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a b s t r a c t

This paper delivers a study on the change of rank of input matrix in Extreme Learning Machine (ELM)
and the relationship between the rank of input matrix and the residence error of training an ELM. From
the viewpoint of data analysis, the study reveals why ELM has a decreasing residence error with the
increase of number of nodes in hidden layer and what role the Sigmoid function plays in increasing the
rank of input matrix. Furthermore the relationship between the stability of solutions and the rank of
output matrix is also discussed. An application of residence error to genetic algorithms of minimizing
L1-norm ELM is given.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Extreme learning machines (ELMs) proposed in [14,15] are
a type of single hidden layer feed-forward neural networks
(SLFNs) in which the weights between input layer and hidden
layer are chosen randomly while the weights between hidden
layer and output layer are obtained by solving a system of linear
matrix equations. ELMs adopt the sum of squared losses on the
training error as the objective function, and then turn training of
output weights into a regularized least square problem. It has been
shown that SLFNs only with randomly generated input weights
and tunable output weights can maintain their universal approx-
imation ability [10,11,29]. In comparison with gradient-descent
based algorithms, ELMs have much more efficient training and
usually lead to better generalization performance [21,25,27].

One can find considerable references [2,12,13,18,24–29] in recent
decade regarding the ELM study. We are now interested in ELM's
training residence error and approximation capability, and a very brief
literature review is given as follows. Hornik in [6] proved that, if the
activation function is continuous, bounded, and non-constant, then
continuous mappings can be approximated by SLFNs with additive
hidden nodes over compact input sets. Leshno et al. in [16] improved

the result of [6] by proving that SLFNs with additive hidden nodes and
with a non-polynomial activation function can approximate any
continuous target functions [16]. Huang and Babri [7] show that an
SLFN with at most N hidden nodes and with almost any nonlinear
activation function can learn N distinct observations with zero error,
where N is the number of training samples. Furthermore, Huang et al.
[8–10] recently proposed a series of learning algorithms referred to as
incremental extreme learning machines (I-ELMs) where the number
of hidden layer nodes are gradually added and showed that such
I-ELMs can converge to any continuous function as long as the hidden
activation functions are nonlinear piecewise continuous. Following [9],
Feng et al. [4] proposed an error minimized extreme learning machine
(EM-ELM), which can add random hidden nodes to SLFNs one by one
or group by group (with varying group size). During the growth of the
networks, the output weights are updated incrementally. The conver-
gence of this approach is proved.

Based on the result of [1] in which the authors pointed out that
for the feed-forward neural networks, the smaller the norm of
weights and training error is, the better generalization perfor-
mance the networks tend to have, all ELM algorithms tend to find
the minimum norm least square solution such that a smaller
training error can be achieved. This study focuses on the change
of rank of input matrix in ELM and the relationship between the
rank of input matrix and the residence error of training an ELM.
It theoretically confirms that the increase of input dimension given
by random weights and the increase of rank of middle matrix
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induced by Sigmoid transformation play the crucial role in the
entire process of training an ELM.

All existing references indicate that ELM is a useful and efficient
technique for supervised learning. But there is no article yet to
clearly explain why the ELM can effectively work well with a
simple structure and fast training. This paper makes an attempt to
give an explanation from the angle of relationship between ELM's
training residence error and the rank of input matrix.

The rest of this paper is organized as follows. Section 2 lists a brief
review on the approximation ability and error analysis of ELMs.
Section 3 investigates the increase of dimension for input matrix and
the relationship of rank between input matrix and middle matrix,
and Section 4 studies the impact of Sigmoid transformation on the
increase of rank of output matrix. Section 5 studies the estimation of
residence error and stability of solution. Then, an application of
residence error to genetic algorithms of minimizing L1-norm ELM is
given in Section 6. Section 7 of this paper presents our conclusion.

2. Extreme learning machine

Usually an ELM means a three layer neural network in which
the weights between input layer and hidden layer are randomly
selected and the weights between hidden layer and output layer
are determined by solving a generalized system of linear equations
(i.e., by computing the pseudo inverse of a matrix). Fig. 1 depicts
the basic structure of an ELM in which we suppose that the input
layer has n nodes, the hidden layer has m nodes, and the output
layer have has only one node.

