part of classifier-
designing tool [39], [40], [41]. The fuzzy-rough classification
tree classifier [41], for example, used fuzzy-rough hybrids to
qualify the dependency of decision attributes in the decision
tree generation mechanism.

The third category uses fuzzy-rough hybrids to construct
classifiers. It does so without the assistance of other classifiers
[42], [43], [44], [45]. However, the resultant classifiers in this
category have some observable limitations. For example, the
classifier designed using RS in [42], [43] could only operate
effectively on the data sets containing discrete values and
they needed perform a discretization step beforehand on the
data sets containing real-valued features. Although Wang
et al. [45] used RS to design a rule-based classifier without
discretization and performed well on some data sets, they
did not consider the theoretical structures of the lower and
upper approximations, such as topologic and algebraic
properties, or use them in knowledge discovery. That is,
there exist one gap between the existing FRS methodology
and its application of classifier building.

In this paper, the focus is on narrowing this gap by
building a classifier using the FRS methodology. However,
we find that it is not an effective selection of building
classifier using the existing FRS since it was not a robust
model in the real applications. Because we have found that
the existing FRS was sensitive to misclassification and
perturbation [44]. Therefore, it is necessary to design a
robust classifier based on the FRS methodology.

In this paper, we propose a rule-based classifier by using a
generalized FRS framework. First, we generalize FRS to a
robust model named as Generalized Fuzzy-rough Sets
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(denoted by GFRS), which is used as the foundation to build a
rule-based classifier. Second, we propose the consistence
degree as a critical point to reduce attribute values and the
strict mathematical reasoning shows that this concept is
reasonable by keeping it invariant to reduce attribute values.
Further, we propose a discernibility vector to find all
attribute value reductions and investigate the structure of
attribute value reductions. The above proposed concepts, i.e.,
consistence degree and discernibility vector, are the main
contribution of this paper. Forth, we develop some heuristic
algorithms, which achieve the near-optimal attribute value
reductions and near-minimal rule set, to build a rule-based
classifier. Finally, we compare our proposed method with
other rule-based classifiers: RS, FRS, and fuzzy decision tree.
The experimental results show the feasibility and effective-
ness of our proposed method on noisy data.

The rest of this paper is organized as follows: Section 2
reviews FRS. Section 3 generalizes fuzzy approximation
operators to a robust model named as GFRS. Section 4 then
proposes the concepts of attribute value reduction based on
GFRS and designs a discernibility vector to investigate the
structure of attribute value reductions. Also, it proposes a
rule induction algorithm. In Section 5, the experimental
comparisons between our proposed method and other rule-
based classifiers are given. Section 6 concludes this paper.

2 REVIEW OF FUZZY-ROUGH SETS

Theories of RSs and fuzzy sets (FSs) are distinct and
complementary to handle vagueness and uncertainty [4],
[16]. RS described the idea of indiscernibility between
objects in a set, while FS modeled the ill-definition of the
boundary of a subclass of this set. That is to say, they were
not rival theories but captured two distinct aspects of
imperfection in knowledge [4]. Many researchers were then
inspired to combine them to handle indiscernibility and
fuzziness [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17]. The results of these studies led to
the instruction of the notions of FRS.

Generally speaking, FRS was composed of two parts.
One was knowledge representation (i.e., the rough approx-
imation of fuzzy sets), while the other was knowledge
discovery (i.e., attribute reduction and rule induction). Most
researchers focused on knowledge representation of FRS by
using two approaches: the constructive and axiomatic [3],
[4], [5], [6], [7], [8], [9], [10], [11], [14]. The axiomatic
approach took the fuzzy approximation operators as the
primary notion and focused on studying the mathematical
structure of FRS, such as algebraic and topologic structures.
On the contrary, the constructive approach took the
replacements of the equivalence relation, such as fuzzy
binary relation, fuzzy T-similarity relation, and fuzzy weak
equivalence partition, as the primary notion. Other notions,
such as the lower and upper approximations, were
constructed by using the replacements.

The summarization of FRS has been done in [1], [9], [13],
[23] and interested readers can refer to them. In this paper,
we just review some researches of FRS summarized in [9],
[23], which are helpful for us to build a rule-based classifier.
As preliminaries, a fuzzy decision table used as the study
platform of FRS is formulated as follows:

2.1 Fuzzy Decision Table

Let U be a nonempty set with finite objects. With every
object, we associate a set of condition attributes R and a set
of decision attributes D. The pair ðU;R [DÞ is called a
decision table, denoted by DS. If some attributes in DS are
fuzzy attributes, the decision table is called fuzzy decision
table, denoted by FD ¼ ðU;R [DÞ. Here, fuzzy attributes
mean the attributes with real number values since these
values can be transferred to fuzzy values. For simplicity, we
still use R to represent the set of fuzzy attributes.

In a fuzzy decision table FD ¼ ðU;R [DÞ, aðxÞ repre-
sents the value of x 2 U on the attribute a and P ðxÞ ¼
faðxÞ : a 2 P � Rg represents the subset of attribute values
of x 2 U on attribute subset P � R. With every P � R, we
associate a binary relation P ðx; yÞ called fuzzy similarity
relation of P , which is a binary relation satisfying reflexivity
(P ðx; xÞ ¼ 1), symmetry (P ðx; yÞ ¼ P ðy; xÞ), and T � tran-
sitivity (P ðx; yÞ � T ðP ðx; zÞ; P ðz; yÞÞ) for every x; y; z 2 U .
Actually, when the attribute values are symbolic, the fuzzy
similarity relation degenerates to an equivalence relation,
which generates a partition on U , denoted by U=P ¼
f½x�P j x 2 Ug, where ½x�P ¼ fy 2 U j aðxÞ ¼ aðyÞ; 8a 2 Pg is
the equivalence class containing x 2 U .

In most practical applications, condition attributes often
have real number values, while decision attributes have
symbolic values. This type of fuzzy decision table with
condition fuzzy attributes and decision symbolic attributes
is thus acted as the platform to design the rule-based
classifier by using FRS in this paper.

2.2 Fuzzy-Rough Sets

The concept of FRS was first proposed by Dubois and Prade
[3], [4], their idea was as follows: Let U be a nonempty
universe and R a fuzzy binary relation on U , F ðUÞ the fuzzy
power set of U . A fuzzy-rough set is a pair ðR�ðF Þ; R�ðF ÞÞ of
a fuzzy set F on U such that for every x 2 U ,

R�ðF ÞðxÞ ¼ infy2U maxf1�Rðx; yÞ; F ðyÞg;
R�ðF ÞðxÞ ¼ supy2U minfRðx; yÞ; F ðyÞg:

In [10], the above Dubois and Prade fuzzy-rough set was
generalized from Max;Min to a residuated implicator #
and a general triangular norm T with respect to a fuzzy
similarity relation R. The lower and upper approximation
operators of a fuzzy set A are defined as for every A 2 F ðUÞ,

RAðxÞ ¼ infu2U #ðRðu; xÞ; AðuÞÞ;
RAðxÞ ¼ supu2U T ðRðu; xÞ; AðuÞÞ:

However, another upper approximation operator was
proposed to obtain the dual approximation operator of RA
since RA and RA were not dual with each other [5].
Suppose S is the dual triangular conorm of T , define
RðAÞðxÞ ¼ supy2U �ð1�Rðx; yÞ; AðyÞÞ as another kind of
upper approximation of a fuzzy set A.

The aforementioned approximation operators can be
summarized as the following four general fuzzy approx-
imation operators. For every A 2 F ðUÞ,

. T—upper approximation operator:

RTAðxÞ ¼ supu2U T ðRðx; uÞ; AðuÞÞ;
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. S—lower approximation operator:

RSAðxÞ ¼ infu2U SðNðRðx; uÞÞ; AðuÞÞ;

. �—upper approximation operator:

R�AðxÞ ¼ supu2U �ðNðRðx; uÞÞ; AðuÞÞ;

. #—lower approximation operator:

R#AðxÞ ¼ infu2U #ðRðx; uÞ; AðuÞÞ:

This type of definition is seen as the membership
function representation of fuzzy approximation operators
since they are defined by using membership function.

