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Xi-Zhao Wang, Fellow, IEEE, Ran Wang, Student Member, IEEE, Hui-Min Feng, and Hua-Chao Wang

Abstract—Fusing a number of classifiers can generally improve
the performance of individual classifiers, and the fuzzy integral,
which can clearly express the interaction among the individual
classifiers, has been acknowledged as an effective tool of fusion.
In order to make the best use of the individual classifiers and
their combinations, we propose in this paper a new scheme of
classifier fusion based on upper integrals, which differs from
all the existing models. Instead of being a fusion operator, the
upper integral is used to reasonably arrange the finite resources,
and thus to maximize the classification efficiency. By solving an
optimization problem of upper integrals, we obtain a scheme for
assigning proportions of examples to different individual classi-
fiers and their combinations. According to these proportions, new
examples could be classified by different individual classifiers and
their combinations, and the combination of classifiers that specific
examples should be submitted to depends on their performance.
The definition of upper integral guarantees such a conclusion
that the classification efficiency of the fused classifier is not less
than that of any individual classifier theoretically. Furthermore,
numerical simulations demonstrate that most existing fusion
methodologies, such as bagging and boosting, can be improved
by our upper integral model.

Index Terms—Efficiency measure, fuzzy integral, interaction,
multiple classifier fusion, nonadditive set function, upper integral.

I. Introduction

FUZZY INTEGRALS [1], [2] have been widely applied
in classification problems, such as computer vision [3],

intrusion detection [4], and biotechnology [5]. Since fuzzy
measures used in fuzzy integrals can model and represent the
interactions among classifiers or attributes, fuzzy integrals usu-
ally have better performance than other classification schemes
when attributes of the problem are strongly of interaction.
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There are two points of view for applying fuzzy integrals in
classification problems: one is the fuzzy pattern matching [6],
[7] and the other is the multiple classifier fusion [9]–[11]. The
former considers the fuzzy integral as a classifier, while the
later considers the fuzzy integral as a fusion operator. The
fuzzy integral classifier is based on a fuzzy pattern-matching
process including two steps: 1) computing the matching degree
between a testing example and the fuzzy prototype in which
the attributes are represented as fuzzy subsets, and 2) merging
all matching degrees concerning a class into a single value
by fuzzy integrals. The fusion is usually conducted through
the following three steps: 1) the individual classifier outputs
the membership degrees of an example belonging to different
classes; 2) the fuzzy integral is used to combine all these
membership degrees; and 3) the class with the highest fused
membership degree is chosen as the final classification result.
Fuzzy integral based fusion of multiple classifiers has been
one hot topic in machine learning during the recent decades.

Many types of classifiers, e.g., decision trees [12]–[14],
neural networks [14], support vector machines [14], [15],
have been proposed in the recent decades, but it is difficult
to say which model is the best for a specific task [10].
In many practical tasks, it is difficult to design a single
classifier with satisfying performance. Considering the neu-
ral network, although Hornik [16] theoretically proved that
multilayer feed-forward networks with one hidden layer using
arbitrary squashing functions (e.g., sigmoid functions) are
capable of approximating any continuous function given a
sufficient number of hidden units; practically, it is almost
impossible to design a neural network with the optimal units.
Hasen and Salamon [17] showed that the generalization ability
could be significantly improved through fusing a number of
neural networks, i.e., training many neural networks and then
combining their predictions. Since the fusion technology is
easy and behaves remarkably well, it has been successfully
applied to many areas [18]–[21], and the types of classifiers
can not only be neural networks but also be decision trees,
k-nearest neighbors, etc.

In multiple classifier fusion, a number of base classifiers
are first designed for a given classification task. Then, a fu-
sion operator, such as minimum, maximum, median, average,
weighted average, ordered weighted average, or fuzzy integral,
is selected to aggregate the outputs from all base classifiers
[17]–[21]. The aggregated results are the final classification.
Weighted average and ordered weighted average operators are
good choices to deal with the different importance of base
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classifier, but the two methods are based on an assumption that
there is no interaction between the base classifiers. However,
this assumption may not be true in many real problems. If
the interaction is considered, the Dempster–Shafers method
[20], [22]–[25] or fuzzy integrals [5]–[8], [18] may be a
better choice. It was shown in [22] that the fuzzy integral
is more practical than the Dempster–Shafers method. The
fuzzy integral as a fusion tool, in which the nonadditive
measure can clearly express the interaction among classifiers
and the importance of each individual classifier, has particular
advantages. One difficulty for applying fuzzy integrals is how
to estimate the fuzzy measures. There are some methods
to determine fuzzy measures such as linear programming,
quadratic programming [26], [27], genetic algorithm [28],
[29], neural network [30], and pseudogradient [31].

This paper proposes a new approach to multiple classifier
fusion based on the upper integral. A new type of fuzzy
integral was proposed in [42]. This new integral was then
extended to a pair of integrals, i.e., the lower and the upper
integrals in [32]. In addition, when the universal set is finite,
the upper integral is called Wang integral and its calculation
method was shown in [42].

Motivated by the definition of upper integrals that can be
considered a mechanism of maximizing potential efficiency of
classifier combination, the new approach is devoted to improve
the classification performance of a fusion system based on
upper integrals. It is worth noting that, in our approach, the
upper integral itself is not considered a tool of classifier
fusion, but it is considered a tool to improve any exiting
classifier-fusion operator. In other words, our approach (in
which the upper integral is no longer a fusion operator) differs
from all existing fuzzy integrals based fusion schemes (which
consider the fuzzy integrals as fusion operators). Specifically,
given a group of base classifiers trained from a set of ex-
amples and a fusion operator, we regard the classification
accuracies of individual classifiers and their combinations as
the efficiency measure, which avoids almost the difficulty of
determining fuzzy measures. The upper integral plays a role
in assigning suitable examples to different base classifiers
and their combinations to obtain maximum the correct rate
of classification. It computes how many examples will be
allocated to some of base classifiers and their combinations
by solving an optimization problem derived from the upper
integral. This implies a proportion of example allocation for a
given set of examples. Based on this proportion, some oracles
are used to determine which examples will be allocated to
those individual classifiers and their combinations. Given an
example, the oracle of a combination of classifiers first predicts
the possibility with which the combination can correctly
classify the example. Then, the example is allocated to the
combination with maximum possibility. When the number of
examples allocated to a combination attains the proportion,
the allocation to this combination stops, and the allocations to
other combinations continue until all examples are allocated.
After the allocation, those classifiers perform the classification
of the set of examples, which is our final classification result.

The rest of this paper is arranged as follows. In Section II,
the related work is introduced. The existing multiple classifier

fusion schemes are reviewed in Section III. Section IV is
devoted to the efficiency measures, fuzzy integrals, and upper
integrals. Our new fusion scheme based on the upper integral
is proposed in Section V. Section VI presents a number
of numerical experiments to verify advantages of the new
approach, and finally Section VII concludes this paper.

II. Related Work

There are several reasons for combining multiple classifiers
to solve a given classification problem [33]. For example, dif-
ferent classifiers trained on the same data may not only differ
in their global performances, but they also may show strong
local differences. Each classifier may have its own region in
the feature space where it performs best. Most combination
schemes in the literature belong to parallel architecture in
which all the base classifiers are invoked independently, and
a fusion operator then fuses their outputs [33].

The outputs of the base classifiers are usually imprecise
or uncertain. To handle/fuse the uncertain or imprecise infor-
mation, we can find many useful approaches, theories, and
operators, such as Bayesian method [20], [33], Dempster–
Shafer evidence theory [20], [22]–[25] and fuzzy integrals [7]–
[9], [11], [19]–[21], [26], [27], [29], [31], [34].

1) The Bayesian method describes the uncertainty and
completes the inference based on the prior and posteriori
probability. Theoretically, the Bayes decision rule gives
the optimal classification correction rate, in the sense
that, for a given (A) prior probability, (B) loss function,
and (C) class-conditional density, no other decision rule
will have a lower risk. But, practically, Bayes methods
often have the poor performance. One reason is that the
basic assumption in Naive Bayes, i.e., the independence
of classifiers, is often not satisfied. Another reason is that
it is difficult to precisely estimate the class-conditional
densities or prior probabilities because of absence of
some necessary information in many classification tasks
[24].

2) The Dempster–Shafer approach gives a representation of
imprecise and uncertain results from classifiers through
two sets of functions: plausibility and belief [22], [24].
With belief theory, each classifier first generates a belief
function over the power set of classes and the outputs
are combined by using Dempster’s rule.

