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Fuzziness based sample categorization
for classifier performance improvement
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Abstract. This paper investigates a relationship between the fuzziness of a classifier and the misclassification rate of the classifier
on a group of samples. For a given trained classifier that outputs a membership vector, we demonstrate experimentally that samples
with higher fuzziness outputted by the classifier mean a bigger risk of misclassification. We then propose a fuzziness category based
divide-and-conquer strategy which separates the high-fuzziness samples from the low fuzziness samples. A particular technique
is used to handle the high-fuzziness samples for promoting the classifier performance. The reasonability of the approach is
theoretically explained and its effectiveness is experimentally demonstrated.
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1. Introduction

Classification is to determine (or estimate) a target
function F that maps each object to a class label y.
The process of determining the target function is called
learning which is usually completed through a training
algorithm. One way of learning is to minimize some
error between F and its estimate f (classifier) on train-
ing samples. Wu et al. in [1] list the top-10 learning
algorithms in data mining.

Generalization (i.e., the correct rate of classification
on unseen samples of a classifier) is the most impor-
tant index of classifier evaluation because the ultimate
goal of learning is to reduce the error on unseen sam-
ples. There are many ways to study the generalization.
Onewayisvia thegenerationof trainingandtestingsam-
ples. This type of studies includes re-sampling methods
[2, 3], leave-one-out cross-validation [4, 5], approaches
toassumingaspecificdistributionof testingsamplesand
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correspondinglydevelopinggeneralizationerror formu-
lation [6–8], online learning models on samples coming
from a dependent source of data [9], etc. Another way to
study the generalization is the estimation of error bound,
which is a popular theoretical technique. From refer-
ences one can find the results of existing studies on the
estimation of generalization error bounds. For instance,
the discussion about the error bounds to overcome over-
fittingproblems[10];structural riskminimizationto link
the generalization to training sample errors and the clas-
sifier complexity [11, 12]; the performance analysis on
classifier ensemble bounds [13, 14]; the biased general-
ization bound [15]; and the bounds on the false and truth
positive rates [16].

An interesting issue for classifier’s generalization is
how the fuzziness of a classifier relating to its prediction
accuracy. From literature, except for [17, 18], we have
not found specific studies on generalization based on
the fuzziness of classifier outputs. The works in [17,
18], however, do not analyze the relationship between
misclassification rate and the fuzziness of the classifier
outputs, and their proposed methods are limited only to
rule-based systems.
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This paper makes an attempt to investigate the gen-
eralization from the angle of fuzziness. It associates the
fuzziness outputted by a classifier on a group of sam-
ples with the misclassified rate of this group of samples.
We focus on the improvement of generalization ability
through discovering relationship between sample mis-
classification and fuzziness of classifier outputs. The
fuzziness is defined on a fuzzy vector (i.e., a vector
in which each component is a number between 0 and
1), and therefore, this study on generalization is suit-
able for any type of classifiers with fuzzy vector output
[e.g., 19, 20].

For a given trained classifier that outputs a mem-
bership vector, we demonstrate experimentally that
samples with higher fuzziness outputted by the classi-
fier mean a bigger risk of misclassification. Then based
on the fuzziness quantity of output vector, all samples
are categorized into 3 classes, i.e., low, middle, and
high fuzziness classes. The high-fuzziness samples are
particularly processed in order to improve the perfor-
mance of the classifier, to be exact, the performance on
the group of samples with high fuzziness.

The paper is organized as follows. Section 2 briefly
reviews the fuzziness defined on a fuzzy vector, intro-
duces the fuzziness of a classifier, and analyzes the
relationship between fuzziness and boundary samples.
Section 3 experimentally demonstrates that samples
with higher fuzziness outputted by the classifier mean
a bigger risk of misclassification. Section 4 gives the
approach to handling the high fuzziness samples, the
analysis on the approach’s rationality, and the experi-
mental demonstration. Section 5 concludes this paper.

