
Information Sciences 345 (2016) 1–8

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Segmenting time series with connected lines under maximum

error bound

Huanyu Zhao a,b,c, Zhaowei Dong d, Tongliang Li b,∗, Xizhao Wang f, Chaoyi Pang b,c,e,∗∗

a SJZ JKSS Technology Co. Ltd, Shijiazhuang, China
b Institute of Applied Mathematics, Hebei Academy of Sciences, Shijiazhuang, China
c Center for Data Management & Intelligent Computing, Zhejiang University (NIT), China
d Radio and TV University, Shijiazhuang, China
e RMIT University, Melbourne, Australia
f Shenzhen University, Guangzhou, China

a r t i c l e i n f o

Article history:

Received 12 January 2015

Revised 2 September 2015

Accepted 14 September 2015

Available online 9 October 2015

Keywords:

Piecewise linear

Approximation/representation

Time series data

Haar wavelet

Data compression

a b s t r a c t

The error-bounded Piecewise Linear Approximation (PLA) is to approximate the stream data

by lines such that the approximation error at each point does not exceed a pre-defined error. In

this paper, we focus on the version of PLA problem that generates connected lines in the seg-

mentation for smooth approximation. We provide a new linear-time algorithm for the prob-

lem that outperform two of the existing methods with less number of connected segments.

Our extensive experiments, on both real and synthetic data sets, indicate that our proposed

algorithms are practically efficient.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

A time series is a sequence of data points where each data point is associated with a time stamp. As with most computer

science problems, how to efficiently and effectively represent such data is challenging. Essentially, approximate representation

is one of the most commonly used methods for data pre-processing and querying. There exist many interesting algorithms or

strategies for data approximations, including Fourier Transforms [10], Discrete Wavelet Transform [8], Symbolic Mapping [11],

Piecewise Linear Approximation (PLA) [2,5–7] and Piecewise Aggregate Approximation [4].

Recently, the research on maximum-error bound Piecewise Linear Approximation (L∞-bound PLA) has gained some attention.

This representation constructs a number of line segments to approximate the stream such that the approximation error on each

corresponding point does not exceed a prescribed error bound (L∞-norm). Xie et al. [12] give an optimal linear-time algorithm1

that constructs minimum number of line segments in approximation. In their method, the minimum number of line segments

is achieved through maximally extending each constructed segment. The general idea of DisConnAlg follows: in order to adjust

a line segment to approximate the maximum number of stream points, the algorithm determines the range of all feasible line

segments, which is incrementally maintained during the processing of consecutive sequence points. Whenever the current point
∗ Corresponding author.
∗∗ Corresponding author at: Institute of Applied Mathematics, Hebei Academy of Sciences, Shijiazhuang, China.

E-mail addresses: zhaohuanyu@163.com (H. Zhao), litongliang@tom.com (T. Li), chaoyip@netscape.net (C. Pang).
1 OptimalPLR algorithm in [12], which is termed as DisConnAlg in this article.

http://dx.doi.org/10.1016/j.ins.2015.09.017

0020-0255/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2015.09.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2015.09.017&domain=pdf
mailto:zhaohuanyu@163.com
mailto:litongliang@tom.com
mailto:chaoyip@netscape.net
http://dx.doi.org/10.1016/j.ins.2015.09.017

2 H. Zhao et al. / Information Sciences 345 (2016) 1–8

Fig. 1. The process of FSW.
cannot be approximated within the error bound, start a new segment from this point. Furthermore, DisConnAlg can be used to

construct connected line segments when used on the restricted feasible space iteratively. That is, constructing the next segment

from the feasible space of the last data point of the previous segment.2 We denote this algorithm that generates connected

segments as DConnAlg in this article.

In fact, as an old research problem, there are many algorithms for computing either continuous or discontinuous PLAs under

the L∞ norm, including the original work [14,15] from Bellman and Gluss in the early 1960s. They indicated that this problem

can be solved by using dynamic programming method. Other research results on this topic include [17–19]. Paper [17] provided

algorithms that only work on special functions of “convex shape”. Paper [18] was about non-connected segmentation. Paper

[19] proposed polynomial algorithms. Recently, Liu et al. proposed FSW algorithm [6] that uses the Feasible Space (FS) window

method to construct segments from a fixed initial point. Qi et al. [9] extend FS to the polynomial functions in the processing of

multidimensional data.