3) The fuzzy integral, as an extension of average operator,
can combine the outputs of base classifiers and their
combinations. The values of fuzzy integrals provide a
measure of certainty for classification, and this mea-
sure significantly differs from the well-known posteriori
probabilities. A key problem for applying fuzzy integrals
is how to determine suitable fuzzy measures. From [3],
[4], [7], [11], [26]–[31], and [39]–[41], one can find
several existing methods of determining fuzzy measures.
Fuzzy integrals are more computationally efficient than
a strict Dempster–Shafer approach [25].

Moreover, bagging [35] and boosting [36], which are con-
sidered an ensemble meta-algorithm for improving the stability
and accuracy of learning algorithms used in classifications
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and regressions, also have a mechanism of fusing uncertainty.
Different from the Bayesian and DS theory, bagging and
boosting operate by taking a base learning algorithm and
invoking it many times with different training sets. Bagging
and Adaboosting are also techniques widely used to build
diverse classifiers. The diversity is an important factor for a
successful fusion system [20], [37], [38].

We now focus on a new type of fuzzy integrals, called the
upper integral. The upper integral can be interpreted as the
maximum efficiency under certain restraint conditions. This
paper makes an attempt to shift this concept of maximum
efficiency to the classification problem based on the upper
integrals.

III. Multiple Classifier Fusion Based on Fuzzy

Integrals

Suppose that X = {x1, x2, . . . , xn} is a set of classifiers.
The output of classifier xj is a c-dimensional nonnegative
vector [dj,1,dj,2, . . . , dj,c] where c is the number of classes.
Without loss of generality, let dj,i ∈ [0, 1] denote the sup-
port from classifier xj to the hypothesis that the example
submitted for classification comes from the ith class Ci for
j = 1, 2, . . . , n, i = 1, 2, . . . , c. The larger the support, the
more likely the class label Ci. All outputs of classifiers for
an example can be organized in the decision profile matrix
DP = [dj,i]n×c [20].

Each column of the DP matrix can be regarded as a function
defined on the set X, fi : X → [0, 1], fi(xj) = dj,i, i =
1, 2, . . . , c, j = 1, 2, . . . , n. For each class Ci, we need to
determine a nonnegative set function μi on the power set P(X)
of X. μi can represent not only the importance of individual
classifiers but also the interaction among classifiers toward
examples from Ci class. Set functions have some special cases.

Definition 1 [43]: Let X be a nonempty and finite set and
P(X) be the power set of X. Then (X; P(X)) is a measurable
space. A set function μ : P(X) → (−∞, +∞) is called a
fuzzy measure or a monotone measure, if:

(FM1) μ(Ø) = 0, (vanishing at the empty set);
(FM2) μ(A) ≥ 0, for any A ⊂ X, (non-negativity);
(FM3) μ(A) ≤ μ(B), if A ⊂ B, A ⊂ X, B ⊂ X,

(monotonicity).
Set function μ is called an efficiency measure if it satisfies

(FM1) and (FM2); μ is called a signed efficiency measure if
it satisfies (FM1) only. Any fuzzy measure is a special case
of the efficiency measure; and any efficiency measure is a
nonnegative set function. Fuzzy measures have a monotone
constraint but efficiency measures have not, so fuzzy measures
are sometimes called nonnegative monotone set functions. In
multiple classifier fusion, nonnegative set functions are used
to describe the importance of classifiers and the interaction
among classifiers. The value of set function at a single-point-
set μ({xi}) presents the contribution of the single classifier
xi toward classification, and the value at other sets, such
as μ({xi, xj, xk}), presents the joint contribution of the three
classifiers toward classification. Mainly the ways to determine
the nonnegative set functions have two types. One is to learn

Fig. 1. Fusion system of multiple classifiers based on fuzzy integrals.

from the history data [11], [26]–[31] and the other is to specify
by experts.

Once the set functions are available, we can use the fuzzy
integral to aggregate the outputs from all classifiers. The
integral of function fi (the ith column of DP matrix) with
respect to nonnegative set function μi is the degree of fusion
system classifying an example to class Ci. If necessary, we can
obtain the crisp class label through Ct = arg (max

1≤i≤c

∫
fidμi).

Usually, the type of fuzzy integral is chosen in advance.
Choquet fuzzy integral and Sugeno fuzzy integral are of-
ten selected. Noting that the addition and the multiplication
operators are used in Choquet integral while the maximum
and the minimum operators are used in Sugeno integral,
most researchers prefer to choose Choquet integral [32]. The
classification process of an example by a fused system based
on fuzzy integrals is illustrated in Fig. 1.

Fig. 1 shows that an example is first submitted to all
classifiers and the results from all classifiers are stored in a
DP matrix. Each column of the matrix is a function defined on
set X. Then, the final classification result can be obtained by
calculating the integral of each column of the DP matrix. The
crisp class label can be finally obtained through the maximum
if necessary.

IV. Upper Integral and Its Properties

This section will introduce some mathematical concepts
about fuzzy integrals that are suitable for multiple classifier
fusion.

Consider a nonempty set X = {x1, x2, . . . , xn}. P(X) is the
power set of X, μ : P(X) → [0, +∞) is an efficiency measure,
and f : X → [0, +∞) is a function. First, {f (x1), f (x2), . . . ,

f (xn)} are rearranged into a nondecreasing order,
that is

f (x∗
1) ≤ f (x∗

2) ≤ . . . ≤ f (x∗
n)
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where {x∗
1, x

∗
2, . . . , x∗

n} is a permutation of {x1, x2, . . . , xn}.
Then, the Choquet integral and the Sugeno integral of function
f with respect to measure μ are respectively evaluated as

(C)
∫

fdμ =
n∑

i=1

[
f (x∗

i ) − f (x∗
i−1)

] · μ({x∗
i , x

∗
i+1, . . . , x∗

n})
(1)

where f (x∗
0) = 0

(S)
∫

fdμ = max
1≤i≤n

[
f (x∗

i ) ∧ μ({x∗
i , x

∗
i+1, . . . , x∗

n})
]
. (2)

Choquet integral and Sugeno integral are two aggregation
operators often used in multiple classifier fusion. In appli-
cation, set X consists of all classifiers. The supports of one
example belonging one class from all classifiers, the column
of a DP matrix, constitute the integrand of fuzzy integral. In
additional, another important fuzzy integral, called the upper
integral, has been proposed in [32] and [42]. The upper integral
of f with respect to a non-additive set-function μ is described
as (5)

(U)
∫

fdμ = sup{
2n−1∑
j=1

aj μ(Aj) |
2n−1∑
j=1

aj χAj
= f } (3)

where χAj
is the characteristic function of set Aj , and aj ≥ 0,

Aj =
⋃

i:ji=1
{xi}, j is expressed in binary digits as jnjn−1 . . . j1,

j = 1, 2, . . . , 2n−1.
The value of the upper integral (U)

∫
fdμ is the solution of

the following linear programming problem [32], [42]:

Maximum z =
2n−1∑
j=1

ajμj

Subject to
2n−1∑
j=1

aj χAj
(xi) = f (xi), i = 1, 2, . . . , n

aj ≥ 0, j = 1, 2, . . . , 2n − 1

where μj = μ(Aj), j = 1, 2, . . . , 2n − 1, a1, a2, . . . , a2n−1

are unknown parameters. The above n constraints can be also
rewritten as ∑

j:x∈Aj⊂X

aj = f (x) ∀x ∈ X.

The upper integrals have the following properties.

1) For any c ∈ [0, +∞), (U)
∫

cfdμ = c(U)
∫

fdμ.
2) (U)

∫
fdμ ≤ (U)

∫
gdμ if f (x) ≤ g(x) for every x ∈ X.

3) (U)
∫

fdμ ≤ (U)
∫

fdν if μ(A) ≤ ν(A) for every A ⊆
X.

4) (U)
∫

fdμ = 0 if and only if for every set A with
μ(A) > 0, there exists x ∈ A such that f (x) = 0, that
is, μ({x|f (x) > 0}) = 0.

5) (C)
∫

fdμ ≤ (U)
∫

fdμ.

Since the integral value represents an efficiency of classi-
fication, which is considered the classification accuracy when
the oracle is 100% correct, (5) indicates that the upper integral
model is more efficient than the Choquet integral model
regarding classification problems.

V. Model of Classifier Fusion Based on

Upper Integral

The aim of this section is to establish a new model for
classifier-fusion based on the upper integral. The new model,
which is completely different from the exiting fuzzy integral
based models, gives an example-assignment schedule regard-
ing how many and which examples should be assigned to
individual classifiers and their combinations, instead of being
aggregation operators.