2. Fuzziness of classifier output

The term fuzziness was first proposed in [21] by
Zadeh in his famous fuzzy set theory. It describes
a kind of imprecision existing in events which can-
not be defined exactly and cannot be characterized by
sharply defined collection of points. Zadeh also gener-
alized probability measure of an event to fuzzy event
and suggested using entropy in information theory to
interpret the uncertainty associated with a fuzzy event.
Luca and Termini [22] considered fuzziness as a type
of uncertainty described by fuzzy sets, and defined a
quantitative measure of fuzziness by non-probabilistic
entropy which is very similar to Shannon’s informa-
tion entropy. They clearly proposed three properties
that fuzziness measure should meet with for the first
time. The three properties indicate that the degree
of fuzziness should attain its maximum when all the

memberships are equal to each other, and attain its
minimum when all memberships are equal to either 0
or 1. Furthermore in [23], Luca and Termini extended
their definition of entropy on fuzzy sets into the case
of fuzziness of L-fuzzy sets, where the entropy was
no longer a numerical quantity but a column matrix
or a vector. It is interesting to study the difference
among the terms “fuzziness”,“ambiguity”, “uncer-
tainty”, “indefiniteness”, “imprecision”, etc., which
may cause confusion in many situations. Klir et al. [24,
25] stated that vagueness or fuzziness is different from
ambiguity, and then proposed two cognitive uncertainty
measures. In general, vagueness or fuzziness is describ-
ing the difficulty of making sharp or precise distinctions
in the world. Ambiguity, on the other hand, is connected
together with people’s cognitive uncertainty, that is,
situations with two or more alternatives such that the
choice between them is uncertain.

We now consider fuzziness as a type of cognitive
uncertainty which is coming from the transition of
uncertainty from one linguistic term to another, where
a linguistic term is a fuzzy set defined on a certain uni-
verse of discourse. Moreover a linguistic term can be
considered as a value of a linguistic variable. For exam-
ple, Temperature is a linguistic variable which can take
the linguistic values, say, hot, cool, middle, which are
fuzzy sets defined on an interval of real numbers.

A mapping from a space X → [0, 1] is called a fuzzy
set. All fuzzy set defined onX is denoted by (X). As
stated in literature [26], the fuzziness of a fuzzy set can
be measured by a function E : (X) → [0, +∞)
that satisfies the following axioms:

(a) E(µ) = 0 if and only if µ is a crisp set,
(b) E(µ) gets its maximum if and only if

µ(x) = 0.5 ∀x ∈ X

(c) If µ ≤s σ, then E(µ) ≥ E(σ),
(d) E(µ) = E(µ

′
), where µ

′
(x) = 1 − µ(x) for

∀x ∈ X,

(e) E(µ ∪ σ) + E(µ ∩ σ) = E(µ) + E(σ).
Regarding the third axiom, the sharpened order ≤S

is defined as [22]:

µ ≤S σ ⇔ min(0.5, µ(x)) ≥ min(0.5, σ(x))

& max(0.5, µ(x)) ≤ max(0.5, σ(x))
(1)

Definition 2.1. Let B = {µ1, µ2, . . . , µn} be a fuzzy
set. According to [22], the fuzziness of B can be
defined as
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E(B) = −1

n

n∑
i=1

(µi log µi + (1 − µi) log(1 − µi)).

(2)
In fact one can construct many equations similar to

(2), for example when n = 2 and B is normalized (i.e.
µ1 + µ2 = 1), we have

E1(B) = 1 − µ2
1 − (1 − µ1)2 (3)

E2(S) =
⎧⎨
⎩

µ1
1−µ1

0 ≤ µ1 ≤ 0.5
1−µ1
µ1

0.5 ≤ µ1 ≤ 1
(4)

It is easy to verify that each of Equations (2, 2a, 2b)
indeed satisfies the above-mentioned axioms (a)-(e).
Although there are many specific forms of fuzziness
satisfying the above axioms (a)–(e), the further study
on fuzziness’s impact on misclassification shows that
the classification performance is not sensitive to the
specific equation forms of fuzziness. We continue our
discussion based on Equation (2).