We now analyze the training process of an ELM. The training
task is to determine the connection weights rij and βj ði¼ 1;
2;⋯;n; j¼ 1;2;⋯;mÞ. Since the weights rij ði¼ 1;2;⋯;n; j¼ 1;
2;⋯;mÞ are randomly selected, the training task is reduced to
determine βj ðj¼ 1;2;⋯;mÞ only. Suppose that the set of training
data contains N examples which can be expressed as an input
matrix A (with N rows and n columns) and a N-dimensional output
vector b, respectively denoted by

AN�n ¼

a11 a12 … a1n
a21 a22 … a2n
… … … …
aN1 aN2 … aNn

0
BBBB@

1
CCCCA and bN�1 ¼

b1
b2
⋮
bN

0
BBBB@

1
CCCCA:

The weights between the input layer and hidden layer are
expressed as a matrix with n rows and m columns, i.e., R¼
ðrijÞn�m, and the weights between the hidden layer and output
layer are denoted as an m-dimensional vector, i.e., β¼ ðβ1; β2;⋯;

βmÞT . Let

SN�m ¼Δ A
N�n

R
n�m

¼ ðsijÞN�m and H
N�m

¼Δ ðf ðSijÞÞN�m ¼ ðhijÞN�m;

where f ðxÞ ¼ ð1=1þe� xÞ denotes the Sigmoid function. Then the
training task of the ELM is transferred to solve the following
system of linear equations Hβ¼ b, which is equivalent to the

following optimization problem:

min
βARm

‖ b
N�1

� H
N�m

β
m�1

‖2: ð1Þ

Obviously the solution of Eq. (1) is not unique in a general case.
From the viewpoint of regularization, Huang et al. [10,13,15]
suggested to use the minimum-norm minimum least square
solution as the final one:

min
jjβjj

min
βARm

‖ b
N�1

� H
N�m

β
m�1

‖2
� �

: ð2Þ

It is easy to see that the solutions of Eqs. (1) and (2) can be
respectively expressed as

β¼H� b and β¼Hþb;

where H� denotes any generalized inverse matrix H while Hþ

denotes the plus-generalized inverse this is unique for an matrix H.
We divided the above-mentioned training process of an ELM as

three steps: (1) dimension increase for input matrix; (2) rank
increase for output matrix; and (3) solving a system of linear
equations with full rank matrix of coefficients. The three steps are
depicted in Fig. 2.

Step 1 shows a process of increasing dimension of input matrix A
since in almost every case of ELM applications the number of
hidden nodes is much bigger than the number of input nodes. Ref.
[24] discussed the impact of increasing dimension of input matrix
and pointed out that without the dimension increase the ELMwill
not obtain a good generalization and approximation ability. In
fact, the central supporting theorem of EML algorithms, given by
Zhang et al. in [29], stated a process of approximation with the
increase of number of hidden nodes.
Step 2 gives a process of increasing rank of input matrix.
Although in step 1 the input matrix A (with N rows and n
columns) becomes S (with N rows and m columns) through the
multiplication to a random weight matrix R and m is bigger
than n, the rank of matrix S is less than or equal to the rank of
matrix A. It is because the step 1 is only a linear transformation
(the simple proof remains in next section). The essence of step
2 is a nonlinear transformation. ELM uses a Sigmoid function
which usually plays a role of transforming from a waning rank
matrix S to a full rank matrix H.
Step 3 means to solve a system of linear equations. If the output
layer has more than one node then it is a system of linear
matrix equations. It is well known that the criterion of least
square is frequently used to solve the system. It is evaluated by
the approximation error (i.e., the residence error). Here we are
mainly interested in the relationship between the approxima-
tion error and the rank of coefficient matrix.

To be convenient for our following discussions, we summarize
the used symbols or notations as follows:

A—input matrix;
R—random weight matrix;
β—weight vector to be solved;
S—middle matrix;
H—output matrix;
Hþ—solution matrix;
b—expected output vector.