A. Efficiency Measure

Suppose that we are considering n classifiers, denoted by
X = {x1, x2, . . . , xn}. Let P(X) be the power set of X, i.e.,
the group of all subsets of X. Then, each element of P(X)
will denote a combination of classifiers, and it is clear there
are 2n − 1 combinations in total (excluding the empty set).
For instance, {x1} denotes that the classifier works alone, and
{x1, x3, x4} denotes the three classifiers work together. We first
need to define an efficiency measure on P(X).

Let T be the training set. Then, each classifier has a training
accuracy on T, and therefore, the value of the efficiency
measure on a single classifier can be defined as the training
accuracy, i.e., the correct rate of classification. Furthermore,
suppose that we have a basic fusion operator such as majority
voting or average. Then, applying the fusion operator to a
combination of classifiers on T, we can obtain a correct
classification rate of the classifier combination on T, which is
defined as the value of the efficiency measure on the classifier
combination. In this way, the efficient measure is defined as

μ(A) =

{
0, if A = empty set
accuracy of A on T, if A is a nonempty subset of X

where A denotes either a single classifier or a group of
classifiers. It is worth noting that the definition of efficiency
measure depends on a training set and a basic fusion operator.

B. Integrand

Since we are considering a finite space of classifiers X =
{x1, x2, . . . , xn}, the integrand is a function defined on X, to
be exact, an n-dimensional vector (y1, y2, . . . , yn) where yi is
the proportion of examples submitted to the classifier xi(1 ≤
i ≤ n) to classify. Our goal in this subsection is to determine
this integrand.

Noting the definition of upper integrals given in Section
IV, we find that the value of integral expresses the highest
classification efficiency for singly and jointly using classifiers
x1, x2, . . . , xn. Specifically, the integral value denotes the
highest classification efficiency and the process of computing
the integral specifies a way to achieve the highest value by
assigning how many examples to single classifiers and how
many examples to their combinations. Here, a key point we
need to explicitly specify is the following. Suppose that p

(0 < p < 1) is the accuracy of a single classifier xi and there
exist N examples to be classified, then we will not assign all
the N examples to xi but will assign only t (t ≤ pN) examples
to xi. It is similar to the case of a mixture of classifiers. Further
in the next subsection, we will discuss which examples will
be assigned to single classifiers and their combinations.
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Assuming that the integrand to be determined is expressed
as f = {y1, y2, . . . , yn} and the efficiency measure μ is
known already. Then, the function f can be determined by
the following optimization:

Maximum (U)
∫ {y1, y2, . . . , yn}dμ

Subject to yj ≤ μj, j = 1, 2, . . . , n
(4)

where yj denotes the proportion of examples assigned to
classifier xj , μj is the value of the efficiency measure on the
single classifier xj . The inequality restriction means that the
proportion of examples assigned to each individual classifier
should not exceed the correct rate (accuracy) of the classifier.

The optimization problem (4) can be transferred to

Maximum (U)
∫

{y1, y2, . . . , yn}dμ =
2n−1∑
i=1

ai · μi (5)

Subject to yj =
∑
i|bj=1

ai ≤ μ({xj}), j = 1, 2, . . . , n

ai ≥ 0, i = 1, 2, . . . , 2n − 1

where the number i has a binary expression bnbn−1 . . . b1 and
bj is the jth bit; the classifier combination corresponding to ai

is {xk|bk = 1, k = 1, 2, . . . , n}. Models (4) and (5) have such
a weakness that examples for evaluating the accuracy may be
counted more than once. To avoid this, we can add one more
restriction

2n−1∑
i=1

ai = 1.

That is, instead of (5) we can use (6) to avoid the repeat
counting examples

Maximum (U)
∫ {y1, y2, . . . , yn}dμ =

2n−1∑
i=1

ai · μi

Subject to yj =
∑

i|bj=1
ai ≤ μ({xj}), j = 1, 2, . . . , n

2n−1∑
i=1

ai = 1

ai ≥ 0, i = 1, 2, . . . , 2n − 1.

(6)

The optimization problem (6) is a linear programming
problem and is easy to numerically solve. The nonzero ai in
the solution indicates the proportion of testing examples for
the combination {xk|bk = 1, k = 1, 2, . . . , n} to classify. The
solution of (6) results in integrand f = {y1, y2, . . . , yn}.

The integral value is not less than the classification accuracy
of any individual base classifier. That is, the accuracy of upper
integral based fusion system is not less than the classification
accuracy of any individual base classifier if oracles are correct.
The following is a brief mathematical proof for this statement.

Proposition: The integral value in optimization problem (6)
is not less than the classification accuracy of any individual
base classifier if oracles are correct. That is

(U)
∫

{y1, y2, . . . , yn}dμ ≥ μ({xj}), j = 1, 2, . . . , n.

Proof: If the base classifier xi∗ has the highest accuracy
p∗, μ({xi∗ }) = p∗. Let the corresponding unknown parameter
a∗

i = p∗, one of the other unknown parameters, be 1−p∗ where
the accuracy of the corresponding classifier is not less than
1−p∗, and let all the rest unknown parameters be zero. It is a
feasible solution of the optimization problem (6). If the oracles
are correct, p∗ × N testing examples are correctly classified
by the base classifier xi∗ where N is the number of testing
examples. At least the accuracy of the upper integral based
fusion system is (p∗ ×N)/N = p∗, (U)

∫ {y1, y2, . . . , yn}dμ ≥
μ({xj}), j = 1, 2, . . . , n. The proof is completed.

C. Oracles

In Sections V-A and V-B, we have discussed how to
obtain the efficiency measure and the integrand for the upper-
integral-based classifier fusion under the assumption that a
training set and a basic fusion operator is given. In fact, the
integrand gives the proportions of examples that are assigned
to different combination of classifiers. Obviously, according
to the property of upper integral, the value of integral is not
less than the classification accuracy of any individual classi-
fier. This indicates that, following the assignment proportions
determined by the integrand, the classification efficiency of
the upper-integral-based fusion can achieve the highest value.
The remaining problem is which examples should be assigned
to different individual classifiers and their combinations. We
employ an oracle to solve this problem. Given an example,
the oracle of a combination of classifiers first predicts the
possibility with which the combination can correctly classify
the example. Then, the example is allocated to the combination
with maximum possibility. When the number of examples
allocated to a combination attains the proportion ai from the
solution of the optimization problem (6), the allocation to
this combination stops. The allocations to other combinations
continue until all examples are allocated.

Practically, the oracle can be obtained by training. Let T be
the training set. Based on the training set T and a basic fusion
operator, each combination of classifiers (including each single
classifier) will have a training accuracy. Let XC be an arbitrary
combination of classifiers with accuracy p (0 < p < 1).
Intuitively, it means that there are (p|T|) examples correctly
classified by XC and ((1 − p)|T|) examples incorrectly classi-
fied by XC. Consider the (p|T|) examples as positive examples
and the ((1 − p)|T|) examples as negative examples, we can
train a new classifier which is regarded as the oracle for the
combination XC. For example, XC = {x1, x3}. If the example
O is classified correctly by combination {x1, x3}, the target
output of the oracle for the example O should be 1. Contrarily,
if the example O is misclassified by combination {x1, x3}, the
target output of the oracle for the example O should be 0.
Note that the correct or misclassification is based on the fused
result from classifiers x1 and x3. For unseen example O′, if the
output of the oracle corresponding combination XC = {x1, x3}
is most close to 1, we choose the classification of combination
{x1, x3} as system output. Summarizing the above discussions,
we list our scheme of upper integral based classifier fusion as
follows.
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TABLE I

Classification of Three Classifiers and Their Combinations on a dataset With 20 Examples: + Denotes Correct Classification and

- Denotes Incorrect Classification

Example Class Individual classifiers and their combinations

No. {x1} {x2} {x1, x2} {x3} {x1, x3} {x2, x3} {x1, x2, x3}
1 1 - + + - - - -

2 0 + + + + + + +

3 1 + + + + + + +

4 1 + + + + + + +

5 1 - - - + + + -

6 0 + + + - + + +

7 1 + + + - + - +

8 0 + + + + + + -

9 1 + + + + + + +

10 0 + + + + + + +

11 0 + + + + + + +

12 0 + + + + + + +

13 1 + + + + + + +

14 1 + + + + + + +

15 0 - - - - + - -

16 0 - - - - + - -

17 0 + + + - - - -

18 1 + - + + + + +

19 1 + + + + + + +

20 1 - + + + + + +

The efficiency 0.75 0.8 0.85 0.7 0.9 0.75 0.7
measure μ

Assuming that T is the training set, S is the testing set,
X = {x1, x2, . . . , xn} is the group of classifier, F is a basic
fusion operator, and A is a training algorithm for the two-
class problem. Then:

1) determine the efficiency measure based on T, F and X
according to Section V-A;

2) determine the integrand by solving the optimization
problem (6) given in Section V-B;

3) according to the integrand obtained in (2), determine
how many examples in S are assigned to different
classifiers and their combinations;

4) train oracles by using algorithm A according to the
second paragraph in Section V-C;

5) according to the oracles trained in (4), determine which
examples in S are assigned to which combinations of
classifiers;

6) let the combinations of classifiers, which are reflected in
the formula of the upper integral, classify the assigned
examples based on F;

7) calculate the final classification results.