The fuzziness of a fuzzy set defined by (2) attains its
minimum when every element absolutely belongs to the
fuzzy set or absolutely not, i.e., µi = 1 or µi = 0 for
each i (1 ≤ i ≤ n); the fuzziness attains its maximum
when the membership degree of each element is equal
to 0.5, i.e., µi = 0.5 for every i = 1, 2, · · ·, n.

When n = 2, the picture of Equation (2) is depicted in
Fig. 1, where the minimum and maximum are clearly
shown in the extremes and the middle.

We now connect the fuzziness of a fuzzy vector with
a classifier output. It is well found that many classifiers
have the output form of fuzzy vector in which each com-
ponent corresponds to the membership degree of the

Fig. 1. Fuzziness of a two-dimensional vector.

testing object belonging to a class. This type of classi-
fiers includes neural networks, support vector machine,
fuzzy decision trees, and etc. There is a need to clarify
that for this type of classifiers, such as neural networks,
a simple transformation can transfer the initial output
to a form of fuzzy vector if components of the initial
output are not in [0, 1].

Given a set of training samples {xi}Ni=1, a fuzzy par-
tition of these samples assigns the membership degrees
of each sample to the c classes. The partition can
be described by a membership matrix U = (µij)c×N ,
where µij = µi(xj) denotes the membership of the j-
th sample xj belonging to the i-th class. The elements
in the membership matrix have to obey the following
properties

c∑
i=1

µij = 1, 0 <

N∑
j=1

µij < N, µij ∈ [0, 1] (5)

Therefore, once the training procedure of a classifier
completes, the membership matrix U upon the N train-
ing samples can be obtained. For the j-th sample xj , the
trained classifier will give an output vector represented
as a fuzzy set µj = (µ1j, µ2j, · · · , µcj)T . Based on
(2), the fuzziness of the trained classifier on xj is given
by

E(µj) = −1

c

c∑
i=1

(µij log µij + (1 − µij) log(1 − µij))

(6)
and furthermore, the fuzziness of the trained classifier
can be given as follows.

Definition 2.2. Let the membership matrix of a clas-
sifier on the N training samples with c classes be
U = (µij)c×N . The fuzziness of the trained classifier
is given by

E(U) = − 1

cN

c∑
i=1

N∑
j=1

(µij log µij + (1 − µij)

log(1 − µij)) (7)

Equation (5) defines the fuzziness of a trained classi-
fier which has fuzzy vector output. It plays a central role
for investigating the classifier’s generalization based on
fuzziness. From the above definition one can view that
the fuzziness of a trained classifier is actually defined
as the averaged fuzziness of the classifier’ outputs on
all training samples. In other words, it is the training
fuzziness of the classifier. The most reasonable defini-
tion of a classifier’s fuzziness should be the averaged
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fuzziness over the entire sample space including both
training samples and unseen testing samples. However,
the fuzziness for unseen samples is generally unknown,
and for any supervised learning problem, there is a well-
acknowledged assumption, that is, the training samples
have a distribution identical to the distribution of sam-
ples in the entire space. It indicates the reasonability
that we use (5) as the definition of a classifier’s fuzzi-
ness.

One may argue whether the simple model (5) of
averaged fuzziness for classifier outputs can exactly
describe the uncertainty of classifier training since the
mean is the simplest statistical feature. In fact we can
choose a complex formula to model the training fuzzi-
ness. The model is dependent on the training sample
distribution for computing the fuzziness. It is verified
that the complex model can bring more improvement
of classifier performance in comparison with the aver-
aged model. We will report this part of research work
separately.

3. Fuzziness categorization and its relation to
misclassification

In this section we will experimentally observe the
relationship between misclassified samples and their
fuzziness for a given well-trained classifier with fuzzy
vector output. Two classifiers are selected for the
experimental demonstration. They are Fuzzy k-Nearest
Neighbor (FKNN) [27] and Extreme Learning Machine
(ELM) [28, 29]. The two classifiers and their training
and testing processes are briefly reviewed as follows.