3. Increase of dimension for input matrix

This section has two aims. One is to make clear the impact of
dimension increase (from A to S) on the solution of Hβ¼ b, theFig. 1. A simple ELM structure.
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other is to find the change tendency of the residence error
jjHβ�bjj when the matrix is becoming matrix S.

Suppose that the input matrix A becomes a middle matrix S via
the following transformation S¼ AR where A has N rows and n
columns, R is the random weights matrix with n rows and m
columns, and S is the middle matrix with N rows and m columns.
We generally consider that m is bigger than n, and therefore, this is
a process of increasing dimension of input matrix. We have the
following:

Proposition 1. RankðSÞrRankðAÞ.
One can find the proof of Proposition 1 from a fundamental linear

algebra textbook.

Proposition 2. Suppose that R is a full rank matrix with n rows and
m columns. Let S¼ AR be the middle matrix with N rows and m
columns. Then

min
αARn

jjAα�bjj ¼ min
βARm

jjSβ�bjj; ð3Þ

where b is the expected output vector and R is a full-rank matrix.

Proof. Let bARN ; L� RN :Then, the distance between b and L can
be defined as

Dðb; LÞ ¼min
xA L

jjx�bjj;

where jjx�bjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�bÞT ðx�bÞ

q
denotes the distance between two

N-dimensional vectors x and b. Rewrite A¼ a1; a2;⋯anf g as a set of
N-dimensional vectors and let Span(A) denote the linear space
spanned by fa1; a2;⋯; ang; i.e.,

SpanðAÞ ¼ fk1a1þk2a2þ⋯þknanjkjAR'; j¼ 1;2⋯ng:
Then,

Dðb; SpanðAÞÞ ¼ min
αARN

jjAα�bjj: ð4Þ

Similarly,

min
βARm

jjSβ�bjj ¼Dðb; SpanðSÞÞ ¼Dðb; SpanðARÞÞ: ð5Þ

Noting that R is a full-rank matrix, we have SpanðAÞ ¼ SpanðARÞ
which implies Eq. (4) is identical to Eq. (5). The proof is
completed. □

The right side of Eq. (3) denotes the residence error in solving
the system Sβ¼ b while the left denotes the residence error in
solving the original problem Aα¼ b. It is easy to see from Fig. 1

that, if we delete the step 2, then S will be identical to H, and the
solution of Sβ¼ b will be the final solution Hþ b. Proposition 2 tells
us such a fact that the dimension-increase of input matrix has no
impact on the reduction of residence error of the system of linear
equations if we do not have the Sigmoid transformation in step 2.

Proposition 3. Let HN�m ¼ fh1;h2;…;hmg and Hn

Nðmþ1Þ ¼ fh1;h2;…;

hm;hmþ1g denote two sets of vectors, hj is an N-dimensional vector
ð1r jrmþ1Þ,
βm�1 ¼ ðβ1; β2;…; βmÞT ; βn

ðmþ1Þ1 ¼ ðβ1; β2;…; βmβmþ1ÞT :

Then,

min
βn ARmþ 1

jjb�Hnβnjjrmin
βARm

jjb�Hβjj:

Proof. Noting H �Hn, we have SpanðHÞ � SpanðHnÞ, which implies

min
βARmþ 1

jjb�Hnβnjj ¼Dðb; SpanðHnÞÞrDðb; SpanðHÞÞ ¼ min
φARm

jjb�Hβjj:

The proof is completed. □

Since the dimension-increase of input matrix is equivalent to
add nodes of hidden layer, Proposition 3 tells us a conclusion that,
when we incrementally train an ELM by gradually adding nodes in
hidden layer, the training error is monotonically decreasing. It is
worth pointing out that the conclusion has been included in the
Lemma 3.1. [4]. In comparison with the Lemma 3.1 in [4], the
current proof is more strict and understanding.

4. Sigmoid transformation leading to an increase of rank of
output matrix

We now focus on step 2, i.e., the transformation from matrix S
to matrix H. From the definition of step 2, we know

HN�m ¼ ðhijÞN�m ¼ ðSigmðsijÞÞN�m;

where SN�m ¼ ðsijÞN�m, SigmðxÞ ¼ ð1=1þe�xÞ, xAR0.
We have two aims in this section. One is to make clear the

change of rank from S to H while the other is to establish
relationship between the rank of H and the residence error
jjHβ�bjj.