It is worth noting that before the seven steps, the base
classifiers are assumed to be known in advance. Moreover, it is
worth noting that, regarding step (3) of the training oracles, we
only need to train the oracles for those classifier combinations
that appear in the formula of upper integral.

D. Illustration

Consider three classifiers X = {x1, x2, x3} and a dataset with
20 training examples shown in Table I, where the left part gives
the dataset and the right part indicates the classification of the
three individual classifiers and their four combinations on this

dataset. The correct rate of classification for each of the seven
cases is shown in the last row of Table I, which is considered
the efficiency measure.

Solving the following linear programming problem:

Maximum (U)
∫ {y1, y2, y3}dμ

Subject to y1 = a1 + a3 + a5 + a7 ≤ 0.75
y2 = a2 + a3 + a6 + a7 ≤ 0.8
y3 = a4 + a5 + a6 + a7 ≤ 0.7

7∑
i=1

ai = 1

ai ≥ 0, i = 1, 2, . . . , 7.

(7)

We can obtain the integrand f = {y1, y2, y3} = {0.75, 0.3, 0.7}.
It implies that [a1, a2, . . . , a7] = [0, 0.25, 0, 0.05, 0.7, 0, 0]
which indicates that we may assign 0.25 × 20 = 5 examples
to {x2}, 0.05 × 20 = 1 example to {x1, x2}, and 0.7 × 20 = 14
examples to {x1, x3}, respectively.

From the solution of (7) we need to train three oracles
for {x2}, {x1, x2} and {x1, x3}, respectively. For example, we
consider to train an oracle for {x1, x2}. The training process
of oracles for other classifier combinations is similar to that
for {x1, x2}. The training set can be obtained from Table I,
where examples correctly classified by {x1, x2} are considered
positive ones; otherwise, examples are considered negative
ones. Based on this training set, we have trained a decision tree
as the oracle for {x1, x2}. The allocation of examples in the test
dataset is based on the trained oracle. Specifically, the trained
oracle will predict whether it is appropriate for an example in
the test dataset to be allocated to the classifier combination.
The oracle trained for {x1, x2} can correctly predict exam-
ples {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20}.
The oracle cannot correctly predict the allocation of examples
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TABLE II

Oracle (A) Assigns Examples to Classifier A

Oracle (A) assigns examples to classifier A

On the Testing set On the Training set

A= {x2}: 31,34,36,37,39 A= {x2}: 1,2,3,8,9

A={x1, x2}: 23 A={x1, x2}: 4

A={x1, x3}: 21,22,24,25,26,27,28,29,30,32,33,35,38,40 A ={x1, x3}: 5,6,7,10,11,12,13,14,15,16,17,18,19,20

TABLE III

Testing Set

Example No. Class Predicted class used classifier Used classifier and their combinations

{x2} {x1, x2} {x1, x3}
21 0 0 / {x1, x3} 1 1 0

22 1 1/ {x1, x3} 1 1 1

23 1 1/ {x1, x2} 1 1 0

24 0 0 / {x1, x3} 0 0 0

25 1 1 / {x1, x3} 0 0 1

26 1 1 / {x1, x3} 1 1 1

27 1 1 / {x1, x3} 1 1 1

28 0 0 / {x1, x3} 1 0 0

29 0 0 / {x1, x3} 0 1 0

30 1 1 / {x1, x3} 1 1 1

31 1 0 / {x2} 0 1 1

32 0 0 /{x1, x3} 0 0 0

33 0 0 / {x1, x3} 1 0 1

34 1 1 / {x2} 1 1 0

35 1 1 /{x1, x3} 1 1 1

36 0 0/ {x2} 0 0 1

37 0 0 /{x2} 0 0 0

38 1 1 / {x1, x3} 1 1 1

39 1 1 / {x2} 1 1 1

40 0 0/ {x1, x3} 0 0 0

The correct rate 0.95 0.75 0.85 0.85

15 and 16. In other words, the oracle predicts that {x1, x2} can
correctly classify examples 15 and 16, but actually, {x1, x2}
cannot. It indicates that the prediction accuracy of the oracle
trained for {x1, x2} is 0.9. Table II shows the working status of
three oracles for {x1, x2}, {x1, x3} and {x2}, respectively. By
analyzing Table II, it can be seen that instances 15 and 16
were correctly classified by the combination {x1, x3}, not by
{x1, x2}.

The example assignment schedule in the right of Table II
leads to a correct classification rate of 0.95 on the training
set. Furthermore, applying the three oracles to the testing set
(Table III), we have the example assignment schedule shown
in the left of Table II and the predicted results shown in Table
III that indicates a 0.95 correct rate on the testing set.

There is a need to clearly point out the following two key
points: 1) the value of integral does not represent the correct
rate of classification but only represents a type of classification
efficiency since the oracles do not randomly but do selectively
assign examples to their corresponding classifiers; and 2) the
final correct rate of classification is bigger than the correct
rate of best combination {x1, x3} on both the training set and
the testing set. This illustration indicates that the performance
of the upper integral can be higher than that of any of the
combinations if the oracles work well.

E. Characteristics of the Model
The upper integral is used in our model to maximize

the classification efficiency by reasonably assigning unseen
examples to classifier combinations. It is different from the
existing classifier fusion system because the upper integral is
not the fusion operator but there is a basic fusion operator
for evaluating the efficiency measure in our model. Fig. 2
shows the difference between our proposed model and the
general fusion model such as bagging and the existing fuzzy
integral based models. Fig. 2 explicitly indicates the difference
between our model and the existing fuzzy integral based
models of fusion, which is located in the third step of Fig.
2. In the existing fuzzy integrals based model, fuzzy integrals
are just fusion operators in the third step, while in our proposed
model, the upper integral is used to form optimization problem
(6) (instead of being a fusion operator) in the third step.
Another significant difference between (a) and (b) in Fig. 2 is
that all classifiers are used to classify all unseen examples
in the general fusion model, while only some of classifier
combinations are used to classify assigned examples in our
model.

If there are n classifiers, there will be 2n − 1 parameters in
the optimization problem (6). When the number of classifiers
increases, there is an explosion in the number of parameters
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TABLE IV

Datasets Used in Our Experiments

Dataset Size Number of classes Number of attributes dataset Size Number of classes Number of attributes

Iris 150 3 5 Clouds 5000 2 3

Pima 768 2 9 Concentric 2500 2 3

Breast Cancer 683 2 10 SVMguide1 7089 2 5

Ionosphere 351 2 35 Letter 20 000 26 17

Heart 270 2 10 Waveform 5000 3 22

Credit 666 2 7 Waveform+noise 5000 3 41

Abalone 4177 29 8 MAGIC04 19 020 2 11

Fig. 2. Difference of bagging and upper integral model. (a) General fusion
model. (b) Fusion model based on upper integral.

to be solved by the optimization problem. It is difficult to find
the best strategy for solving the explosion problem. When
the number of base classifiers is small, we can consider all
the combinations. When it is large, we have two strategies
to tackle the parameter explosion problem. One is to limit
the number of classifiers to be combined, and the other is
to randomly select a certain number of combinations without
limiting the number of classifiers to be combined. Experiments
show that the former is easy to implement and the latter
depends largely on the selected combinations.

VI. Experiment Results

In order to know how well the upper integral-based
fusion model, an empirical study is performed in this
section. Fourteen datasets are respectively selected from the
UCI machine learning repository [44]; LIBSVM available
at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/;
and ELENA datasets are collected via anonymous ftp:
ftp.dice.ucl.ac.be. All the referred datasets have been
extensively used in testing the performance of different
classifiers. They are sized from 150 to 20 000, and the
detailed information is summarized in Table IV. In Section
VI-A, the upper integral fusion model is compared with
bagging [35] and boosting [36] with different number of base
classifiers on concentric dataset. Bagging and boosting as
metalearning algorithms are widely used [47], [48]. In Section
VI-B, three types of base classifiers, i.e., fuzzy decision trees,
neural networks, and least-squares support vector machines,
are, respectively, implemented in experimental comparisons.