3.1. Fuzzy k-nearest neighbor (FKNN)

It belongs to a lazy learning mechanism and has not
any general training process. Fuzzy k-NN method was
first designed and proposed by [27] which provides
a vector of class membership, where components of
the vector are number in [0,1]. Fuzzy K-NN assigns
memberships of class to the sample rather than a par-
ticular class as compared to traditional k-NN method.
The below formula provides class memberships to the
sample as the function of the sample’s distances from
its K-NN training samples.

ui(x) =

K∑
j=1

uij
(

1/||x − xj||2/(m−1)

)
K∑

j=1

(
1/||x − xj||2/(m−1)

) (8)

Where ui(x) in (6) is the membership of the sample
x to the i-th class i.e. (u1(x), u2(x), . . . , uc(x)). In this
paper we used Euclidean metric to calculate the distance
between test samples and its nearest training samples.
Many other techniques can be use for calculating the
distance. In (6) uij is the membership value of the j-th
neighbor belonging to the i-th class. The factor m used
in the Equation (6) is to measure how much the distance
is weighted, which indicates the contribution of each
neighbor to the membership value. In the experiments
we set the value of variable m = 2

3.2. Extreme Learning Machine (ELM)

ELM [28, 29] is a three layer feed-forward neu-
ral network in which the weights (rij) between input
and hidden layers are randomly chosen and the
weights (βj) between hidden and output layers are
obtained by solving a pseudo-inverse matrix. The train-
ing task is to determine the connection weights rij
and βj (i = 1, 2, · · · , n; j = 1, 2, · · · , m). Since the
weights rij (i = 1, 2, · · · , n; j = 1, 2, · · · , m) are ran-
domly selected, the training task is reduced to determine
βj (j = 1, 2, · · · , m) only. Suppose that the set of train-
ing data contains N examples which can be expressed
as an input matrix A (with N rows and n columns) and
a N-dimensional output vector b, respectively denoted
by

AN×m =

⎛
⎜⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

aN1 aN2 . . . aNn

⎞
⎟⎟⎟⎟⎠ and bN×1 =

⎛
⎜⎜⎜⎜⎜⎝

b1

b2

...

bN

⎞
⎟⎟⎟⎟⎟⎠

(9)
The weights between input layer and hidden layer are

expressed as a matrix with n rows and m columns, i.e.,
R = (rij)n×m

, and the weights between hidden layer
and output layer are denoted as a m-dimensional vector,
i.e., β = (β1, β2, · · · , βm)T . Let

SN×m � A
N×m

R
n×m

= (sij)N×m and

H
N×m

� (f (Sij))N×m = (hij)N×n,

where f (x) = 1
1+e−x denotes the Sigmoid function.

Then the training task of the ELM is transferred
to solve the following system of linear equations
Hβ = b, which is equivalent to the following opti-

mization problem: min
β∈Rm

∥∥∥∥ b
N×1

− H
N×m

β
m×1

∥∥∥∥
2

. Huang
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Table 1
List of data sets

Data set Total sample Input features Classes

Automobile 159 15 6
Autompg 392 5 3
Cleveland 297 5 5
Wine q. 4898 11 7
Yeast 1484 8 10
Ecoli 336 5 8
Vehicle 846 8 4
Glass 214 9 6
Parkinson 195 22 2
Sonar 208 60 2

et al. [28, 29] suggested to use the minimum-norm
minimum least square solution as the final one:

min
‖β‖

(
min
β∈Rm

∥∥∥∥ b
N×1

− H
N×m

β
m×1

∥∥∥∥
2
)

. Its solution can be

expressed β = H+b, where H+ denotes the plus-
generalized inverse this is unique for an matrix H .

Ten benchmark data sets are taken from UCI machine
learning repository [30] to experimentally acquire a sta-
tistical relation between fuzziness of classifier output
and the rate of misclassification. The 10 datasets and
their main features are listed in Table 1.

Specifically our first experiment including 7 steps is
described as follows:

i. Randomly divide the samples as training and
testing sets where the training set occupies a pro-
portion of 70% in all samples.

ii. Training a classifier based on ELM program.
iii. For each sample both in the training set and in the

testing set, obtaining the fuzzy vector output based
on Fuzzy k-NN and ELM respectively.

iv. Compute the fuzziness for each output.
v. Sort the samples based on the quantity of fuzziness

in training set and in testing set respectively.
vi. Based on the sorting, categorizing the training set

(respectively the testing set) into three parts, i.e.,
high-fuzziness, mid-fuzziness, and low-fuzziness
subsets.

vii. Observing the correct rate of classification on each
of the three parts both for training and for testing.