Example 1. Let S¼ 2 1
1 a

� �
where a¼ ln eþe� 1

2 . It is easy to check

that S is a full-rank matrix. After conducting the Sigmoid

Fig. 2. Three steps for training an ELM.
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transformation, matrix S is transferred to

H¼
1

1þ e� 2
1

1þe� 1

1
1þ e� 1

1
1þe� a

0
@

1
A:

Noting that Hj j ¼ 0 (where Hj j denotes the determinant of
matrix H), we get that Matrix H is not full rank.

Example 1. shows that it is possible that the Sigmoid transforma-
tion transfers a full rank matrix to a waning rank matrix.

Proposition 4. Suppose that S¼ fs1; s2;…; sNg denotes a set of n-
dimensional vectors, si ¼ ðsi1; si2;⋯; sinÞ, i¼ 1;2;…;N, siasjðia jÞ.
1rRankðSÞon. Then, with probability 1, the Sigmoid transformation
will transfer S into a set of vectors of full rank, i.e., with probability 1
RankðHÞ ¼ n where H¼ fh1;h2;…;hNg, hi ¼ ðhi1;hi2;…;hinÞ,
hij ¼ SigmðsijÞ ¼ ð1þe� sij Þ�1, i¼ 1;2;…;N, j¼ 1;2;…;n.

Proof. For simplicity we prove the proposition with n¼3. For
general case we can similarly complete the proof. It can be divided
as two cases: RankðSÞ ¼ 1 and RankðSÞ ¼ 2. The first case indicates
that all vectors in S are located in a line. After Sigmoid transforma-
tion, the line will be transferred a curve in 3-dimensional space.
We prove that with probability 1 the curve is a spatial curve (i.e.,
the probability with that the curve located in a plane is zero).

Consider the Sigmoid transformation

ðx1; x2; x3Þ↦
1

1þe�x1
;

1
1þe� x2

;
1

1þe�x3

� �
Að0;1�3:

Without losing generality, let x¼ λv denote a line passing through
the original, where vAR3, λ is a parameter. Define

VðλÞ ¼ 1
1þe� λv1

;
1

1þe� λv2
;

1
1þe� λv3

� �
:

From [22] we know that VðλÞ is a spatial curve if and only if the
torsion of VðλÞ is not zero where the torsion is defined as
τ¼ �ðdγ=dλÞβ where

γ ¼ V 'ðλÞV″ðλÞ
jV″ðλÞj and β¼ V″ðλÞ

jV″ðλÞj:

Noting that Sigmoid f ðyÞ ¼ ð1=1þe�yÞ has the properties
f 0 ¼ f ð1� f Þ and f ″¼ f ð1�2f Þ, we can directly evaluate the torsion
and get that the torsion τ¼ 0 if and only if two components of
v are zero (i.e., each of the three axes of coordinates), which
implies that with probability 1 the curve VðλÞ is a spatial curve. In
this way we have

Probability ðH is a waning rank matrixÞ
¼ Probability ðVðλÞis anon�spatial curveÞ ¼ 0: □

Fig. 3 shows an example of the transformed spatial curve. For
the case of Rank(S)¼2 which indicates that all vectors of S are
located in a plane, it is easy to check that the Sigmoid transforma-
tion will change the plane to a special curved surface Ω in 0;1ð �3.
Then

Probability ðH is a waning rank matrixÞ
rProbability ðfvjvAS; SigmðvÞ �Ω \ P; P is any plane or linegÞ
rProbability ðfvAR3jv dropping in a plane areagÞ ¼ 0:

Fig. 4 shows an example of intersection of a plane and its
Sigmoid transformation. When n43, the proof is still available
while some concepts of differential geometry are used, but the
expression is rather complicated. Here we do not show the part of
n43. The proof is completed.