1) Fuzzy decision trees [12]. The fuzzy decision tree in-
duction process consists of four steps: 1) fuzzifying
the training data; 2) inducing a fuzzy decision tree;
3) converting the decision tree into a set of rules; and
4) applying fuzzy rules for classification. In fuzzifying

data, we use the triangular membership function and
select its slopes in the way that adjacent membership
functions cross at the membership value 0.5. The induc-
tion process consists of the following steps.

a) Step 1: Select the attribute with the smallest clas-
sification ambiguity as the root decision node.

b) Step 2: Delete all empty branches of the decision
tree node. If the truth level of classifying into one
class is above a given threshold β, terminate the
branch as a leaf. Otherwise, investigate whether an
additional attribute will further partition the branch
and further reduce the classification ambiguity. If
yes, select the attribute with the smallest classifi-
cation ambiguity as a new decision node from the
branch. If not, terminate this branch as a leaf. At
the leaf, all examples will be labeled to one class
with the highest truth level.

c) Step 3: Repeat step 2 for all newly generated
decision nodes until no further growth is possible,
the decision tree then is completed.

In the inducing processes of fuzzy decision tree there
are two important parameters: the significant level α

and the truth level threshold β. An example belongs
to a branch only when the corresponding membership
is greater than α. The parameter α plays a very cru-
cial role in filtering insignificant evidences, therefore
eliminating insignificant branches and leaves. The truth
level threshold β controls the growth of the tree. In our
experiments, the truth level threshold and the significant
level are empirically selected as β = 0.8 and α = 0.4,
respectively. More detailed information could be found
from [12].

2) Neural networks. We use the MATLAB neural network
toolbox to train the back-propagation neural networks
(BP-NN) as our base classifiers, where the number of
hidden layers is set as 1 and the transfer function is fixed
as hyperbolic tangent sigmoid. The number of hidden
neurons used in each dataset, which is dependent of
problems and is empirically given, is listed Table V.

3) Support vector machine (SVM). Support vector ma-
chines are powerful methodologies for solving prob-
lems in nonlinear classification with convex opti-
mization problems. Least squares support vector ma-
chines (LS-SVM) are reformulations to the stan-
dard SVMs which solves linear KKT systems in-
stead of a convex quadratic programming problem.
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TABLE V

Number of Hidden Neurons for Each Dataset Used in Our Experiments

Dataset Iris Pima Breast Cancer Heart Ionosphere Credit Abalone

Number of Hidden Neurons 5 8 10 8 11 13 40

dataset Clouds Concentric SVMguide1 Letter Waveform Waveformnoise MAGIC04

Number of Hidden Neurons 9 7 20 80 20 30 50

We use the MATLAB LS-SVMlab Toolbox available
at http://www.esat.kuleuven.ac.be/sista/lssvmlab/ to train
the least-squares support vector machines with RBF
kernel as our base classifier. There are two parameters,
i.e., γ and σ. γ is the regularization parameter and σ

is the kernel function parameter. For γ low minimizing
of the complexity of the model is emphasized, and
for γ high good fitting of the training data points is
stressed. A large σ indicates a stronger smoothing. For
each dataset, we estimate the generalization accuracy
using different kernel parameter σ and regularization
parameter γ with σ = [24, 23, 22, . . . , 2−10] and γ =
[212, 211, 210, . . . , 2−2]. We conduct a ten-fold cross val-
idation on each dataset and get the LS-SVM by selecting
the pair of (σ, γ), which achieves the best average
cross-validation accuracy. The SVM is suitable for the
two-class problem. For multiple-class problems in our
paper, we use the 1−against−1 strategy, a common
mechanism for transferring more-than-two class to two-
class problems.

In our experiment, in order to guarantee a fair comparison
with bagging/boosting, both the type and the training algo-
rithm of oracles are selected to be exactly the same as that
of the base classifiers. Furthermore, the parameter selected in
training oracles is also the same as that in the base classifier
training.

A. Performance on Concentric Dataset

The concentric dataset are 2-D with two classes and uniform
concentric circular distribution. The points in one class are
uniformly distributed into a circle of radius 0.3 centered on
(0.5, 0.5). The points in another class are uniformly distributed
into a ring centered on (0.5, 0.5) with internal and external
radius equal to 0.3 and 0.5, respectively. Since there exists
a classification boundary that can completely separate one
class from the other, the theoretical classification accuracy can
attain to 100% (if the boundary is learned). The graphical
representation of the concentric data is given in Fig. 3.

Here, the base classifier is a fuzzy decision tree. The basic
fusion operators are the default ones in bagging and boosting.
That is to say, the fusion operator in bagging is majority vote,
and the one in boosting is the weighted majority vote. In the
upper integral model, examples are assigned to different base
classifiers or their combinations for classification. When an
example is assigned to a combination, the final classification
result is obtained through fusing the outputs of base classifiers
in a combination. The fusion strategy is weighted majority
vote and the weights for these base classifiers are the same
as in boosting. The proposed algorithm and boosting are
implemented with different number of base classifiers, while

Fig. 3. Concentric data.

both of them adopt weighted majority vote as the fusion
strategy. When base classifiers are assumed to be generated
by bagging, the majority vote was used as the fusion strategy
for both of the proposed algorithm and bagging.

First, we examine the performance of the upper integral
model with different amount of base classifiers and their
all possible combination on concentric data. The ten-fold
cross validation is performed. Figs. 4 and 5 show the change
of performance with the number of base classifiers. The
classification accuracy increases slowly with amount of base
classifiers. The accuracy of the upper integral model is higher
than those of bagging and boosting. The accuracy of boosting
is higher than that of bagging. Moreover, from Figs. 4 and
5, it can be observed that the performance of upper integral
is slightly different from that of bagging, while its difference
with boosting is more obvious. Maybe, this is due to the fact
that, in boosting, the classifiers are obtained sequentially, in
contrast to bagging where classifiers are obtained randomly
and independently of the previous step of the algorithm. On
concentric dataset, it is investigated that the interaction among
classifiers in boosting is stronger than that in bagging and the
upper integral could well capture this interaction. We use the
interaction index [49] to show the interaction among classifiers
in bagging and boosting on concentric dataset. The efficiency
measure μ determined on training data shows the performance
of several classifiers jointly used at the same time. Thus, the
interaction index of a classifier combination can be expressed
as the interaction among base classifiers. The definition of
interaction index of a combination A is

I(A) =
∑
B⊃A

1

|B\A| + 1
μ(B).

The average interaction index for combinations is listed in
Table VI that shows that the interaction in boosting is stronger
than that in bagging.
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TABLE VI

Average Interaction Index of Classifier Combination for Bagging and Boosting Respectively on Concentric Dataset

Number classifiers in combination 1 2 3 4 5 6 7 8 9

Bagging 64.0388 36.7587 20.5576 11.7308 6.7950 4.0091 2.4332 1.5192 1.1097

Boosting 66.7618 38.8224 21.7974 11.8444 6.8542 4.1617 2.4660 1.5333 1.1164

Fig. 4. Comparison between upper integral model and bagging on concentric
data.

Fig. 5. Comparison between upper integral model and boosting on concen-
tric data.

Second, we examine the performance of the upper integral
with different amount of base classifiers and their partial
combinations (not all possible combinations). This is because,
when the number of base classifiers is large, the parameters
in efficiency measure increase exponentially. The maximum
number of classifiers in a combination to be combined is
here called the potential. When the potential is one, we only
consider individual classifiers and do not consider their any
combination. A small potential can dramatically reduce the
number of parameters in efficiency measure, but it means
to loss some accuracy. Practically, we need to acquire a
balance between the potential and accuracy. Figs. 6 and 7
show the performance with potential being 2 on concentric
dataset. Because of the restricted potential, the accuracy of
the upper integral is lower than that in Figs. 4 and 5 with
the same amount of base classifiers. It is noted that the
accuracy increases with the amount of base classifiers and the

Fig. 6. Comparison between bagging and upper integral model with poten-
tial 2.

Fig. 7. Comparison between boosting and upper integral model with poten-
tial 2.

difference between the upper integral and bagging/boosting is
significant. Figs. 6 and 7 show that in most cases the upper
integral model could improve the classification performance
with limited potential.

It is noted the accuracy is much lower than the theoretical
accuracy 100%. A reason is that the performance depends on
both the type of base classifiers and the parameters used in
the base classifiers. When the base classifiers (fuzzy decision
trees) are replaced with neural networks, the accuracy can be
much improved (Table IX).