Let ui = line(p1, pi+1 + δ) be the line that passes points p1 and pi+1 + δ, and li = line(p1, pi+1 − δ) be the line that passes

points p1 and pi+1 − δ. As Fig. 1 shows, Liu’s method first constructs FS to be the area between the lines u1 and l1. The feasible

space is then incrementally narrowed down to the intersection part of FS and area between of ui and li for the newly arriving

points i + 1. Continuing the process until the point when FS turns into empty where the next new segment is to be built from

this very point iteratively. In the example of Fig. 1, {p1, p2, p3, p4} is approximated by one segment whose FS is the area between

u2 and l3.

Liu indicated that FSW algorithm outperforms the algorithms of [1,2,13,16] with less number of constructed segments. Liu’s

method constructs the FS from the starting point without considering the use of error-tolerant rang [p1 − δ, p1 + δ] as that of

DisConnAlg and DConnAlg. Therefore, the segment constructed by FSW could contain less number of stream points than that

of constructed by DisConnAlg or DConnAlg in general. As a result, Liu’s method could output many more segments than that of

DisConnAlg or DConnAlg in general.

Our contributions in this article can be summarized as follows:

1. Design and implement ConnSegAlg algorithm. Through incorporating the “Forward-Checking” strategy used in DisConnAlg

of [12] and using the “Backward-Checking” strategy, this algorithm has linear time complexity and constructs less number

of segments than that of DConnAlg and FSW. Next, we indicate that the number of segments constructed from ConnSegAlg

is bounded by 2k − 1 where k is the optimal number of disconnected segments constructed by DisConnAlg. However, this

bound does not hold for DConnAlg and FSW. We indicate that the number of segments constructed by DConnAlg and FSW

can be above 2k − 1 in some situations. Lastly, we show that the 2k − 1 bound is tight. That is, there exists a stream such that

the number of segments constructed from ConnSegAlg equals to 2k − 1.
2 Refer to Section 6.3.1 of [12] for details.

H. Zhao et al. / Information Sciences 345 (2016) 1–8 3

Table 1

Notations.

Symbol Meaning

δ A given error bound on each data point

P = (p1, . . . , pk) A time series

pi or (ti , pi) The ith data point in time series

pi or (ti, pi − δ) Data point with deleted tolerant error at ti

pi or (ti, pi + δ) Data point with added tolerant error at ti

line(pi , pj) Line that passes point pi and pj

pstart The starting point of a segment

pnext The next coming data point of a segment

psi
The end point of ith segment

tsi
The end timestamp of ith segment

ui or y = ui(t) The extreme line of maximum slope in ith segment

li or y = li(t) The extreme line of minimum slope in ith segment

psi
The intersection point with maximum extreme line at tsi

psi
The intersection point with minimum extreme line at tsi

S

S

2. Provide theoretical proofs and explanations for the above mentioned properties. We also indicate that “backward-checking”,

which satisfies the similar properties like “forward-checking”, can be used to update extreme lines without requiring much

modification.

3. Conduct extensive experiments on both synthetic and real life data to verify our theoretical conclusions. We compared

ConnSegAlg with DConnAlg, DisConnAlg and FSW in terms of processing time and the number of segments constructed.

The experimental results show that (1) the number of segments constructed by ConnSegAlg is generally less than that of

DConnAlg and FSW; (2) the time efficiency of ConnSegAlg is comparable with that of DisConnAlg and DConnAlg; and (3) the

proposed algorithm ConnSegAlg is practically effective and efficient for segmenting online time series.

The rest of the paper is organized as follows: Section 2 explains the idea, the possessed properties and the pseudo code

of ConnSegAlg; Section 3 is the experimental results, including the performance comparisons among DisConnAlg, DConnAlg,

ConnSegAlg and FSW; Section 4 concludes this paper.

2. Algorithm

In this section, we will introduce our algorithm, ConnSegAlg, to construct minimized number of connected segments. We will

first give the outlines of ConnSegAlg. We then provide the theoretical proofs on the claimed properties for the algorithm. Lastly,

we present the pseudo code of ConnSegAlg.

The general notations used in this paper are summarized in Table 1, where many of them are adopted from [12].

2.1. Methodology

ConnSegAlg integrates the procedures of DisConnAlg and DConnAlg. Its outline is summarized into the following steps.

Step 1. (Lines 1 and 2 of Algorithm 1). Construct the first segment with DisConnAlg and output this segment in the result.