From the viewpoint of granular computing, RTA and
R#A, and R�A and RSA are two pairs of approximation
operators, respectively, since they can be represented by
their individual fuzzy granules: RTx� and R�x�, where a
fuzzy point x� is defined as [8]

x�ðzÞ ¼
�; z ¼ x;
0; z 6¼ x;

�
8z 2 U:

Their granular representation is presented as follows [8]:

R#A ¼ [fRTx� : RTx� � Ag; RTA ¼ [fRTx� : x� � Ag;
RSA ¼ [fR�x� : R�x� � Ag; R�A ¼ [fR�x� : x� � Ag:

It is easy to see that there are two conditions RTx� � A
and R�x� � A in the granular representation of fuzzy

approximation operators. These conditions control which

fuzzy setsRTx� andR�x� can be included in the fuzzy lower

approximation operators R#A and RSA. Small perturbation

of RTx� and R�x� will change the result of R#A and RSA.

These show that the conditions RTx� � A and R�x� � A are

too harsh to construct the fuzzy lower approximation

operators R#A and RSA, and then, the existing FRS is

sensitive to misclassification and perturbation.
In Fig. 1, we use one demonstration graph to show the

sensitivity of the existing FRS. In R�x� � A or RTx� � A,
R�x� or RTx� can be represented by a fuzzy set (e.g., f1, f2,
and f3 in Fig. 1) and A can be represented by a rectangle.

In Fig. 1, we find that there are three kinds of inclusion
relations: f1 is included in A, most part of f2 is included in
A, and a small part of f3 is included in A. In fact, f2 should
be included in A if we ignore some small membership
degrees of f2 (these small membership degrees may be
caused by misclassification and perturbation). All these

show that two conditions RTx� � A and R�x� � A are

sensitive to misclassification and perturbation. As a result,

the knowledge representation power of FRS is weak.

3 GENERALIZATION OF FUZZY-ROUGH SETS

(GFRSs)

To make FRS less sensitive to misclassification and perturba-

tion, we generalize the existing fuzzy approximation

operators as membership function representation and

granular representation. We then prove that these two

representations are equivalent. The membership representa-

tion of the fuzzy approximation operators in FRS is general-

ized by introducing a threshold, described as follows:

Definition 3.1 (membership function representation). For

every A 2 F ðUÞ and a given threshold � 2 ½0; 1Þ, fuzzy lower

and upper approximations are, respectively, defined as follows:

R#�
AðxÞ ¼ inf

AðuÞ��
#ðRðx; uÞ; �Þ

^ inf
AðuÞ>�

#ðRðx; uÞ; AðuÞÞ; 8x 2 U;
ðD3:1:1Þ

RT �
AðxÞ ¼ sup

AðuÞ�Nð�Þ
T ðRðx; uÞ; Nð�ÞÞ

_ sup
AðuÞ<Nð�Þ

T ðRðx; uÞ; AðuÞÞ; 8x 2 U;
ðD3:1:2Þ

RS�
AðxÞ ¼ inf

AðuÞ��
SðNðRðx; uÞÞ; �Þ

^ inf
AðuÞ>�

SðNðRðx; uÞÞ; AðuÞÞ; 8x 2 U;
ðD3:1:3Þ

R��AðxÞ ¼ sup
AðuÞ�Nð�Þ

�ðNðRðx; uÞÞ; Nð�ÞÞ

_ sup
AðuÞ<Nð�Þ

�ðNðRðx; uÞÞ; AðuÞÞ; 8x 2 U:
ðD3:1:4Þ

In this paper, we focus on the pair of approximation

operators: RS�
A and R��A. The properties and applications

of another pair of approximation operators RT �
A and R#�

A

have been studied in another work [46].
Here, we take (D 3.1.3) as an example to show the

difference between FRS and GFRS, which is helpful for

readers to understand Definition 3.1. In FRS, the S-lower

approximation operator is defined as

RSAðxÞ ¼ infu2USðNðRðx; uÞÞ; AðuÞÞ:

It can be equivalently represented as (D’3.1.3):

RSAðxÞ ¼ inf
AðuÞ��

SðNðRðx; uÞÞ; AðuÞÞ

^ inf
AðuÞ>�

SðNðRðx; uÞÞ; AðuÞÞ;
ðD03:1:3Þ

RS�
AðxÞ ¼ inf

AðuÞ��
SðNðRðx; uÞÞ; �Þ

^ inf
AðuÞ>�

SðNðRðx; uÞÞ; AðuÞÞ:
ðD3:1:3Þ
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Comparing (D 3.1.3) and (D’3.1.3), we find that in GFRS,

a threshold replaces the membership degree AðuÞ when it

meets the condition AðuÞ � �. By controlling this threshold,

some misclassification and perturbation can be ignored. In

the following, we would like further explain this point by

using the generalized granular representation.

The generalization of the granular representation is

obtained by incorporating a concept of fuzzy cut set to the

granular representation of RSA and R�A. The fuzzy �-cut

set is defined as

f�ðxÞ ¼ fðxÞ; fðxÞ > �;
0; fðxÞ � �;

�

here, f is the fuzzy set defined on U .

Definition 3.2 (Granular representation). For every A 2
F ðUÞ and a given threshold � 2 ½0; 1Þ, fuzzy lower and upper

approximations are, respectively, defined as follows:

RS�
A ¼ [fR�x� : ðR�x�Þ� � Ag; ðD3:2:1Þ

R��A ¼ [fR�x� : x� � ANð�Þg; where

ANð�Þ ¼
Nð�Þ; AðxÞ � Nð�Þ;
AðxÞ; otherwise:

� ðD3:2:2Þ

Definition 3.2 shows that a fuzzy �-cut set is introduced in

the granular representation, and then, the condition R�x� �
A in FRS is relaxed by ðR�x�Þ� � A in GFRS. This condition

ðR�x�Þ� � A is less sensitive to misclassification and

perturbation since small perturbation of R�x� will not

change the result of RS�
A. In the following, we use one

demonstration graph to illustrate this point (see Fig. 2).
As compared to Fig. 1, Fig. 2 cuts those fuzzy sets f1, f2,

and f3 by a gray rectangle. Fig. 2 shows that after we cut
some small membership degrees, f1 and f2 are included in
A, but f3 is not included in A. This shows that when we
ignore some small misclassification and perturbation, some
more fuzzy sets are chosen to compute the fuzzy lower
approximation value. Thus, the fuzzy lower approximation
value becomes larger, and then, the fuzzy positive region
becomes larger. That is to say, the knowledge representa-
tion power becomes stronger in GFRS. All these show that
GFRS is a robust framework with respect to perturbation
and misclassification.

The membership function and granular representations
of RS�

A and R��A are equivalent, respectively, i.e., (D 3.1.3)
and (D 3.2.1), and (D 3.1.4) and (D 3.2.2) are equivalent,

respectively. We verify this fact by using the following

theorems. As preliminaries, a lemma about fuzzy granular

R��x� is described as follows:

Lemma 3.1. Let

� ¼ ð[fR�x� : ðR�x�Þ� � AgÞðxÞ ðL3:1:1Þ

for x 2 U , then the following statements hold: ðR�x�Þ� �
A; ðR�x�Þ� � A does not hold for any � > �.