B. Comparison With Different Types of Base Classifiers

In the following experiment, we will continue examining the
upper integral model on the other datasets. We perform ten-
fold cross validation 20 times on each dataset. Both bagging
and boosting contain 100 base classifiers always.

First, we make some comparisons between bagging/
boosting and the upper integral model in which only single
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TABLE VII

Comparison Between Upper Integral Model and Bagging/Boosting on 14 Datasets (Average Testing Accuracy and Wilcoxon

Signed-Ranks Test)

Dataset Upper Integral Bagging Wilcoxon signed-ranks test Upper Integral Boosting Wilcoxon signed-ranks test
based bagging against bagging based boosting against boosting

Iris 0.9715 0.9778 −0.0014 0.9716 0.9717 −0.0018
Pima 0.7984 0.7573 −3.164 0.7861 0.7613 −2.149

Breast Cancer 0.9487 0.9241 −2.471 0.9551 0.9181 −2.649
Ionosphere 0.7736 0.7311 −3.179 0.7624 0.7231 −3.201

Heart 0.7479 0.7232 −2.106 0.7472 0.7277 −2.0103
Credit 0.8386 0.7986 −4.2768 0.8577 0.8092 −4.271

Abalone 0.2147 0.2131 −1.3189 0.2178 0.1968 −2.101
Clouds 0.8561 0.8402 −3.0194 0.8799 0.8573 −2.2016

Concentric 0.834 0.7489 −5.001 0.8882 0.8202 −5.1632
SVMguide1 0.7678 0.7301 −3.3183 0.7715 0.7374 −4.1138

Letter 0.8916 0.8784 −2.017 0.9182 0.9019 −0.0041
Waveform 0.8403 0.8289 −2.403 0.8317 0.8231 −1.979

Waveform+noise 0.8292 0.8171 −2.014 0.8217 0.8024 −2.106
MAGIC04 0.7856 0.7603 −2.2792 0.7871 0.7697 −2.317

TABLE VIII

Average Testing Accuracy, Standard Deviation and Times (Seconds) on 14 datasets Using Fuzzy Decision Tree, and Two Basic

Fusion Operators: Mean and Choquet Integral, No Validation Set

Data Best Average Basic Upper Bagging Boosting
classifier classifiers fusion integral

set Mean Std Dev Mean Std Dev operator Mean Std Dev Time Mean Std Dev Time Mean Std Dev Time
Iris 0.9587 0.0286 0.9272 0.0129 Average 0.9723 0.0114 15.012 0.9718 0.0097 73.0417 0.9719 0.011 69.3219

Choquet 0.9720 0.0112 4223.9
Pima 0.7584 0.0247 0.7248 0.0194 Average 0.7847 0.0118 142.382 0.7768 0.0132 885.078 0.7801 0.0101 855.192

Choquet 0.7862 0.0121 2808.8
Breast Cancer 0.9372 0.0219 0.9107 0.0115 Average 0.9544 0.0114 132.6 0.9488 0.0169 611.4 0.9461 0.0121 619.8

Choquet 0.9635 0.0128 2722.3
Ionosphere 0.7571 0.0306 0.7089 0.0207 Average 0.7608 0.0162 148.2 0.7392 0.0143 732.6 0.7301 0.0175 722.4

Choquet 0.7628 0.0173 2694.5
Heart 0.7166 0.0472 0.6793 0.0328 Average 0.7524 0.0319 173.8 0.7293 0.0294 698.6 0.7264 0.0227 712.8

Choquet 0.7647 0.0313 2664.2
Credit 0.7549 0.0327 0.6887 0.0289 Average 0.8147 0.0114 201.4 0.8035 0.0217 821.8 0.8083 0.0182 830.7

Choquet 0.8225 0.0163 2759.4
Abalone 0.1979 0.0019 0.1781 0.0008 Average 0.2103 0.0012 928.6 0.2114 0.0009 3327.2 0.2074 0.0012 3274.7

Choquet 0.2213 0.0018 6992.7
Clouds 0.8536 0.0217 0.8146 0.0117 Average 0.8549 0.0113 58.4 0.8479 0.0111 227.9 0.8545 0.0091 216.7

Choquet 0.8674 0.0028 2685.8
Concentric 0.8003 0.0174 0.7684 0.0063 Average 0.8738 0.0062 88.3 0.8450 0.0095 304.6 0.8316 0.0074 316.4

Choquet 0.8794 0.0128 2727.1
SVMguide1 0.7328 0.0171 0.7086 0.0201 Average 0.7613 0.0158 135.2 0.7401 0.0083 661.7 0.7433 0.0091 648.7

Choquet 0.7814 0.0108 2704.3
Letter 0.8594 0.0321 0.8253 0.0248 Average 0.8967 0.0137 2408.4 0.8791 0.0169 9175.4 0.8937 0.0138 9013.6

Choquet 0.8973 0.0152 70744
Waveform 0.8217 0.0074 0.7927 0.0049 Average 0.8471 0.0114 587.8 0.8311 0.0024 2418.2 0.8314 0.0012 2672.5

Choquet 0.8625 0.0029 6626.6
Waveform+noise 0.8002 0.0132 0.7798 0.0099 Average 0.8136 0.0106 1226.8 0.8143 0.0093 3531.7 0.8121 0.0104 3275.9

Choquet 0.8217 0.0114 7030.7
MAGIC04 0.7816 0.0221 0.7522 0.0146 Average 0.7913 0.0114 1014.8 0.791 0.0137 4961.4 0.7714 0.0081 4874.6

Choquet 0.8047 0.0103 5835.9

classifier and combinations of two classifiers are considered.
The results for bagging and boosting are listed in Table VII.
Fuzzy decision trees are used as the base classifiers. For
both the comparisons with bagging and boosting, the upper
integral model uses the 100 base classifiers trained by them.
The fusion operators in these two sets of comparisons are,
respectively, fixed as majority vote and weighted majority
vote, where for the weighted majority vote, the weight for
each individual classifier is determined during the training of
boosting. It is worth noting that the computational complexity
of the upper integral model is higher than that of bagging and
boosting since it involves more processes such as determining
the efficiency measure, solving the optimization problem (6),
and training oracles.

In Table VII, we use the Wilcoxon signed-ranks test [45],
[46] to see whether there exists significant difference between
the two referred methods. The Wilcoxon signed-ranks test is a
safe nonparametric alternative of the paired t-test for statistical
comparison of two methods [45].

Let the performances of two methods be p1, p2, . . . , pm

and q1, q2, . . . , qm, respectively, in paired experiments. The
differences di = pi − qi are ranked according to their absolute
values; average ranks are assigned in case of ties. Let R+ be
the sum of ranks for di > 0, and R− the sum of ranks for
di < 0. Ranks of di = 0 are split evenly among the sums

R+ =
∑
di>0

rank(di) + 0.5
∑
di=0

rank(di)
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TABLE IX

Average Testing Accuracy, Standard Deviation and Times (Seconds) on 14 datasets Using Neural Networks, and Two Basic

Fusion Operators: Mean and Choquet Integral, No Validation Set

Data Best Average Basic Upper Bagging Boosting
classifier classifiers fusion integral

set Mean Std Dev Mean Std Dev operator Mean Std Dev Time Mean Std Dev Time Mean Std Dev Time
Iris 0.9628 0.0198 0.9357 0.0105 Average 0.9734 0.0081 12.27 0.9736 0.0071 57.0417 0.9758 0.039 57.589

Choquet 0.9782 0.092 2321.6
Pima 0.7597 0.0308 0.7015 0.0189 Average 0.7649 0.0127 22.850 0.7523 0.0106 110.001 0.7502 0.0095 105.103

Choquet 0.7739 0.0074 2110.3
Breast Cancer 0.9411 0.0127 0.9218 0.0079 Average 0.9687 0.0102 25.7 0.9613 0.0137 92.14 0.9583 0.0118 94.7

Choquet 0.972 0.0049 2358.2
Ionosphere 0.9127 0.0217 0.8752 0.0169 Average 0.9294 0.0162 15.04 0.9286 0.0058 134.79 0.9301 0.0063 135.1

Choquet 0.9358 0.0118 2349.8
Heart 0.7792 0.0328 0.7321 0.0301 Average 0.8127 0.0291 13.016 0.8051 0.0184 107.07 0.8107 0.0073 108.12

Choquet 0.8316 0.0241 2454.8
Credit 0.7689 0.0352 0.6915 0.0341 Average 0.8063 0.0278 36.041 0.8072 0.0168 120.094 0.8005 0.0136 133.8