The flowchart of experiment-1 is shown in Fig. 2.
As an illustration, the experimental results on two

datasets by using ELM and F-KNN are shown in Fig. 3
(a–h)

Our second experiment for a given dataset is designed
as follows:

Fig. 2. Flowchart of experiment-1.

i. Randomly selecting 70% samples from the dataset
as the training set.

ii. Train a classifier based on ELM (resp. Fuzzy k-
NN) program.

iii. For each sample both in the training set and in the
testing set, obtaining the fuzzy vector output based
on Fuzzy k-NN and ELM respectively.

iv. Compute the averaged fuzziness both in training
set and testing set.

v. Evaluate the correct rate of classification both in
training set and in testing set.

vi. Repeating the process N times (N is a given thresh-
old) from step 1 to 5.

vii. Sort the fuzziness in training set and in testing set
respectively.

viii. Observe the changing tendency of correct rate of
classification with the quantity of fuzziness both
for training and for testing.

Flowchart of experiment-2 is shown in Fig. 4.
Illustration in two datasets is shown in Fig. 5(a–h)

where x-axis demonstrates the No. of rounds/times.
The paired T-test demonstrates that the classification

performance difference between the classifiers of Fuzzy
k-NNs with higher fuzziness and with lower fuzziness
is statistically significant on all the data sets. Similarly
the difference for ELM classifier is also statistically
significant by paired T-test.

Both experiment-1 and experiment-2 are designed
for a dataset to observe the relationship between the
fuzziness of a classifier and the correct classification
rate of a set of samples. An analysis on results of
above-mentioned two experiments is given below. From
Figs. 3 and 5 one can clearly view that the correct rate
of classification both in training set and in testing set is
decreasingly changing with the increase of fuzziness.
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Fig. 3a. ELM-Vehicle Data Set (Training Accuracy).

Fig. 3b. ELM-Vehicle Data Set (Testing Accuracy).

Fig. 3c. ELM-Cleveland Data Set (Training Accuracy).

Fig. 3d. ELM-Cleveland Data Set (Testing Accuracy).

Fig. 3e. F-KNN-Wine Data Set (Training Accuracy).

Fig. 3f. F-KNN-Wine Data Set (Testing Accuracy).
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Fig. 3g. F-KNN-Vehicle Data Set (Training Accuracy).

Fig. 3h. F-KNN-Vehicle Data Set (Testing Accuracy).

Fig. 4. Flow Chart of Experiment-2.

Fig. 5a. ELM-Vehicle Dataset (Training Data).

Fig. 5b. ELM-Vehicle Dataset (Testing Data).

Fig. 5c. ELM-Autompg Dataset (Training Data).
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Fig. 5d. ELM-Autompg Dataset (Testing Data).

Fig. 5e. FKNN-Vehicle Dataset (Training Data).

Fig. 5f. FKNN-Vehicle Dataset (Testing Data).

In other words, given a well trained classifier, a sample
with high fuzziness of outputted fuzzy vector has the
risk of misclassification more than a sample with low
fuzziness of outputted fuzzy vector. We can explain this
phenomenon from the viewpoint of boundary points.
It is observed that samples with higher fuzziness are
near to the classification boundary while samples with
lower fuzziness are relatively far from the classifica-
tion boundary. More experiments for different types of
classifiers confirm this observation. In fact we have the
following Proposition 1. Due to the page length limit,
we omit the proof.

Proposition 1. For a 2-class problem, let D1 be the
distance between the sample X1 and the classification
boundary, while D2 be the distance between the sample
x1 and boundary. Moreover, µ and σ are the outputs of
the classifier on x1 and x2, respectively. If D1 ≤ D2,
then the fuzziness of x1 is no less than that of x2, i.e.,
E(µ) ≥ E(σ) where E is the fuzziness formula defined
in section 2.