Proposition 4. indicates that the Sigmoid transformation will trans-
fer a matrix S before step 2 to a full-rank matrix H after step 3 with
probability 1. Noting that S is coming from step 1 via a linear
transformation with dimension increase and is generally of waning
rank, we can clearly see the effect of rank increase of Sigmoid
transformation. There is an essential difference between the full and
waning rank matrices for the residence error computation and the
stability of least square solution based on pseudo inverse of matrix.
Section 5 shows that difference.

Lots of numerical experiments show that a same conclusion
can also be obtained for the infinitely differential activation
function. However, we do not have a strictly mathematical proof
on this speculation. The major difficulty involves some specific
properties of the function. We are trying to extract the common
conditions of the set of functions and then to derive a proof.

Besides the Sigmoid activation function discussed in this paper,
other sigmoidal functions, e.g., radial basis, sine, cosine, exponen-
tial, and many nonsingular functions shown in [7] are considered
to have the similar impacts and conclusions. But there is not
a rigorous proof.

5. Estimation of residence error and stability of solution

Focusing on step 3 in Fig. 2., we discuss the difference for
solving linear system of equations Hβ¼ b between full rank H and

Fig. 3. An example of spatial curve transformed by Sigmoid.

Fig. 4. An example of intersection of a plane and its Sigmoid transformation.
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waning rank H, and the related issues of solution stability. Since
the solution can be expressed as β¼Hþb, we consider the issue of
continuity for generalized inverse Hþ . Hþ is referred to as con-
tinuous if and only if

limjjδHjj-0ðHþδHÞþ ¼Hþ ;

where δH denotes a perturbation of matrix H.

Proposition 5. The generalized inverse Hþ is continuous if H is
a full-rank matrix.

Proof. Without loosing generality we suppose that the rank of H
is n, which implies that HTH is a n� n non-singular matrix. In fact

it is a symmetric and positive matrix and Hþ ¼ ðHTHÞ�1HT . Denote
the perturbation matrix by δH, then we have

ðHþδHÞT ðHþδHÞ ¼HTHþðHþδHÞTδHþðδHÞTH:

According to Banach theorem we know that ðHþδHÞT HþδHð Þ is

a non-singular matrix if jjðHTHÞ�1½ðHþδHÞT ðδHÞþðδHÞTH�jjo1. It
is easy to see that we always take the jjδHjj small enough such that
the equality holds well. In other words, there exists a small
positive number η such that the inequality holds well if
jjδHjjrη. In this way, the generalized inverse matrix can be
expressed as

ðHþδHÞþ ¼ ½ðHþδHÞT ðHþδHÞ��1ðHþδHÞT :
Let jjδHjj-0, we have

lim
‖δH‖-0

½ðHþδHÞT ðHþδHÞ��1 ¼ ðHTHÞ�1 and lim
jjδHjj-0

ðHþδHÞT ¼HT ;

which implies lim
jjδHjj-0

ðHþδHÞþ ¼ ðHTHÞ�1HT ¼Hþ . It just is the

conclusion of this proposition. □

The continuity of generalized inverse Hþ plays an essential role
for getting a stable solution. Since the input matrix of ELM is
transferred to a middle matrix by multiplying a group of random
weights and then the weight perturbation is unavoidable, the
discussion about the solution stability is particularly meaningful.
Full rank of H results in the continuity of Hþ . The following
example shows that for a matrix H with waning rank, its general-
ized inverse Hþ is generally discontinuous.

Example 2. Let H¼
1 0
0 0
0 0

2
64

3
75, than rank Hð Þ ¼ 1. H is no of full rank.

It is easy to calculate that Hþ ¼
1 0 0
0 0 0

" #
. Suppose that

δH¼
0 0
0 ε

0 0

2
64

3
75; εa0, then HþδH¼

1 0
0 ε

0 0

2
64

3
75. Noting that the

matrix HþδH is of full rank, i.e., rankðHþδHÞ ¼ 24rankðHÞ, we get

ðHþδHÞþ ¼ 1 0 0
0 ε�1 0

� �
:

It is easy to see that the limit of ðHþδHÞþ does not exist when
jjδHjj-0.