Choquet 0.8225 0.0163 2759.4
Abalone 0.2012 0.0046 0.1871 0.0023 Average 0.2321 0.0026 1831.7 0.2251 0.0018 7516.3 0.2190 0.0015 7561.2

Choquet 0.2411 0.0037 26939.2
Clouds 0.8862 0.0059 0.8542 0.0046 Average 0.8973 0.0073 10.57 0.8954 0.0007 116.6 0.8918 0.0016 119.5

Choquet 0.9041 0.0026 2575.2
Concentric 0.9510 0.0068 0.9326 0.0015 Average 0.9801 0.0012 22.7 0.9763 0.0008 94.6 0.9735 0.0006 95.3

Choquet 0.9876 0.0008 2635.7
SVMguide1 0.9748 0.0071 0.9612 0.0049 Average 0.9796 0.0077 35.4 0.9763 0.0073 354.7 0.9782 0.0028 368.9

Choquet 0.9815 0.0018 2418.0
Letter 0.9128 0.0132 0.8759 0.0124 Average 0.9296 0.0111 60737 0.9308 0.0106 309217 0.9227 0.0134 394056

Choquet 0.9374 0.0104 83278
Waveform 0.8099 0.0094 0.7916 0.0103 Average 0.8252 0.0104 137.8 0.8227 0.0031 810.9 0.8211 0.0028 817.1

Choquet 0.8295 0.0041 5271.9
Waveform+noise 0.7819 0.0115 0.7518 0.0095 Average 0.8201 0.097 196.1 0.8155 0.0068 1301.3 0.8071 0.0073 1538.2

Choquet 0.8215 0.0114 5921.0
MAGIC04 0.8563 0.0169 0.0.8364 0.0153 Average 0.8809 0.0091 814.8 0.8709 0.0063 4584.3 0.8772 0.0081 4814.1

Choquet 0.8947 0.0103 5138.5

TABLE X

Average Testing Accuracy, Standard Deviation and Times (Seconds) on 14 datasets Using Least-Squares Support Vector

Machines, the Basic Fusion Operator: Majority Vote, No Validation Set

Data Best Average Upper Bagging Boosting
classifier classifiers integral

set Mean Std Dev Mean Std Dev Mean Std Dev Time Mean Std Dev Time Mean Std Dev Time
Iris 0.9637 0.0097 0.9436 0.0072 0.9837 0.0091 2.121 0.9789 0.0030 6.792 0.9806 0.0021 6.281

Pima 0.7801 0.0041 0.7726 0.0024 0.7994 0.0023 1.862 0.7864 0.0015 9.128 0.7857 0.0017 9.2051
Breast Cancer 0.9784 0.0068 0.9602 0.0057 0.9827 0.0039 1.672 0.9812 0.0026 7.8313 0.9813 0.0028 7.0384

Ionosphere 0.9295 0.0086 0.9144 0.0084 0.9528 0.0072 1.781 0.9487 0.0041 6.6629 0.9416 0.0037 6.2409
Heart 0.8077 0.0086 0.7891 0.0122 0.8269 0.0071 1.049 0.8123 0.0050 3.6287 0.8194 0.0038 3.5691
Credit 0.8268 0.0078 0.8066 0.0082 0.8435 0.0088 1.037 0.8359 0.0054 3.4818 0.8364 0.0037 3.5827

Abalone 0.2317 0.010 0.2194 0.0091 0.2458 0.094 4028.2 0.2388 0.0082 19621 0.2412 0.089 18746
Clouds 0.9303 0.0071 0.9187 0.0077 0.9423 0.093 39.71 0.9368 0.0082 190.29 0.9318 0.083 189.72

Concentric 0.9868 0.0030 0.9786 0.0009 0.9894 0.007 9.316 0.9879 0.0009 48.08 0.9895 0.0008 45.69
SVMguide1 0.9817 0.006 0.9806 0.009 0.9824 0.004 91.47 0.9822 0.003 492.60 0.9819 0.0008 481.59

Letter 0.9324 0.0388 0.9174 0.0274 0.9486 0.0214 41941 0.9392 0.0147 176192 0.9403 0.0172 130164
Waveform 0.8014 0.0235 0.7884 0.0194 0.8283 0.0187 108.81 0.8290 0.0128 623.01 0.8257 0.0181 629.81

Waveform+noise 0.8156 0.0251 0.8002 0.0117 0.8312 0.0148 181.29 0.8241 0.0170 861.07 0.8216 0.0162 850.63
MAGIC04 0.8831 0.0206 0.8671 0.0210 0.8884 0.020 1097.3 0.8892 0.0179 5622.63 0.8878 0.0182 4927.14

R− =
∑
di<0

rank(di) + 0.5
∑
di=0

rank(di).

Let T be the smaller one of the sums, T = min(R+, R−).
Most books on general statistics include a table of exact critical
values for T for m up to 25. With an increasing value of m,
the distribution of the statistics

z =
T − 1

4m(m)√
1

24m(m + 1)(2m + 1)

will approximate normal distribution. With the confidence
level of α = 0.05, the difference between the two referred
methods will be treated as significantly different if the value
of the Wilcoxon signed-ranks test z is smaller than −1.96.

In our experiment, ten-fold cross validation is repeated 20
times. Thus, with 20 × 10 values, so the Wilcoxon signed-
ranks test is supposed to have normal distribution. It is
easy to observe from Table VII that the proposed method is
significantly different with bagging/boosting on 12 datasets
out of 14. While on Iris dataset, the performance of the upper
integral model is unsatisfactory, perhaps this is due to the fact
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TABLE XI

WILCOXON Signed-Ranks Test on 14 Datasets for Testing Significance of Difference Between Upper Integral Model and

Bagging/Boosting

Data Basic fusion Fuzzy Neural LS-SVM
decision tree network

set operator bagging boosting bagging boosting bagging boosting

Iris Average −0.033 0.037 −0.029 0.062 −0.017 −0.047

Choquet 0.042 −0.043 −0.039 0.071

Pima Average −2.278 −2.019 −2.003 −2.036 −1.987 −2.137

Choquet −2.734 −2.179 -2.370 −2.396

Breast Cancer Average −3.631 −3.017 −1.972 −1.989 −0.582 −0.568

Choquet −3.952 −3.516 −1.996 −2.005

Ionosphere Average −4.017 −4.521 −0.048 0.028 −1.976 −2.160

Choquet −4.966 −4.985 −2.000 −0.416

Heart Average −5.106 −5.277 −1.984 −1.648 −2.413 −2.102

Choquet −5.472 −5.852 −2.164 −2.087

Credit Average −3.156 −3.007 0.025 −1.984 −1.979 −1.971

Choquet −3.739 −3.461 −2.572 −2.597

Abalone Average −1.065 −0.971 −2.618 −3.028 −2.003 −1.528

Choquet −1.993 −2.058 −2.917 −3.301

Clouds Average −1.984 −1.693 −1.237 −1.981 −1.832 −1.985

Choquet −2.318 −2.006 −1.974 −1.985

Concentric Average −4.671 −4.864 −1.981 −1.582 −0.691 0.030

Choquet −4.597 −4.968 −1.977 −1.993

SVMguide1 Average −3.174 −3.108 −0.973 −0.826 −0.023 −0.307

Choquet −4.041 −3.846 −1.969 −1.973

Letter Average −2.571 −0.877 0.27 −1.968 −2.319 −2.201

Choquet −2.619 −1.481 −1.982 −2.004

Waveform Average −2.182 −2.066 −0.472 −0.602 −0.018 −0.392

Choquet −2.215 −2.111 −1.621 −1.973

Waveform+noise Average −0.120 −0.795 −1.987 −2.033 −1.988 −1.994

Choquet −1.978 0.207 −1.968 −2.308

MAGIC04 Average 0.072 −1.983 −1.995 −1.982 −0.058 −0.203

Choquet −1.974 −2.081 −2.616 −2.006

that the performance of the base classifier is already close
to the optimal. Experiments show that in most case the best
classifier can be selected or can be contained in the selected
combinations on Iris dataset. The Wilcoxon signed-rank test
shows that the upper integral model can improve significantly
the performance of bagging and boosting.

Although we consider the combination of potential not
more than two, the upper integral still could significantly
improve the classification performance. It indicates that the
upper integral model could sufficiently model and handle the
interaction among base classifiers. The interaction between
only two classifiers could not be ignored, but the performance
of oracles influences the upper integral model. The degrees
of improvement produced by the upper integral are different.
For instance, the performance of our model on concentric
and Credit datasets is better than that on Pima and Heart
datasets. We now try to analyze the underlying reason for
the unsatisfactory performance on datasets Pima and Heart.
It is found that in both these two datasets, there are a number
of examples that have similar conditional attribute values but
different decision attribute values. This statement implies an
unclear boundary between the two classes, which leads to the
poor performance of the algorithms.