[ fR�x� : x� � ANð�Þg ¼ [fR�x�0 : �0 ¼ ANð�ÞðxÞg:
ðL3:1:2Þ

Proof. (L3.1.1) By � ¼ ð[fR�x� : ðR�x�Þ� � AgÞðxÞ, there

exist t 2 ð0; 1� and y 2 U satisfying R�ytðxÞ ¼ � and

ðR�ytÞ� � A, where R�ytðxÞ ¼ �ðNðRðy; xÞÞ; tÞ. By

ðR�ytÞ� � A, we obtain if �ðNðRðy; zÞÞ; tÞ > �, then

�ðNðRðy; zÞÞ; tÞ � AðzÞ for any z 2 U .

8z 2 U;R�x�ðzÞ ¼ �ðNðRðx; zÞÞ; �Þ ¼ �ðNðRðx; zÞÞ;
�ðNðRðy; xÞÞ; tÞÞ ¼ �ðSðNðRðx; zÞÞ; NðRðy; xÞÞÞ; tÞ

� �ðNðRðy; zÞÞ; tÞ:

Thus, we have if �ðNðRðy; zÞÞ; tÞ > �, then

�ðNðRðx; zÞÞ; �Þ � AðzÞ;

i.e., ðR�x�Þ� � A holds.

Assume that ðR�x�Þ� � A for � > �, then by � ¼
ð[fR�x� : ðR�x�Þ� � AgÞðxÞ, we get � � R�x�ðxÞ ¼ �,

which contradicts the assumption � > �. Thus,

ðR�x�Þ� � A does not hold for � > �.

(L 3.1.2). If x� � ANð�Þ, then � � ANð�ÞðxÞ. Since �ð�; �Þ
is monotonically increasing in the right argument, we

have ðR�x� ¼ �ðNðRðx; zÞÞ; �ÞÞ � ðR�x�0 ¼ �ðNðRðx; zÞÞ;
�0Þ for x� � ANð�Þ and �0 ¼ ANð�ÞðxÞ. Thus, ð[fR�x�:

x� � ANð�ÞgÞ � ð[fR�x�0 : �0 ¼ ANð�ÞðxÞgÞ. It is straight-

forward to see that ð[fR�x� : x� � ANð�ÞgÞ 	 ð[fR�x�0 :

�0 ¼ ANð�ÞðxÞgÞ. Hence, ð[fR�x� : x� � ANð�ÞgÞÞ ¼
ð[fR�x�0 : �0 ¼ ANð�ÞðxÞgÞ. tu

In the following, we describe and prove two theorems

which show that the membership function representation

and granular representation of RS�
A and R��A are

equivalent.

Theorem 3.1. For every fuzzy set A 2 F ðUÞ, the following two

formulas are equal:

inf
AðuÞ��

SðNðRðx; uÞÞ; �Þ ^ inf
AðuÞ>�

SðNðRðx; uÞÞ; AðuÞÞ; 8x 2 U ;

ðT3:1:1Þ

[ fR�x� : ðR�x�Þ� � Ag: ðT3:1:2Þ

Proof. 8x 2 U , we need to prove

inf
AðuÞ��

SðNðRðx; uÞÞ; �Þ ^ inf
AðuÞ>�

SðNðRðx; uÞÞ; AðuÞÞ

¼ [fR�x� : ðR�x�Þ� � AgðxÞ:
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Let � ¼ [fR�x� : ðR�x�Þ� � AgðxÞ, then ðR�x�Þ� � A,

but ðR�x�Þ� � A does not hold for � > � (by Lemma 3.1).

Thus,

8u 2 U; ðR�x�Þ�ðuÞ � AðuÞ

,
�ðNðRðx; yÞÞ; �Þ � AðuÞ; AðuÞ > �

�ðNðRðx; yÞÞ; �Þ � �; AðuÞ � �

�
,

,

inffc 2 ½0; 1�; SðNðRðx; yÞÞ; cÞ � �g � AðuÞ;
AðuÞ > �

inffc 2 ½0; 1�; SðNðRðx; yÞÞ; cÞ � �g � �;
AðuÞ � �

8>>><
>>>:

,

SðNðRðx; yÞÞ; AðuÞÞ � �; AðuÞ > �;

SðNðRðx; yÞÞ; �Þ � �; AðuÞ � �:

�

Let

� ¼ inf
AðuÞ��

SðNðRðx; uÞÞ; �Þ ^ inf
AðuÞ>�

SðNðRðx; uÞÞ; AðuÞÞ;

then we get � � �. Assume that � > �, then ðR�x�Þ� � A.

Thus, 9u0,

ðR�x�Þ�ðu0Þ > Aðu0Þ

,
�ðNðRðx; yÞÞ; �Þ > Aðu0Þ; Aðu0Þ > �

�ðNðRðx; yÞÞ; �Þ > �; Aðu0Þ � �

�
,

,
SðNðRðx; yÞÞ; Aðu0ÞÞ < �; Aðu0Þ > �;

SðNðRðx; yÞÞ; �Þ < �; Aðu0Þ � �:

�

We get

� ¼ inf
AðuÞ��

SðNðRðx; uÞÞ; �Þ

^ inf
AðuÞ>�

SðNðRðx; uÞÞ; AðuÞÞ < �:

It contradicts the assumption � > �. Thus, we get

� ¼ �, i.e.,

8x 2 U; inf
AðuÞ��

SðNðRðx; uÞÞ; �Þ ^ inf
AðuÞ>�

SðNðRðx; uÞÞ; AðuÞÞ

¼ [fR�x� : ðR�x�Þ� � AgðxÞ:
ut

Theorem 3.2. For every A 2 F ðUÞ, the following two formulas

are equal:

sup
AðuÞ�Nð�Þ

�ðNðRðx; uÞÞ; Nð�ÞÞ

_ sup
AðuÞ<Nð�Þ

�ðNðRðx; uÞÞ; AðuÞÞ; 8x 2 U ;
ðT3:2:1Þ

[ fR�x� : x� � ANð�Þg: ðT3:2:2Þ

Proof. By Lemma 3.1, we get [fR�x� : x� � ANð�Þg ¼
[fR�x�0 : �0 ¼ ANð�ÞðxÞg. Then, we have

ð[fR�u�0 : �0 ¼ ANð�ÞðuÞgÞðxÞ ¼ supfR�u�0 ðxÞ :

�0 ¼ ANð�ÞðuÞg

since ANð�ÞðxÞ ¼
Nð�Þ; AðuÞ � Nð�Þ
AðuÞ; AðuÞ

�� �

¼ sup
AðuÞ�Nð�Þ

fR�uNð�ÞðxÞg _ sup
AðuÞ<Nð�Þ

fR�uAðuÞðxÞg

¼ sup
AðuÞ�Nð�Þ

�ðNðRðx; uÞÞ; Nð�ÞÞ

_ sup
AðuÞ<Nð�Þ

�ðNðRðx; uÞÞ; AðuÞÞ:

Hence, 8x 2 U ,

sup
AðuÞ�Nð�Þ

�ðNðRðx; uÞÞ; Nð�ÞÞ

_ sup
AðuÞ<Nð�Þ

�ðNðRðx; uÞÞ; AðuÞÞ

¼ ð[fR�x� : x� � ANð�ÞgÞðxÞ:
ut

Theorems 3.1 and 3.2 show that the membership

representation and granular representation of RS�
A and

R��A are equivalent. They are the key theorems for us to

build the rule-based classifier using GFRS since they are the

theoretical foundation to design the discernibility vector

approach. Without them, the discernibility vector cannot be

designed in GFRS.

4 BUILDING A RULE-BASED CLASSIFIER

This section aims to develop a methodology for building a
rule-based classifier from a fuzzy decision table by using
GFRS. This methodology is composed of two parts: first
attribute value reduction, and then, rule induction from the
reduced decision table. Here, the rules are IF-THEN
production rules.

4.1 Attribute Value Reduction

The consistence between two objects means that the objects
with similar condition attributes belong to the same
decision classes. In the following, we present a theorem
which describes in what condition two objects are consis-
tent in a fuzzy decision table.