For a matrix of full rank, the generalized inverse can be
expressed as Hþ ¼ ðHTHÞ�1HT . Based on this expression, we can
write the residence error as

jjb�Hβjj2 ¼ bTb�bT ðHðHTHÞ�1HT Þb:

We continue to discuss β¼Hþ b, the solution of Hβ¼ b.
Suppose that there are two perturbations for coefficient matrix

H and right vector b, δH and δb, respectively. The corresponding
perturbation equations and their solutions are denoted as

ðHþδHÞðβþδβÞ ¼ bþδb

and

ðβþδβÞ ¼ ðHþδHÞþ ðbþδbÞ;
respectively. Furthermore supposing that the perturbation δH is
small enough such that the rank of H has not change, we estimate
δβ, i.e., the impact of perturbation on the solution.

Proposition 6. Suppose that (1) rankðHþδHÞ ¼ rankðHÞ and (2)
jjHþ jjjjδHjjo1. Then we have

jjδ x!jjr jjHþ jj
1�Δ

2jjδHjjj x!jjþjjδ b!jjþΔjj r!jj
1�Δ

 !
;

where Δ¼ jjHþ jjjjδHjj and r!¼ b
!�H x!.

Proof. From x!þδ x!¼ ðHþδHÞþ ð b!þδ b
!Þ and x!¼Hþ b

!
we

obtain that

δ x!¼fðHþδHÞþ �Hþ g b!þðHþδHÞþ δ b!:

By a direct derivation we can rewrite δ x! as

δ x!¼ �Bþ ðδHÞ x!þBþBþT ðδHÞT r!þðI�BþBÞðδHÞTHþT x!þBþ ðδ b!Þ; ð6Þ
where B¼HþδH. The condition (2) jjHþ jjjjδHjjo1 implies that
jjBþ jj is upper bounded:

jjBþ jjr jjHþ jj
1�jjHþ jjjjδHjj:

Taking norm for both sides of Eq. (6) we have

jjδ x!jjr jjBþ jjjjδHjjjj x!jjþjjBþ jj2jjδHjjjj r!jjþjjδHjjjjHþ jjjj x!jjþjjBþ jjjjδ b!jj

¼ jjBþ jðjjδHjjjj x!jjþjjδ b!jjÞþjjBþ jj2jjδHjjjj r!jjþjjδHjjjjHþ jjjj x!jj

r jjHþ jj
1�Δ

ðjjδHjjjj x!jjþjjδ b!jjÞþjjHþ jjjjδHjjjj x!jjþ jjHþ jj2
ð1�ΔÞ2

jjδHjjjj r!jj

¼ Δjj x!jjþjjHþ jjjjδ b!jj
1�Δ

þΔjjHþ jjjj r!jj
ð1�ΔÞ2

þΔjj x!jj

¼ Δjj x!jjþjjHþ jjjjδ b!jþΔjj x!jj�Δ2jj x!jj
1�Δ

þΔjjHþ jjjj r!jj
ð1�ΔÞ2

¼ 1
1�Δ

2Δjj x!jjþjjHþ jjjjδ b!jj�Δ2jj x!jjþΔjjHþ jjjj r!jj
1�Δ

 !
: ð7Þ

Replacing Δ in numerator of Eq. (7) with ‖Hþ ‖‖δH‖, we get the
estimation

jjδxjjr jjHþ jj
1�Δ

2jjδHjjjj x!jj�jjHþ jjjjδHjj2jj x!jjþjjδ b!jjþΔjj r!jj
1�Δ

 !

r jjHþ jj
1�Δ

2jjδHjjjj x!jjþjjδ b!jjþΔjj r!jj
1�Δ

 !
;

which completes the proof. □

This proposition tells us such a result that, if the residence error

jj r!jj ¼ jj b!�H x!jj is big, then the perturbation has a much impact
on the solution.