Boundary samples are considered to have a key
impact on classifier performance [31, 32]. This is essen-
tially consistent with the idea of AdaBoost [33] which
assigns heavier weights to the training samples that are
hard to train.

In summary, a sample with high fuzziness is possibly
a boundary point more than a sample with low fuzziness
is. Generally speaking, for a well trained classifier, sam-
ples near to boundary have the risk of misclassification
more than samples far from boundary have.

4. A divide-and-conquer strategy based
on fuzziness categorization

Section 3 indicates that the risk of misclassification
becomes higher as the fuzziness of training samples gets
larger while the risk is relatively decreasing as the fuzzi-
ness of training samples gets statistically smaller. This
analysis on misclassification risk inspires us to sepa-
rate samples with high fuzziness from samples with
non-high fuzziness. The experiments in the previous
section have confirmed that samples with high fuzziness
have a correct rate of classification less than samples
with low fuzziness have. That is, samples with higher
fuzziness are more difficult to be correctly classified in
comparison with samples having lower fuzziness. From
the viewpoint of boundary points discussed in previous
section, the explanation can be that boundary points are
more difficult to be correctly classified in comparison
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with inner points. It is worth noting that for most clas-
sification problems boundary points have an essential
impact on classification performance more than inner
points have. In this way, for improving the classification
performance, we propose a new idea which basically is
a strategy of Divide-and-Conquer. That is, we will cope
with the samples with low fuzziness usually while cope
with samples with high fuzziness specially.

According to the magnitude of fuzziness, all sam-
ples are categorized as three groups, as discussed in
the experiments of Section 3. One group is of high
fuzziness while the other two groups are of mid and
low fuzziness respectively. Our strategy is adding the
testing samples with low fuzziness and the predicted
labels of these samples in the original training set,
which generates a new training set. Then using the new
training set, we re-train a classifier to predict the testing
samples (with high fuzziness). It is expected that our
proposed strategy can result in an improvement of clas-
sification performance on the category of samples with
high fuzziness.

Specifically our algorithm based on the Divide-and-
Conquer strategy is listed as follows.

i. Randomly Split the entire dataset into two subsets:
training and testing.

ii. Training a classifier based on ELM/Fuzzy k-NN
program.

iii. For each sample both in the training set and in the
testing set, obtaining the fuzzy vector output given
by Fuzzy k-NN and ELM respectively.

iv. Computing the fuzziness for each output, and
writing down the training accuracy and testing
accuracy.

v. Sorting the samples based on the quantity of fuzzi-
ness in training set and in testing set respectively.

vi. Based on the sorting, categorizing the training set
(respectively the testing set) into three parts, i.e.,
high-fuzziness, mid-fuzziness, and low-fuzziness
subsets.

vii. Evaluating the correct rate of classification on each
of the three parts both for training and for testing.

viii. Adding the testing samples with low fuzziness in
the original training set.

ix. Retraining an ELM/Fuzzy k-NN on the new train-
ing set.

x. Using the ELM and Fuzzy k-NN to predict sam-
ples of testing set, and writing down the training
accuracy and testing accuracy.

xi. Making a comparison between the accuracies
obtained in step-(iv) and step-(x) respectively.

Fig. 6. Flowchart of Experiment-3 (Divide & Conquer).

Table 2a
ELM, #. of Hidden Nodes: 20 Uncertainty Type: Fuzziness

Data Set TrainAcc, TestAcc (Adding the Low fuzziness
group of samples

which are testing samples
and their predicted

labels in the
original training set)

TrainAcc, TestAcc

Autompg (80.7692, 79.8319) (82.3344, 81.9328)
Cleveland (65.0485, 50.5495) (65.8333, 52.7473)
Wine Q. (53.9988, 52.9212) (54.55, 53.8723)
Yeast (59.0338, 59.9109) (60.6816, 63.4744)
Ecoli (91.1638, 79.3269) (91.8819, 81.7308)
Vehicle (70.0847, 63.0859) (72.0845, 66.0156)
Automobile (69.5455, 52.0408) (69.9219, 58.1633)
Parkinson (89.6296, 85.5) (90.3136, 91.6667)
Glass (73.6486, 64.2424) (75.4335, 67.7273)
Sonar (80.5556 60.9375) (73.9130 70.3125

The algorithm flowchart is shown Fig. 6
The 10 datasets selected from UCI machine Learning

Repository are used again to verify the performance of
our proposed algorithm. The experimental results are
listed in Table 2a and b.