Theorem 4.1. Given two objects x and y (y 6¼ x) in FD ¼
ðU;R [DÞ, if NðRðx; yÞÞ < RS½x�DðxÞ, then ½x�DðyÞ ¼ 1.

Proof. We prove it by contradiction. Assume that ½x�DðyÞ ¼
0, then RS½x�DðxÞ ¼ infu2U SðNðRðx; uÞÞ; ½x�DðuÞÞ �
SðNðRðx; yÞÞ; 0Þ ¼ NðRðx; yÞÞ. This contradicts the given
condition, and then, we get ½x�DðyÞ ¼ 1. tu

Theorem 4.1 shows that if the distance between two
objects is smaller than a certain value RS½x�DðxÞ (NðRðx; yÞÞ
can be seen as one kind of distance between the objects x
and y), then these objects belong to the same decision
classes. If the distance between two objects is bigger than or
equal to this certain value, then they may belong to different
decision classes. That is, this certain value is the critical
value to keep two objects consistent. Since misclassification
and perturbation are available in a fuzzy decision table, this
critical value should be enlarged to adjust the robust
framework of FRS.
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In this paper, we enlarge the critical value to RS�
½x�DðxÞ

since it is the enlarged value of RS½x�DðxÞ in the proposed
robust framework GFRS, we then obtain the following
statement “if the distance between the objects x and y are
smaller than the value RS�

½x�DðxÞ, then these two objects
are consistent if we ignore some inconsistent objects caused
by misclassification or perturbation. That is to say, if
NðRðx; yÞÞ < RS�

½x�DðxÞ, then ½x�DðyÞ ¼ 1; if NðRðx; yÞÞ �
RS�
½x�DðxÞ, then ½x�DðyÞ ¼ 0 may happen. It is clear that

RS�
½x�DðxÞ is the critical value to keep the consistence of the

object x with other objects if we ignore some misclassifica-
tion and perturbation. Thus, we define the consistence
degree of an object in a fuzzy decision table as follows:

Definition 4.1 (consistence degree). Given an object x in
FD ¼ ðU;R [DÞ, let

ConR;�ðDÞðxÞ ¼ RS�
½x�DðxÞ; ConR;�ðDÞðxÞ

is then called the consistence degree of x in FD ¼ ðU;R [DÞ.

Definition 4.1 shows that the consistence degree of each
object gets its value at the lower approximation of its
corresponding decision class.

Keeping the consistence degree invariant, some redun-
dant attribute values can be reduced. That is to say, the
reduction of attribute values does not cause new indiscern-
ibility information. This allowed the fuzzy decision table to
retain the main information. In the following, we use this
idea in proposing the concept of attribute value reduction in
FD ¼ ðU;R [DÞ.
Definition 4.2 (attribute value reduction). Given an object x

in FD ¼ ðU;R [DÞ, if the subset P � R satisfies the
following two statements:

ConR;�ðDÞðxÞ ¼ ConP;�ðDÞðxÞ; ðD4:2:1Þ

8b 2 P;ConR;�ðDÞðxÞ > ConfP�fbgg;�ðDÞðxÞ: ðD4:2:2Þ

Then, P ðxÞ ¼ faðxÞ : a 2 Pg is called the attribute value
reduction of x 2 U .

The attribute value aðxÞ 2 P ðxÞ � RðxÞ is dispensable in
P ðxÞ if ConR;�ðDÞðxÞ ¼ ConP�fag;�ðDÞðxÞ; otherwise, it is
indispensable. If all attribute values in P ðxÞ are indispen-
sable for the object x, then P ðxÞ is independent for x.

Definition 4.3 (attribute value core). Given an object x in
FD ¼ ðU;R [DÞ, the collection of the indispensable attribute
values in RðxÞ is the attribute value core of x, denoted by
Core�ðxÞ.

Definitions 4.2 and 4.3 show that the proposed attribute
value reduction and core have similar key idea of attribute
value reduction and core in RS. That is, attribute value
reduction is the minimal subset keeping the discernable
information of one object invariant, attribute value core is the
collection of those important attribute values in an object.

In the following, we study the structure of attribute value
reductions and core. As preliminaries, we present two
lemmas as follows:

Lemma 4.1. In a fuzzy decision table FD ¼ ðU;R [DÞ, if
ðR�x�Þ� � ½z�D, then ðR�x�Þ� � ½x�D.

Proof. If ½z�D ¼ ½x�D, it is straightforward to get
ðR�x�Þ� � ½x�D. If ½z�D 6¼ ½x�D, we have R�x�ðxÞ � � for
x 62 ½z�D, i.e., � � �. When � � �, we get ððR�x�Þ� ¼
�Þ � ½x�D. tu

Lemma 4.2. For two T -similarity relations R and P , if
8x; u 2 U;Rðx; uÞ � P ðx; uÞ, then the following statements
hold: (L 4.2.1) R#�

A 	 P#�A; (L 4.2.2) RT �
A � PT �

A.

Proof.

8x; u 2 U;Rðx; uÞ � P ðx; uÞ ) inf
AðuÞ��

#ðRðx; uÞ; �Þ

^ inf
AðuÞ>�

#ðRðx; uÞ; AðuÞÞ � inf
AðuÞ��

#ðP ðx; uÞ; �Þ

^ inf
AðuÞ>�

#ðP ðx; uÞ; AðuÞÞ

ðL4:2:1Þ

(By the antimonotonicity of #ð�; �Þ in the left argument)
) R#�

A 	 P#�A.

8x; u 2 U;Rðx; uÞ � P ðx; uÞ ) sup
AðuÞ�1��

T ðRðx; uÞ; 1� �Þ

^ sup
AðuÞ<1��

T ðRðx; uÞ; AðuÞÞ

� sup
AðuÞ�1��

T ðP ðx; uÞ; 1� �Þ ^ sup
AðuÞ<1��

T ðP ðx; uÞ; AðuÞÞ

ðL4:2:2Þ

(By the monotonicity of T ð�; �Þ in both arguments)
) RT �

A � PT �
A. tu

Theorem 4.2. Given x 2 U and P � R in FD ¼ ðU;R [DÞ,
the following two statements are equivalent:

. (T 4.2.1) P ðxÞ contains the attribute value reduction
of x.

. (T 4.2.2) The formula �ðNðP ðx; yÞÞ; �Þ � � always
holds for every y 62 ½x�D, where � ¼ RS�

½x�DðxÞ.
Proof. (T 4.2.1) ) (T 4.2.2): Assume that P ðxÞ contains the

attribute value reduction of x, then ConR;�ðDÞðxÞ ¼
RS�
½x�DðxÞ ¼ ConP;�ðDÞðxÞ ¼ PS�½x�DðxÞ holds. Let � ¼

RS�
½x�DðxÞ, thenPS�½x�DðxÞ ¼ �. By Lemma 4.1, ðP�x�Þ� �

½x�D holds. Thus, �ðNðP ðx; yÞÞ; �Þ � � for every y 62 ½x�D.
(T 4.2.2) ) (T 4.2.1): By the condition � ¼ RS�

½x�DðxÞ,
we get � � PS�½x�DðxÞ by Lemma 4.2.

By the condition �ðNðP ðx; yÞÞ; �Þ � � for every

y 62 ½x�D, we have ðP�x�Þ� � ½x�D. By the granular repre-

sentation of RS�
A, ðP�x�ÞðxÞ ¼ � � PS�½x�DðxÞ holds.