In the following, we use ten base classifiers that are trained
with randomly selected 80% attributes of each dataset. It is

an efficient way to obtain diverse base classifiers by using
different attributes [33]. Also, in the optimization problem (6)
all combinations are considered. Three types of base classifiers
are used: fuzzy decision trees, neural networks, and LS-SVMs.
Majority vote is used for LS-SVMs in the upper integral
model. Two fusion operators, average and Choquet integral,
are used for fuzzy decisions and neural networks in the upper
integral model. In Choquet fusion operator, the λ-measure [43]
is used and the density of the λ-measure is defined [25]

g
j
i =

p
j
i

n∑
k=1

p
j

k

where g
j
i is the measure of classifier xi for class j, p

j
i is the

accuracy of classifier xi for examples in class j.
The results are listed in Tables VIII–X. The upper integral

model can improve the classification performance in most
cases. When only ten base classifiers are used, the upper
integral model can achieve similar performances with bag-
ging/boosting by consuming much less time. When neural
networks are used as the base classifiers, the performances
of all the three methods (the upper integral model, bagging
and boosting) are higher than those with fuzzy decision trees
as base classifiers on most datasets. It implies that the final
classification performance is dependent on the type of the base
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TABLE XII

Average Testing Accuracy on 14 Datasets When Using Validation Set

Data Fuzzy decision tree Neural network LS-SVM

set Average Choquet Average Choquet

Iris 0.9712 0.9711 0.9765 0.9751 0.9786

Pima 0.7812 0.7855 0.7587 0.7688 0.7886

Breast Cancer 0.9531 0.9648 0.9661 0.9732 0.9792

Ionosphere 0.7516 0.7643 0.9128 0.9194 0.9474

Heart 0.7418 0.7521 0.8138 0.8294 0.8295

Credit 0.8194 0.8276 0.7987 0.8228 0.8374

Abalone 0.2082 0.2219 0.2206 0.2278 0.2492

Clouds 0.8598 0.8677 0.8987 0.9103 0.9482

Concentric 0.8862 0.8867 0.9831 0.9898 0.9904

SVMguide1 0.7713 0.7961 0.9786 0.9801 0.9816

Letter 0.8922 0.8914 0.9317 0.9389 0.9528

Waveform 0.8499 0.8658 0.8328 0.8374 0.8319

Waveform+noise 0.8226 0.8297 0.8075 0.8112 0.8251

MAGIC04 0.8026 0.8214 0.8857 0.8891 0.8972

TABLE XIII

Accuracy, Standard Deviation of C4.5

Dataset Iris Pima Breast cancer Ionosphere Heart Credit Abalone

Accuracy 0.9519 0.7464 0.9513 0.8911 0.7832 0.7796 0.2072

Std Dev 0.0493 0.0461 0.0257 0.0477 0.0719 0.0483 0.009

Dataset Clouds Concentric SVMguide1 Letter Waveform Waveform noise MAGIC04

Accuracy 0.8855 0.9782 0.9708 0.8813 0.7658 0.7534 0.8511

Std Dev 0.0183 0.0141 0.006 0.0065 0.0188 0.0182 0.0074

classifiers. In addition, it can be seen from Tables VIII and IX
that the upper integral model is very time consuming when the
Choquet integral is used as the basic fusion operator. More-
over, the performance of the upper integral model, bagging and
boosting, cannot be significantly higher than the performance
of single SVM for some two-class problems. We think that
the major reason is that the single has already had the very
high accuracy on these datasets and then some fusion schemes,
such as bagging, boosting, and our upper integral model, will
not have a significant improvement of accuracy. But for most
multiple-class problems, the performance of single SVM is
not as good as the performance of the upper integral model,
bagging and boosting.

A statistical test of accuracy difference between the upper
integral model and bagging/boosting is conducted on the
selected datasets. The results of the Wiloxon signed-ranks
test are listed in Table XI. The testing results show that the
difference is statistically significant over at least a half number
of datasets (and the performance of the upper integral model
is dependent on the type of base classifiers, the basic fusion
operator, and the oracles). Details are listed as follows.

1) When fuzzy decision trees are the base classifiers and
average is the basic fusion operator, the upper integral
model significantly outperforms bagging on ten datasets
and boosting on nine datasets, respectively (and the
statistical testing results are not significant on the other
datasets).

2) When fuzzy decision trees are the base classifiers and
Choquet integral is the basic fusion operator, the upper

integral model significantly outperforms bagging 13
datasets and boosting on 11 datasets (and the test is not
significant on the other datasets).

3) When neural networks are the base classifiers and aver-
age is the basic fusion operator, the upper integral model
significantly outperforms bagging on seven datasets and
boosting on eight datasets, respectively (and the sta-
tistical testing results are not significant on the other
datasets).

4) When neural networks are the base classifiers and Cho-
quet integral is the basic fusion operator, the upper in-
tegral model significantly outperforms bagging/boosting
on 12 datasets (and the statistical testing results are not
significant on the other datasets).

5) When LS-SVMs are the base classifiers and majority
vote is the basic fusion operator, the upper integral
model significantly outperforms bagging/boosting on
seven datasets, and on the other seven datasets there
is no essential difference. An important reason for this
improvement is that the oracle (which is also an LS-
SVM classifier) becomes more precise with the pa-
rameter selection. In summary, the performance of the
upper integral model is dependent on the type of base
classifiers, the basic fusion operator, and the oracles.

An experiment for determining the efficiency measure is
conducted based on an improved ten-fold cross validation
procedure. Originally, the ten-fold cross validation takes nine
folds as training set and the one remaining fold as the testing
set. Now, one fold is used as the testing set, two folds are used
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as the validation set, and the other seven folds as the training
set to train the ten base classifiers. The result is listed in
Table XII. It is shown that for large datasets, the performance
is improved, while for small datasets, the difference is not
obvious. The possible reason is that for large datasets, the
validation set makes the efficiency measure more objective,
while for small datasets, this impact is trivial. Generally, for
large datasets, it is a good choice to avoid overfitting by
determining the efficiency measure with validations. In the
meantime, it indicates that by selecting suitable parameters
via cross-validation, the accuracy of LS-SVM is significantly
improved and is much higher than those of fuzzy decision tree
and neural network on 13 datasets.

The accuracy of single classifier C4.5 (20 times ten-fold
cross validation) is listed in Table XIII. Compared with Table
XII, the experimental results show that the average accuracy
of the upper integral model is higher than that of C4.5 on eight
datasets if the base classifiers are fuzzy decision trees and on
14 datasets if the base classifiers are neural networks and LS-
SVMs. It confirms that the performance of the upper integral
model (which is dependent on the type of base classifiers and
the oracles) is generally better than the single decision tree-
like classifier such as C4.5 in which the parameters have been
optimized.

VII. Conclusion

This paper proposed a multiple classifier fusion method
based on the upper integral to most effectively use the in-
dividual classifiers and their combinations. The difficulty of
determining the fuzzy measures was avoided by regarding the
accuracies of classifier combinations as an efficiency measure
defined on the power set of classifier set. The upper integral
was used to determine the proportions of examples to be
assigned to classifier combinations instead of aggregation
operator. Through solving an optimization problem with re-
spect to the upper integral, the proportions can be obtained.
According to these proportions and some trained oracles, the
assignment was conducted. Theoretically, the definition of
upper integrals indicated that the accuracy of upper integral
based fusion system was not lower than that of any individual
base classifier. Practically, it may not be true. The reason is that
the classification depends on the oracles, which usually have
training errors. Experimentally, in most cases, the accuracy of
upper integral based fusion system was not lower than that of
any individual base classifier, as well as any combination of the
base classifiers. The Wilcoxon signed-ranks tests demonstrated
that the improvement produced by the upper integral was
significant.

Our future and ongoing works on this topic focus on the
following three problems.

1) Simplifying the upper integral model including the effi-
ciency measure such that it can be suitable classification
problems with a large number of features. It involves the
approximate representation of the upper integral model
and the learning of structured efficiency measure.

2) Improving the upper integral model when the examples
are appearing incrementally (in other words, how to

efficiently use the order of examples appearance to
establish an incremental upper integral model for clas-
sification problems).

3) Optimizing the process of using oracles to select specific
examples which are submitted to the base classifiers
based on the determined proportion.
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