From Table 2a and b, one can clearly see an improve-
ment of testing accuracy for every dataset, which
confirms the effectiveness of our proposed approach.
Additional experiments on a lot of datasets shows the
same result of improvement which really benefits from
the separation of high fuzziness samples from low
fuzziness samples and the corresponding Divide-and-
Conquer strategy. One may argue that the improvement
shown in Table 2a and b is not very significant and
a more effective Divide-and-Conquer strategy may be
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Table 2b
Fuzzy k-NN (#. of Neighbors: 5), m = 2, Uncertainty Type:

Fuzziness

Data Set TrainAcc, TestAcc (Adding the Low fuzziness
group of samples
which are testing
samples and their
predicted labels in

the original training set)

Train Acc, Test Acc

Autompg (72.5275,75.7595) (78.9916, 78.9916)
Cleveland (47.0874, 51.0162) (54.9451,53.8462)
Wine Q. (50.3503, 50.7186) (50.5433, 51.2908)
Yeast (51.5942, 51.6323) (51.5942, 52.5612)
Ecoli (81.4655, 84.0020) (84.0020, 86.0577)
Vehicle (60.6780, 60.0265) (60.6780,60.0365)
Automobile (70.0000, 67.6531) (71.4286, 71.4286)
Parkinson (93.3333, 95.0000) (98.3333, 98.3333)
Glass (65.5405, 68.3763) (72.7273, 72.7273)
Sonar (79.8611 79.6875) (73.3333 82.8125)

necessary. A new Divide-and-Conquer strategy (based
on the separation of high fuzziness samples from low
fuzziness samples) possibly results in a bigger improve-
ment. In fact the improvement of accuracy resulted
from the Divide-and-Conquer strategy is focusing on
the samples with high fuzziness but these samples are
inherently difficult to be correctly classified due to the
side effect of classifiers. We do not expect an accu-
racy improvement which is coming from handling inner
samples.

The essential part of this algorithm is to add the
testing samples with low fuzziness and their predicted
labels in the original training set, which enlarges the
training set but possibly includes some error samples
(since the testing accuracy on low fuzziness group is not
100%). To make clear which part (low or mid fuzziness
group added in the original training set) plays a more
important role with respect to the classification perfor-

mance improvement, we update the above developed
Divide-and-Conquer algorithm by revising step (viii)
as follows.

(viii-a). By adding the testing samples having low
and mid fuzziness and their predicted labels in the orig-
inal training set.

(viii-b). By adding the testing samples having the
mid fuzziness and their predicted labels in the original
training set.

The experimental results corresponding to revision
(viii-a) and (viii-b) by ELM classifier is shown in
Table 3.

Table 3 indicates that, regarding adding low and
mid fuzziness group to the original training set, the
low fuzziness group plays a more essential role than
the mid fuzziness group for classification performance
improvement. Table 3 also indicates that the improve-
ment through only adding mid fuzziness group to the
original training set is very little.

We finally give some remarks on the fuzziness cat-
egorization based Divide-and-Conquer strategy and its
algorithm. The essential idea of the whole paper is
dependent on the difference between low and high
fuzziness groups of samples

1) The difference implicitly tells us some mean-
ingful ways to improve the classification
performance.

2) Samples users are really interested in those with
high fuzziness. The difference is to make users
pay particular attention to samples with high
fuzziness and to tell users that the classification
for samples with low fuzziness is much possibly
correct even they use a simple trained classifier.