To numerically verify the relationship between the residence
error jjb�Hβjj2 and solution stability, i.e., to observe the changes
of residence error and solution stability with the increase of
rank of H, we conduct a numerical experiment. Assume that
H is a matrix with 150 rows and 100 columns, thus the full rank

A.-M. Fu et al. / Neurocomputing 146 (2014) 75–82 79



of H is 100. Without loss of generality, let H ¼ ðhijÞ150�100;hij ¼
0:9þδ ; if i¼ jrr

0 ; otherwise

(
for rank(H)¼r, r¼ 1;2;⋯;100. And for

each r, let δ range from �0.1 to 0.1 with a step of 0.0001. Here,
the parameter δ plays the role of perturbation. We consider two
different learning tasks, i.e., b is a matrix for classification (b1) and

b is a vector for regression (b2): b1 ¼ ðbð1Þij Þ150�3 meets

∑150
i ¼ 1∑

3
j ¼ 1b

ð1Þ
ij ¼ 150 and ∑3

j ¼ 1b
ð1Þ
ij ¼ 1 and b2 ¼ ðbð2Þi Þ150�1, where

bð2Þi is the random number in interval [0, 1], i¼ 1;2;⋯;150. The
detailed results are presented in Fig. 5.

From Fig. 5 we can obviously find that (1) with the increase of rank
of H, the residence errors for both classification and regression
decrease gradually, and (2) with the increase of rank of H, the solutions
of Hβ¼ b become more and more stable (because these blue bands
become more and more narrow). This indicates that the variances of
solutions reduce gradually. In summary, this experiment demonstrates
the theoretical analysis mentioned above, i.e., in comparison with H
having waning rank, the full-rank matrix can obtain the smaller
residence error. And, the full-rank matrix H is more insensitive to
the perturbation and can get the more stable solution for Hβ¼ b.

More numerical experiments have been conducted for different
types of H with rank(H)¼r, r¼ 1;2;⋯;100. The experimental
results are basically similar to that shown in Fig. 5.

6. An application to genetic algorithms of minimizing L1-norm
ELM

The residence error is deceasing with the increase of nodes of
hidden layer, and depends strongly on the rank of output matrix.
This conclusion can give some guidelines for choosing hidden
nodes and training ELM as follows:

(1) The maximum number m of hidden nodes is equal to the
number N of distinct training samples. (It is based on the
conclusion in [15]: when m¼N, the matrix H is square and
invertible if the input weights rij and the hidden biases bi are
randomly chosen, and ELM can approximate these training
samples with zero error.

(2) Due to the decrease of residence error, we can determine the
number of hidden nodes by gradually adding nodes till an
acceptable accuracy.

(3) Since the matrix H will be of full-rank with probability 1, we
basically do not need to worry about the singular case caused
by adding hidden nodes.

We know that training an ELM is to minimize a square error
function, which can be finally transferred to a problem of solving
a pseudo inverse of matrix. This transformation can be conducted
since the square error function has quite good analytic properties.
Motivated by reducing the effect of noisy data, the objective
function to be minimized, i.e., the square error function is often
replaced with an absolute error function. It means that we need to
minimize a function including absolute operations rather than to
minimize a square error function. Some related research can be
found from references [3,19,23]. Mathematically it is a problem of
optimization in L1-space.

Since the absolute function is continuous but not differentiable,
we cannot derive a simplified form similar to the case of square
error function. Similar to Eq. (1), the mathematical model can be
formulated as min

βARm
bN�1�HN�mβm�1

�� �� where symbols b, H, and β

have the meaning as same as in Section 2, and for a given vector
x¼ ðx1; x2;…; xmÞT the L1-norm is defined as jxj ¼ jx1jþjx2jþ…
þjxmj. In comparison with minimizing Eq. (1), the absolute
function optimization is much more difficult. It cannot be trans-
ferred to a problem of solving a system of linear equations
although the input matrix H is of full-rank. From references one
can find some existing study on the absolute function optimization
[5,17,20], the genetic algorithm is one of the most feasible and
effective methodologies. When the number of hidden layer nodes
of an ELM is given, a genetic algorithm for minimizing the absolute
error function is described as follows:

A genetic algorithm for training L1-ELM:
Objective function to be minimized: FðβÞ ¼ bN�1�HN�mβm�1

�� ��
where b and H are defined as in Section 2;

Parameters to be determined: β¼ ðβ1; β2;…; βmÞT ;