Thus, � ¼ PS�½x�DðxÞ ¼ RS�
½x�DðxÞ, i.e., ConR;�ðDÞðxÞ ¼

ConP;�ðDÞðxÞ. By Definition 4.2, P ðxÞ contains the attri-

bute value reduction of the object x. tu
By Theorem 4.2, we construct discernibility vector as

follows:
Suppose U ¼ fx1; x2; x3; . . . ; xng, by V ectorðU;R;D; �Þ,

we denote an n
 1 vector ðcjÞ, called the discernibility
vector of the object xi, such that

cj ¼ fa : �ðNðaðxi; xjÞÞ; �Þ � �g; for Dðxi; xjÞ ¼ 0; ðV4:1Þ

where � ¼ RS�
½xi�DðxiÞ,

cj ¼ �; for Dðxi; xjÞ ¼ 1: ðV4:2Þ
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The proposed discernibility vector is similar with one
column of discernibility matrix in [47]. cj is the collection of
attribute maintaining �ðNðaðxi; xjÞÞ; �Þ � �, each attribute
in which can distinguish xi from xj.

The following theorems show that by using discernibility
vector, we can find the value reductions and core.

Theorem 4.3. Core�ðxÞ ¼ faðxÞ : cj ¼ fagg for some 1 �j � n.

Proof.

aðxÞ 2 Core�ðxÞ , ConR;�ðDÞðxÞ > ConfR�fagg;�ðDÞðxÞ
, RS�

ð½x�DÞðxÞ > ðR� fagÞS�ð½x�DÞðxÞ , :

Let � ¼ RS�
ð½x�DÞðxÞ and t ¼ ðR� fagÞS�ð½x�DÞðxÞ, then

these four formulas

� > t;R�ðxÞ� � ½x�D; ðR� fagÞ�ðxÞt � ½x�D;

and ðR� fagÞ�ðxÞ� 6� ½x�D hold (By Lemma 4.1), there
exists y 2 U(y 6¼ x) satisfying �ðNððR� fagÞðx; yÞÞ; �Þ >
� and �ðNððR� fagÞðx; yÞÞ; tÞ � �, �ðNðbðx; yÞÞ; �Þ > �
holds for any b 2 R� fag; �ðNðaðx; yÞÞ; �Þ � � holds
, cj ¼ fag. The statement cj ¼ fag implies that a is the
unique attribute to maintain �ðNðaðx; yÞÞ; �Þ � �. tu

Theorem 4.4. Suppose P � R, then P ðxÞ contains one attribute
value reduction of x if and only if P \ cj 6¼ � for every cj 6¼ �.

The proof is straightforward by Theorem 4.2 and
definition of cj.

Corollary 4.1. Suppose P � R, then P ðxÞ is a attribute value
reduction of x if and only if P ðxÞ is the minimal subset of RðxÞ
satisfying P \ cj 6¼ � for every cj 6¼ �.

Theorem 4.3 shows that the value core is the collection of
single elements in the discernibility vector. Theorem 4.4 and
Corollary 4.1 show that by using discernibility vector, we
can find the attribute value reduction which is the minimal
subset having the nonempty intersection with each none-
mpty entry in discernibility vector.

A discernibility function fx;�ðFDÞ for an object x in FD is
a Boolean function of m Boolean variables a1; . . . ; am
corresponding to the attributes a1; . . . ; am, respectively,
and defined as follows: fxðFDÞða1; . . . ; amÞ ¼ ^f_ðcjÞ:
1 � j � ng, where _ðcjÞ is the disjunction of all variables a
such that a 2 cj. Let gx;�ðFDÞ be the reduced disjunctive
form of fx;�ðFDÞ obtained from fx;�ðFDÞ by applying the
multiplication and absorption laws as many times as
possible. Then, there exist l and Rk � R for k ¼ 1; . . . ; l
such that gx;�ðFDÞ ¼ ð^R1Þ _ � � � _ ð^RlÞ, where every ele-
ment in Rk only appears one time.

Theorem 4.5. Re d�ðxÞ ¼ fR1ðxÞ; . . . ; RlðxÞg, here, Re d�ðxÞ
is the collection of all attribute value reductions of x, and
RkðxÞ is the attribute value of x on attribute subset Rk for
k ¼ 1; . . . ; l.

The proof is omitted since this theorem is similar to the
one in [23].

Theorem 4.5 clearly shows that by using the discern-
ibility vector, we can find all value reductions. In the

following, we present the detail algorithm to find all value

reductions by using the discernibility vector.
We now design an algorithm to compute all attribute

value reductions for one object by using the discernibility

vector approach. For xi 2 U in FD ¼ ðU;R [DÞ, the algo-

rithm to find all attribute value reductions of xi is described

in Algorithm 4.1. This algorithm can find all attribute value

reductions of one object, but its computational complexity

increases exponentially with the number of attributes (i.e.,

Oð Uj j 
 2 Aj jÞ, here, Uj j is the number of objects and Aj j is the

number of attributes). In practical applications, it is not

necessary to find all value reductions because finding a near-

optimal one is enough. We then provide a heuristic

algorithm (see Algorithm 4.2) to find one near-optimal

attribute value reduction by rewriting the part covered by

dot-lined box in Algorithm 4.1. The key idea of this algorithm

uses the add-deletion strategy of reduction algorithm

construction described in [48].
Algorithm 4.1: to find all attribute value reductions of xi

in FD ¼ ðU;R [DÞ

Algorithm 4.2 (Heuristic): to find one near-optimal

attribute value reduction of the object xi in FD ¼ ðU;R [DÞ

In the following, we use one example to illustrate the

method of attribute value reduction proposed in this paper.
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Example 4.1. Given a simple decision table with 10 objects

as follows (see Table 1), there are 10 condition fuzzy

attributes R ¼ fa; b; c; d; e; f; g; h; k; jg and one decision

symbolic attribute {D}. There are two decision classes: 0

and 1. The objects fx1; x6; x8; x9g belong to class 0 and

fx2; x3; x4; x5; x7; x10g belong to class 1.

In this example, the Lukasiewicz T -conorm SLðx; yÞ ¼
minf1; xþ ygand the negatorNðxÞ ¼ 1� x are selected as the

T � conorm and negator operator to construct the S � lower

approximation operator. The lower approximation is then

specified as RS�
AðxÞ ¼ infAðuÞ�� minðð1�Rðx; uÞÞ þAðuÞÞ;

�Þ ^ infAðuÞ>� minðð1�Rðx; uÞÞ þAðuÞÞ; 1Þ. The consistence

is computed byConR;�ðDÞðxÞ ¼ RS�
½x�DðxÞ. Let alpha ¼ 0:05,

the lower approximations of each decision class and the

consistence degree of each object are listed in Table 2. Table 2

shows that the consistence degree of each object gets its value

at the lower approximation of its corresponding decision

class.
The formula to compute the discernibility vector of xi

is cji ¼ fa : maxðaðxi; xjÞ � 1þ �; 0Þ � �g for Dðxi; xjÞ ¼ 0,

where � ¼ RS�
½xi�DðxiÞ; cji ¼ �, for Dðxi; xjÞ ¼ 1. The

discernibility vectors are listed in Table 3 (Each column

in Table 3 corresponds to one discernibility vector). One

element of discernibility vector is an attribute subset in

which each attribute can distinguish one pair of objects.

For example, the element of the first column and third

row in Table 3 is an attribute subset fa; cg. Each attribute

{a} or {c} can distinguish x1 from x3 without causing new

inconsistence.
The attribute value core is the collection of the most

important attribute values to distinguish one object from

others. The attribute value core of each object is listed in

Table 4. The attributes in value core is the collection of the

element with single attribute in discernibility vector. For

example, the value core of object x3 is fða; 0Þðf; 0Þg in which

the attribute subset {a,f} is the collection of the elements

with single attribute in discernibility vector of x3.
Using Algorithm 4.2, we compute one near-optimal

attribute value reduction of each object (see Table 5). Table 5

shows that a fuzzy decision table has been significantly
reduced after attribute value reduction.

4.2 Rule Induction from the Reduced Decision
Table

In a fuzzy decision table FD ¼ ðU;R [DÞ, each original

object can be represented in the formulation of a decision rule.