3) Due to the classification performance on the low
fuzziness group of samples, it is usual to add them
in the original training set and then to improve the

Table 3
ELM, #. of Hidden Nodes: 20 Uncertainty Type: Fuzziness

Dataset TrainAcc, TestAcc By Adding Low By Adding the Mid By Adding the Low & Mid
Fuzziness Group Fuzziness Group Fuzziness Group

TrainAcc, TestAcc TrainAcc, TestAcc TrainAcc, TestAcc

Autompg 82.0513, 75.6303 83.9117, 80.6723 83.9117, 76.4706 84.7701, 78.9916
Cleveland 64.0777, 52.7473 70.0000, 54.9451 68.7500, 51.6484 71.1027, 53.8462
Wine Q. 53.8821, 53.0571 58.9744, 54.1440 57.9940, 53.4647 61.5509, 53.6005
Yeast 59.1304, 56.7929 65.5860, 58.3519 64.7548, 57.6837 67.5532, 57.0156
Ecoli 88.3621, 83.6538 90.7749, 86.5385 89.6679, 84.6154 91.9192, 85.5769
Vehicle 66.6102, 62.5000 70.8455, 65.6250 68.9504, 61.7188 72.4000, 63.2813
Automobile 72.7273, 44.8980 75.0000, 48.9796 72.6563, 44.8980 69.5035, 46.9388
Parkinsons 91.0370, 85.1667 93.5386, 87.0000 92.8326, 85.3333 92.8874, 86.3333
Glass 72.9730, 69.6970 76.3006, 74.2424 76.8786, 66.6667 80.4233, 72.7273
Sonar 80.5556, 60.9375 73.9130, 70.3125 77.0186, 62.5000 72.8261, 68.7500
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performance in the group of samples with high
fuzziness.

4) Basically the proposed technique of adding low
fuzziness samples and their predicted labels in the
original training set belongs to the field of semi-
supervised learning where some samples with
unknown labels participate in the training process.

5) It is interesting to study other methodologies and
algorithms of specially handling samples with
high fuzziness. Possibly ensemble learning and
evolutionary computing are promising and effec-
tive ways to particularly handle high fuzziness
samples although they have a larger computa-
tional complexity.

6) Incorporating fuzzy techniques into learning pro-
cesses for model performance improvement has
been conducted over several decades. One can
find many approaches from the existing refer-
ences. For example, a multiple fuzzy NN classifier
system based on mutual information and fuzzy
integral [34], FPGP technique with parameters
based on fuzzy coefficient [35], multilevel thresh-
olding method based on maximum fuzzy entropy
for extracting edge information [36] and clas-
sifying E-Health Projects based on advanced
cluster techniques and fuzzy theories [37] have
been proposed. A scheme to design adaptive
output-feedback controller for uncertain non-
linear systems, where fuzzy logic systems are
used to approximate the nonlinear function is
proposed in [38]. In [39] author proposed the
image classification method which is based on
positive and negative fuzzy rule system using
extreme learning machine. However, for the first
time this paper establishes the linkage between
the outputted fuzziness and the generalization of
a classifier.

This paper selects the ELM and fuzzy k-NN as an
illustration of classifier. In fact algorithms developed
in this paper are suitable for any type of classifier with
fuzzy vector output. There is no obvious evidence to
show that the classifier type is sensitive to the Divide-
and-Conquer algorithm.

The main contributions of this paper include find-
ing the relationship between classifier’s fuzziness and
its misclassification rate; verifying that samples with
higher fuzziness exhibit higher risk of misclassification;
and developing a divide-and-conquer learning algo-
rithm for classifier performance improvement based on
the fuzziness categorization.

5. Conclusions

It is confirmed, for a well-trained classifier which
outputs a membership vector, samples with higher
fuzziness outputted by the classifier mean a bigger risk
of misclassification. Separately handling the samples
with low and high fuzziness (i.e. specially handling
the high fuzziness sample category) is an effective way
to promote the correct classification rate. This paper
proposes a Divide-and-Conquer strategy by adding the
low fuzziness samples in the original training set and
then forming a new training set. It is a semi-supervised
learning approach of which the reasonability is that
the quality enlargement of training set and retraining
is helpful to classification performance improvement.
Experimental results show that the approach is effec-
tive.
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