Step 1: Population initialization. Usually there are two ways to
initialize the population of parameters. One is to randomly
choose from given intervals while the other is to use some
heuristic information which can help speed up the convergence
and reduce the iteration number. Let M be the population size;
Step 2: Coding. A coding mechanism is used for coding each
chromosome of the population. We use the bit-coding in our
approach, i.e., each chromosome is represented as a string of
either 0 or 1 with fixed length;
Step 3: Crossover. For each chromosome, a mate-chromosome
is randomly selected from the unassigned chromosomes. Then
the population is considered as a set of chromosome-pairs. For
each pair in the population, N tail-genes are exchanged, where
N is a given number. Then a new pair of chromosomes is
generated. Usually we set up a crossover probability;

Fig. 5. The varieties of residence error and solution stability. (a) Classification with b1 and (b) regression with b2.

A.-M. Fu et al. / Neurocomputing 146 (2014) 75–8280



Step 4: Mutation. With a mutation probability, randomly select
a number of genes from all new chromosomes, and change
these gene-values from 0 to 1 or from 1 to 0;
Step 5: According to the objective function, a fitness for each
chromosome is evaluated. Find the best chromosome which
has the minimum fitness value;
Step 6: Repeat steps 3–5 until the iteration times reach a
predefined number. Output the best chromosome and its
corresponding fitness value.

A key step for designing a genetic algorithm is the population
initialization, which has a direct impact on the convergence
performance of the algorithm. A better initialization can signifi-
cantly increase the convergence but a worse initialization may
lead the iteration divergence. We try to apply the result of ELM
residence error to the population initialization. We know that the
optimization problem min

βARm
bN�k�HN�mβm�k

�� �� is not equivalent to

min
βARm

‖bN�k�HN�mβm�k‖2. The vector which makes the square error

function attain minimum is generally not the vector which makes
the absolute error function attain minimum. However, from the
angle of manifold regularization, one may think of there exists an
implicit relation between both vectors. The manifold regulariza-
tion framework has a fundamental smoothness assumption, that
is, if two points x1 and x2 are close to each other, then the
conditional probabilities (y|x1) and P(y|x2) should be similar as
well. In this way, if we consider optimization problem for a set of
functions: fFðβ; λÞ ¼ jjb�Hβjjλjλ40g, we consider there are some
relations among the minimum-points for different values of λ
although it is difficult to find the exact relation. Since the case of
λ¼2 is easy to handle, we choose its solutions for the fixed random
weights and for different numbers of hidden layer nodes as seeds
of initial chromosomes in the population. The rest chromosomes
of the population are randomly generated.

Example 3. We try to train an ELM with absolute error minimiza-
tion for N¼150, n¼3, and m¼4 where N, n, and m denote the
number of raining samples, the number of input nodes, and the
number of hidden layer nodes, respectively. The typical Iris data
set is selected. Suppose that the population size M is 50 and (1) all
initial chromosomes are randomly generated from [�50, 50] or
(2) the population contains some seed chromosomes given by
solving the regular ELMs for m ranging from 4 to 8 and the
perturbations of these seeds. The maximum number of generation,
the probability of crossover, and the probability of mutation are
1000, 0.9 and 0.1, respectively. The error changes with the iteration
increasing as shown in Fig. 6.

From Fig. 6(a) and (b), one can see that, regarding the genetic
algorithm of solving an absolute ELM problem, the population
initialization based on our ELM-residence and manifold regular-
ization plays a real role of speeding-up convergence.

7. Conclusions

This paper presents a theoretical study on the residence error
of training an ELM. After dividing the ELM training process into
three steps and analyzing the change from input matrix to output
matrix, we get the following conclusions:

(1) The random weight plays a role in increasing dimension of
inputs but they do not increase the rank of input matrix;

(2) Sigmoid transformation transfers the middle matrix to an
output matrix of full rank with probability 1;

(3) regarding solutions of linear systems resulting from output
layer and the stability of the solutions, there is an essential
difference between full-rank and waning-rank matrices; and

(4) an application to the genetic algorithm for solving absolute
ELM problems is shown.
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