The corresponding rule of the object x is denoted by fdx. The

restriction of fdx to R, denoted by fdxjR, is defined by

“NðRðx; yÞÞ < ConR;�ðDÞðxÞ on RðxÞ ¼ faðxÞ : a 2 Rg” and

the restriction of fdx toD is denoted by fdxjD ¼ ^fdðxÞd jd2Dg.
They are called the condition and decision of fdx, respec-

tively. Thus, a fuzzy decision rule fdx can be denoted by

fdx Rj ! fdx Dj .

Example 4.2. Let us consider Example 4.1 again. We
illustrate the rule representation of the object x1 in a
fuzzy decision table as follows:

Since the object x1 belongs to “decision class 0,” its
lower approximation on “decision class 0” is 0.88889, and
its consistence degree is 0.88889, the original decision rule
corresponding to the object x1 can be stated in the
following formulation:
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TABLE 4
The Attribute Value Core of Every Object

TABLE 5
Attribute Value Reduction of Every Object

TABLE 3
The Discernibility Vector of Every Object

(All Vectors Become a Matrix)

TABLE 2
The Lower Approximation Value and the Consistence Degree

TABLE 1
One Simple Decision Table



fdx1
Rj ! fdx1

Dj : if 1�Rðy; x1Þ < 0:88889 on

x1 ¼ fða; 1Þ; ðb; 0:1Þ; ðc; 0:11111Þ; ðd; 0:88889Þðe; 0:11111Þ;
ðf; 0:11111Þ; ðg; 1Þ; ðh; 0:11111Þ; ðk; 0Þ; ðj; 0:88889Þg;

then the object y belongs to “decision class 0.”
This rule represents that if the distance between y and x is

smaller than a certain value, then y belongs to the decision
class containing x. For example, since 1�Rðx6; x1Þ ¼
0:66667 < 0:88889, the object x6 belongs to “decision class
0” by using the decision rule fdx1

Rj ! fdx1
Dj ; since 1 �

Rðx2; x1Þ ¼ 1 > 0:88889, the decision class of object x2 cannot
be predicted by using the decision rule fdx1

Rj ! fdx1
Dj .

This example shows that the decision rule corresponding
to each original object is very trivial. It is necessary to reduce
them from the viewpoint of attribute value reduction.

Definition 4.4 (reduction rule). Given an object x and its
corresponding rule fdx Rj ! fdx Dj in FD ¼ ðU;R [DÞ,
suppose P ðxÞ � RðxÞ is one attribute value reduction of x,
then fdx Pj ! fdx Dj is called the reduction rule of
fdx Rj ! fdx Dj .

This definition shows that each attribute value reduction
corresponds to a reduction rule.

Example 4.3. Let us consider Example 4.1 again. Suppose
one attribute value reduction of object x1 is
P ðx1Þ ¼ fða; 1Þ; ðd; 0:88889Þg, then its corresponding re-
duction rule is represented as follows:
fdx1

Pj ! fdx1
Dj : if 1� P ðy; x1Þ < 0:88889 on x1 ¼

fða; 1Þ; ðd; 0:88889Þg (here, P ¼ fa; dg), then the object y
belongs to “decision class 0.”

This rule represents that if the object y is similar with the
reduced object x1 ¼ fða; 1Þ; ðd; 0:88889Þg, then y belongs to
the decision class containing x, i.e., ½x�D.

The covering power of each rule is measured using a
concept named rule covering.

Definition 4.5 (rule covering). Given an object x and its
corresponding rule fdx Rj ! fdx Dj in FD ¼ ðU;R [DÞ, for
an arbitrary object y 2 U , if NðRðx; yÞÞ < ConR;�ðDÞðxÞ,
then we say that fdx Rj ! fdx Dj covers the object y. We also
say that fdx Rj ! fdx Dj covers the rule corresponding to the
object y.

If the rule fdx Rj ! fdx Dj covers the object y, then the
object y belongs to the decision class of x, i.e., y 2 ½x�D , if we
ignore some misclassification and perturbation.

Now, we present one theorem which shows the relation
between the original decision rule and the reduction rule.

Theorem 4.6. Given an object x and its corresponding rule
fdx Pj ! fdx Dj in FD ¼ ðU;R [DÞ, If the rule fdx Pj !
fdx Dj covers one object y 2 U , then its reduction rule
fdx Pj ! fdx Dj also covers the object y.

Proof. Since SðNðRðx; yÞÞ; 0Þ < ConR;�ðDÞðxÞ and

ConR;�ðDÞðxÞ ¼ ConP;�ðDÞðxÞ;

we have SðNðP ðx; yÞÞ; 0Þ � ConP;�ðDÞðxÞ (by Rðx; yÞ �
P ðx; yÞ). Thus, the reduction rule fdxjP ! fdxjD covers
the object y. tu

This theorem shows that the rule induction process keeps
the discernibility information in the original decision table
invariant. We also use this theorem to design an algorithm to
find a near-minimal rule set from FD ¼ ðU;R [DÞ (see
Algorithm 4.3).

Algorithm 4.3: to find the near-minimal rule set

Here, “All_rules” denotes the collection of the reduction
rules of every original decision rule; “Rule(xi)” denotes one
reduction rule of xi; “Cover_degree(xi)” denotes the number
of rules which is covered by the reduction rule “Rule(xi);” and
“Minimal_rule_set” denotes the near-minimal rule set in-
duced from the fuzzy decision table.

Example 4.4. Let us consider the table in Example 4.1 again.
Using Algorithm 4.3, we obtain a near-minimal rule set
as follows:

If 1� P ðy; xÞ < 0:77778 on

x ¼ fða; 0:11111Þ; ðj; 0:77778Þg

(here P ¼ fa; jg), then y belongs to “decision class 1.”
If 1� P ðy; xÞ < 0:77778 on x ¼ fðc; 1Þ; ðj; 0Þg (here,

P ¼ fc; jg), then y belongs to “decision class 0.”
If 1� P ðy; xÞÞ < 0:88889 on x ¼ fða; 1Þ; ðd; 0:88889Þg

(here, P ¼ fa; dg), then y belongs to “decision class 0.”
If 1� P ðy; xÞ < 1 on x ¼ fða; 0Þ; ðf; 0Þg (here, P ¼

fa; fg), then y belongs to “decision class 1.”
This rule set can also be represented in a table (see

Table 6).

The rule set obtained by using GFRS can be used as a
classifier to predict the unseen objects. In the following,
the rule-based classifier obtained by using GFRS is
denoted by GFRSC.

5 SCALABILITY ANALYSIS AND EXPERIMENTAL

COMPARISON

In this section, we first analyze the scalability complexity of
GFRSC, and then, experimentally compare it with several

632 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 5, MAY 2010

TABLE 6
One Reduced Table of Table 1



rule-based classifiers. Since GFRS is the generalization of RS
and FRS, it is necessary to compare the rule-based classifiers
constructed using RS and FRS (denoted RSC and FRSC,
respectively). We also compare GFRSC with one popular
rule-based classifier, decision tree (denoted as DTC).

5.1 Scalability Analysis

Fig. 3 shows the procedure for inducing rules using GFRSC
and an analysis of its scalability. This figure is similar to the
ones for RSC and FRSC. The main difference lies in the step
covered by the dot-lined box, i.e., preprocessing. In the
fuzzy procedures, i.e., FRSC and GFRSC, preprocessing
means computing the similarity relation and lower approx-
imation operator. Their time and space complexities of
them are Oð Uj j2
 Aj jÞ and Oð Uj j2
 Dj jÞ, respectively. In the
crisp case, i.e., RSC, preprocessing means the discretization
of data sets. Its time and space complexity depend on the
discretization method that is used.

5.2 Experimental Comparison

In this section, we experimentally compare GFRSC with

some other rule-based classifiers: RSC, FRSC, and DTC.

First, we specify one reasonable triangular norm for GFRSC.

In GFRS (see Section 3), there are two lower approximation

operators (R#�
and RS�

) and two upper approximation

operators (RT� and R�� ). Generally, they are not equal to

each other. If we specify the Lukasiewicz’s T -norm TL, then

its dual conorm with respect to Ns is the bounded sum

SLðx; yÞ ¼ minf1; xþ yg, the TL-residuated implication is

#Lðx; yÞ ¼ minf1; 1� xþ yg, and the dual of #L with respect

to the negator NðxÞ ¼ 1� x is �Lðx; yÞ ¼ maxf0; y� xg;
clearly, we have SLð1� x; yÞ ¼ #Lðx; yÞ and �Lð1� x; yÞ ¼
TLðx; yÞ, which imply R#L�

¼ RSL�
and RðTLÞ� ¼ Rð�LÞ� hold

for a fuzzy TL-similarity relationR and the standard negator

NðxÞ ¼ 1� x. This is one reason why we specify the

Lukasiewicz’s T -norm TL in GFRSC. Furthermore, many

discussions on the selection of triangular norm T emphasize

the Lukasiewicz’s T -norm TL as a suitable selection [15], [53],

[54]. For more on this, interested readers can refer to [24]. In

the following experiments, we adopt the S-lower approx-

imation operators constructed on TL to design the rule-based

classifier. The discernibility vector is then specified as

follows:

cji ¼ fa : aðxi; xjÞ þ �� 1 � �g for Dðxi; xjÞ ¼ 0;

ðV5:1Þ

where � ¼ RðSLÞ�ð½xi�DÞðxiÞ,

cji ¼ �; for Dðxi; xjÞ ¼ 1: ðV5:2Þ

The experiments are set up as follows:
Data set. Four data sets from UCI Machine Learning

Repository [49] are used to compare the performance of the
classifiers. The details are provided in Table 7.

Data set split. The data set is split into two parts. The
randomly chosen 50 percent of objects are used as the
training set to find the classifier. The remainders are used as
the testing set to test the accuracy of the found classifier.

Noise control. Some noise (misclassification and pertur-
bation) are added to the training sets since GFRSC focuses
on dealing with the problems of noise (i.e., misclassification
and perturbation). The percentage of the added noise � 

100% means that in the randomly selected � 
 100% data,
the decision classes are changed and condition attributes
are perturbed.

Indexes. Indexes are: 1) the number of selected rules and
2) the classification accuracy of the rule set.

Parameter specification. We try the parameter in GFRSC
“alpha” from 0 to 0.15 with step 0.01. We try the percentage
of noise “beta” from 0 to 0.2 with step 0.05.

5.2.1 Discussion of the Parameters: Alpha and Beta

There are two parameters in the following experiments:
the threshold in GFRSC “alpha” and the noise percentage
“beta.” In this section, we focus on analyzing the effect of
alpha and beta on the classification performance of
GFRSC. Figs. 4 and 5 show the classification results on
four data sets. The x-axis is the value of alpha. The y-axis
in Fig. 4 is the number of rules and the y-axis in Fig. 5 is
the classification accuracy. There are five curves in each
subfigure which correspond to the classification results on
different beta values. Note that the points on y-axis is the
accuracy (or the number of rules) of FRSC (Since GFRS
degenerates to the classifier on FRS when alpha is set to
0), which provide some base points to evaluate the
performance of GFRSC.

Fig. 4 shows that the number of rules curves with the
change of alpha and beta. We find that the number of rules
monotonously decreases with the value of alpha. That is, the
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TABLE 7
The Information of Some Data Sets from

UCI Machine Learning Repository

Fig. 3. The procedure and scalability analysis to rule induction.



bigger the parameter in GFRSC is, the compacter the obtained
rule set in GFRSC is. What is more, we find that on the y-axis,
the number of rules changes dramatically with the percen-
tage of noise (i.e., beta), whereas it changes slightly when the
value of alpha is large. This shows that from the viewpoint of
number of rules, FRSC (i.e., alpha ¼ 0) is sensitive to the
percentage of noise, whereas GFRSC is less sensitive.

Fig. 5 shows that the accuracy of GFRSC curves with the
change of alpha and beta. We find that in most cases, the
accuracy curves of GFRSC share a similar pattern. At the
beginning, the accuracies increase dramatically, and then,
change slightly. But when the value of alpha is too large,
the accuracy decreases perceptibly. This shows that within
a certain extent of alpha, the accuracy is stable and
reasonable. The extent of alpha depends on the domain of
specific practical problems. What is more, we also find that
on y-axis, the accuracies change dramatically with the
percentage of noise (i.e., beta), whereas it changes slightly
when the value of alpha is large. These show that from the
viewpoint of accuracy, FRSC is sensitive to the percentage
of noise; whereas GFRSC is less sensitive.

The above analyses show that the noise in the data sets
significantly affects the performance of FRS, whereas it has
slight influence in GFRS. The basic reason is that the noise
(i.e., misclassification and perturbation) is effectively con-
trolled in the step of knowledge representation in GFRS:
misclassification or small perturbation is ignored by control-
ling the threshold � in the fuzzy cut set ðR�x�Þ� since the
threshold � controls the accuracy of R�x� included in A.

5.2.2 Experimental Comparison GFRSC with RSC and

FRSC

First of all, we would like to list the main differences among
GFRS, RS, and FRS.

1. FRS and GFRS can handle real-valued data sets,
whereas RS can only deal with symbolic data sets.
Therefore, RS need a preprocessing of discretization.

The selection of the discretization method affects
the performance of RSC. Generally, there are
two types of discretization methods for RS. One is

to keep the discernibility information in the data sets
invariant before and after discretization (e.g., the
discretization method proposed by Nguyen which
preserves the discernibility information in the
original data sets [57]), while the other is a common
discretization method (e.g., fuzzy C-mean). In this
paper, we select fuzzy C-mean as the discretization
method since some perturbation in the real-valued
data sets can be omitted by it. That is to say, RSC is
less sensitive to perturbation in this paper.

2. FRS is one special case of GFRS. The main difference
between them is the threshold introduced into the
fuzzy approximation operators. By controlling this
threshold, some misclassification and perturbation
are ignored in the step of knowledge representation.
That is to say, GFRS is less sensitive to misclassifica-
tion and perturbation.

In this section, we experimentally compare
GFRSC with RSC and FRSC. Here, we focus on
comparing the sensitivity, the number of rules, and
classification accuracy of the obtained classifier. The
comparison results are summarized in Figs. 6 and 7.
The x-axis in Figs. 6 and 7 is the noise percentage,
i.e., beta. The y-axis in Fig. 6 is the number of rules
and the y-axis in Fig. 7 is the classification accuracy.
In each subfigure, there are seven curves which
correspond to the classification results on different
classifiers, i.e., RSC, FRSC, and GFRSC on different
values of alpha.

Figs. 6 and 7 show that in most cases, the number
of rules and accuracy of RSC and FRSC increase
significantly with the increment of noise, whereas
the number of rules and accuracy of GFRSC increase
slightly. Except the data set “Diabetes,” other three
data sets share these patterns. This shows that FRSC
and RSC are sensitive to noise, whereas GFRSC is
less sensitive.

Fig. 6 shows that GFRSC finds a compacter rule
set than FRSC and RSC. It also shows that in most
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Fig. 4. The valuation of number of rules of GFRSC on different values of
“alpha” and “beta.” (a) WDBC. (b) Diabetes. (c) Ionosphere. (d) Wine.

Fig. 5. The valuation of number of rules of GFRSC on different values of
“alpha” and “beta.” (a) WDBC. (b) Diabetes. (c) Ionosphere. (d) Wine.



cases, the curves obtained by GFRSC are lower than

the curves obtained by FRSC and RSC in most cases.

That is to say, from the viewpoint of number of

rules, the larger the percentage of noise is, the better

the performance of GFRSC over FRSC and RSC.
Fig. 7 shows that GFRSC finds a higher accuracy

than FRSC and RSC. We find that in most cases, the

accuracy curves of GFRSC are often higher than

those in FRSC and RSC. The larger the percentage of

noise is, the greater the accuracy of GFRSC com-

pared with FRSC and RSC.
All the above analyses show that GFRSC per-

forms better than FRSC and RSC in terms of the

noise sensitivity, number of rules, and accuracy.

5.2.3 Experimental Comparison GFRSC with

Fuzzy Decision Tree

Decision tree is a very popular rule-based classifier
(denoted as DTC) [50], [51], [52]. It is necessary to compare
our proposed rule-based classifier GFRSC with DTC. See5,
as the successor of the successful and widely used ID3 and
C4.5 systems (fuzzy decision tree learning algorithm) is
selected to compare with GFRSC since it can deal sensibly
with missing values and is pruning to deal with noisy data.

DTC and GFRS are two very different types of classifier
building systems: 1) DT obtains a set of rules by construct-
ing one tree; GFRS obtains a set of rules by reducing some
redundant attribute values. 2) DTC controls the noise by
pruning after the tree has been built; GFRSC controls the
noise before reducing the redundant attribute values, i.e., in
the first step of knowledge representation.

The classification results of GFRSC which have the similar
number of rules with DTC are selected to compare with DTC.
The comparison results are summarized in Table 8.

Table 8 shows that GFRSC performs better than DTC in
the noised data. The bold and italic texts in Table 8 are the
values of accuracy of GFRSC which are noticeably higher
than DTC. For example, GFRSC significantly performs better
than DTC on the noised data set “WDBC” and “Wine.” The
reason may be that DTC controls the noise in the last step,
whereas GFRSC controls the noise in the first step.

The computational complexity of DTC is Oð Uj j 
 Aj j 

Tj jÞ (here, Tj j is the size of the induced tree), whereas the

one of GFRSC is Oð Uj j2
 Aj jÞ. The strength of DTC is that it
performs well on the data sets without noise and executes
faster than GFRSC. The strength of GFRSC is that it is a
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TABLE 8
The Valuation of the Comparison of DTC and GFRSC

Fig. 7. The valuation of accuracy on GFRSC, RSC, and FRSC.
(a) WDBC. (b) Diabetes. (c) Ionosphere. (d) Wine.

Fig. 6. The valuation of number of rules on GFRSC, RSC, and FRSC.
(a) WDBC. (b) Diabetes. (c) Ionosphere. (d) Wine.



robust model because it is less sensitive to misclassification
and perturbation. These two classifiers suit different types
of real applications.

6 CONCLUSION AND FUTURE WORK

In this paper, we develop a rule-based classifier using a
novel framework GFRS. We first propose a robust model of
FRS (i.e., GFRS), and then, design a classifier building
method based on GFRS. The key idea of building the
classifier is to keep the discernibility information in the
original data sets invariant. The proposed GFRS model, as
the foundation of classifier building, has a sound mathe-
matical rational. We, by using the strict mathematical
reasoning, not only show the reasonability of the new
concept “consistence degree,” but also design a discern-
ibility vector. This is the main contribution of this paper.
One advantage of this paper is that the classifier GFRSC is
robust since GFRS is a robust with respect to misclassifica-
tion and perturbation. The main advantage of GFRS is that
knowledge representation and knowledge discovery are
closely related. That is, the fuzzy lower approximation
operator (i.e., consistence degree) is used in attribute value
reduction. This point distinguishes GFRSC from other
classifiers built by using FRS.

In the future, we would like to do some more work on
GFRS. One of our future work is to give a more detailed
discussion on the parameter in GFRS. Now, one guideline
of specifying this parameter is that in a certain reasonable
extent, the larger the parameter in GFRSC is, the compacter
the obtained rule set is. However, it is difficult to specify the
extent of its parameter.

A discussion on GFRS and probability theory is our
another future work. Our proposed GFRS model intends to
solve the problem about data perturbation. If data pertur-
bation is due to randomness, then another formal approach
may be assumed that fuzzy data are obtained under a
randomness process. Therefore, a framework based on the
notion of random fuzzy-rough set may be developed.

APPENDIX

Here, we present and exemplify some notions of fuzzy
logical operators [4], [10], [11], [55] that are triangular norm,
triangular conorm, negator, dual, T -residuated implication,
and its dual operation.

A triangular norm, or shortly T -norm, is a function T :
½0; 1� 
 ½0; 1� ! ½0; 1� that satisfies the following conditions:
monotonicity (T ðx; yÞ � T ð�; �Þ); commutativity: (T ðx; yÞ ¼
T ðy; xÞ); associativity: (T ðT ðx; yÞ; zÞ ¼ T ðx; T ðy; zÞÞ); and
boundary condition: (T ðx; 1Þ ¼ x). The most popular contin-
uous T -norms include the standard min operator (the largest
T -norm)TMðx; yÞ ¼ minfx; yg; the bounded intersection (also
called the Lukasiewicz T -norm) TLðx; yÞ ¼ maxf0; xþ y�1g.

A triangular conorm, or shortly T -conorm, is an
increasing, commutative, and associative function S :
½0; 1� 
 ½0; 1� ! ½0; 1� that satisfies the boundary condition:
8x 2 ½0; 1�; Sðx; 0Þ ¼ x. The well-known continuous T -
conorms include the standard max operator (the smallest
T -conorm) SMðx; yÞ ¼ maxfx; yg; the bounded sum
SLðx; yÞ ¼ minf1; xþ yg.

A negator N is a decreasing function N : ½0; 1� ! ½0; 1�
that satisfies Nð0Þ ¼ 1 and Nð1Þ ¼ 0. A negator N is called

involutive iff NðNðxÞÞ ¼ x for all x 2 ½0; 1�; it is called
weakly involutive iff NðNðxÞÞ � x for all x 2 ½0; 1�. The
standard negator is defined as NSðxÞ ¼ 1� x. Given a
negator N , T -norm T and T -conorm S are called dual w.r.t.
N iff De Morgan laws are satisfied, i.e., SðNðxÞ; NðyÞÞ ¼
NðT ðx; yÞÞ and T ðNðxÞ; NðyÞÞ ¼ NðSðx; yÞÞ.

Given a lower semicontinuous triangular norm T , the
residuation implication, or called T -residuated implication
is a function # : ½0; 1� 
 ½0; 1� ! ½0; 1� that satisfies #ðx; yÞ ¼
supfz z 2 ½0; 1�; T ðx; zÞ � yj g for every x; y 2 ½0; 1�. Two ex-
amples of T -residuated implications include the Godel
implication #M , based on

TM : #M ¼
1; x � y
y; x > y

�
;

the Lukasiewicz implication #L, based on TL: #TL ¼
minf1� xþ y; 1g.

Given a upper semicontinuous triangular conorm S, the

dual of T � residuated implication w.r.t. N is a function �:

½0; 1� 
 ½0; 1� ! ½0; 1� that satisfies �ðx; yÞ ¼ inffz j z 2 ½0; 1�;
Sðx; zÞ � yg for every x; y 2 ½0; 1�. �ðNðxÞ; NðyÞÞ ¼ Nð#ðx; yÞÞ
and #ðNðxÞ; NðyÞÞ ¼ Nð�ðx; yÞÞ hold for an involutive nega-

torN . Examples of the dual ofT -residuated implication w.r.t.

N include the dual of Godel implication �M , based on

SM : �M ¼
0; x � y
y; x < y

�
;

the dual of Lukasiewicz implication �L, based on SL:

�L ¼ maxf�xþ y; 0g.
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