This segment is identical to the first segment constructed by DConnAlg. They have the same boundary (extreme lines)

according to the mechanism of DisConnAlg and DConnAlg (refer to Fig. 2(I)). That is, ps1
= p′

s1
where psi

and p′
si

are the

end point of ith segment constructed from DisConnAlg and DConnAlg, respectively. Let ui (u′
i
) and li (l′

i
) be the extreme

lines of maximum and minimum slops in the ith segment constructed by DisConnAlg and DConnAlg, respectively. We

also have u1 = u′
1 and l1 = l′1 hold.

tep 2. Backward-checking strategy (Lines 4–9 of Algorithm 1). Construct the next segment with DisConnAlg and see if it can

connect to the first one through backward-checking. Similar to the forward-checking that is used in DisConnAlg to intend

to cover maximum number of incoming stream points in the process of constructing a segment, we can use backward-

checking to decide if these two segments can be connected as indicated in Property 2.1. As described in the top figure

of Fig. 2(II), this property intuitively means that the obtained two segments from DisConnAlg can be connected if the

boundaries of the two segments have a common area (i.e., the intersection is not empty) at ts1
.

If the backward-checking is successful, we output this segment in the result. Otherwise, the following step needs to be

preformed.

tep 3. Length-checking strategy (Lines 11–20 of Algorithm 1). Construct the next two segments by DConnAlg. Let tsi
and t′si

be

the end timestamp of ith segment constructed from DisConnAlg and DConnAlg, respectively. To minimize the number

of segments constructed, we need compare t ′s3
and ts2

. If t′s3
≥ ts2

, we output the second and third segments constructed

by DConnAlg in the result (Fig. 3(I)). Otherwise, we output a trivial segment from ts to ts + 1, and the second segment

1 1

4 H. Zhao et al. / Information Sciences 345 (2016) 1–8

Algorithm 1 Function ConnSegAlg(P, δ).

Input:
time sequence P = (p1, p2, . . ., pn, . . .), error bound δ

Output:
segmenting points(sstart , s1, s2, . . .)

Description:
1: Use DisConnAlg to generate the first segment. Set (tstart , ((l1(tstart) + u1(tstart))/2)) as sstart

2: Initial the number of segments n = 1
3: While(not finished segmenting time series)
4: Use DisConnAlg to generate the next disconnected segment
5: if Backwardly check point ps(n−1)

according to Property 2.1 then

6: n = n + 1
7: Update the extreme lines for the nth and (n − 1)th segments
8: Set (t(n−1), (l(n−1)(t(n−1)) + u(n−1)(t(n−1)))/2) as s(n−1)

9: Continue
10: else
11: Use DConnAlg to construct two connected segments
12: if t ′

s3
≥ ts2

then

13: n = n + 2
14: Continue;
15: else
16: n = n + 2
17: Add trivial segment
18: Continue;
19: end if
20: Set (t(n−1), (l(n−1)(t(n−1)) + u(n−1)(t(n−1)))/2) and (t(n−2), (l(n−2)(t(n−2)) + u(n−2)(t(n−2)))/2) as s(n−1) and s(n−2), respectively

21: end if

Fig. 2. The basic algorithm.
constructed from DisConnAlg in the result (Fig. 3(II)). This is because that we could always add a trivial segment from ts1

to ts1
+ 1 to make the first two segments constructed from DisConnAlg connected.

Step 4. Repeat Step 2 for the last outputted segment until all the data points are processed.

Based on the above discussion, we give the pseudo code of ConnSegAlg in Algorithm 1.

2.2. Properties

Structurally, ConnSegAlg is very similar to DisConnAlg and DConnAlg except the backward-checking the length-checking

strategies which use a bounded number of unit time. Therefore, the time complexity of our algorithm is O(n).

The following property is used for backward-checking. Its validity is directly drawn from the definitions of extreme lines of

[12].

Property 2.1. Let ui and li be the extreme lines of maximum and minimum slop in the ith segment constructed by DisConnAlg,

respectively. Then the ith segment and the i + 1th segment of DisConnAlg can be connected if and only if the two intervals of

H. Zhao et al. / Information Sciences 345 (2016) 1–8 5

Fig. 3. The length-checking strategy.
(li(tsi
), ui(tsi

)) and (ui+1(tsi
), li+1(tsi

)) are intersected. That is,

(li(tsi
), ui(tsi

)) ∩ (ui+1(tsi
), li+1(tsi

)) �= ∅. (2.1)

Next, we measure the number of constructed segments from ConnSegAlg in terms of the number from DisConnAlg.

Theorem 2.1. Given a time series and an error bound δ, let the number of constructed segments from DisConnAlg be k. Then, for the

given time series and an error bound, the number of constructed segments from ConnSegAlg h satisfies

k ≤ h ≤ 2k − 1. (2.2)

Proof. Clearly, Formula 2.2 holds for k = 1. Assume Formula 2.2 holds for k = m. That is, m ≤ h′ ≤ 2m − 1

In the case of k = m + 1, m + 1 ≤ h holds as DisConnAlg is optimal that constructs the least number of segments. On the other

hand, h ≤ h′ + 2 holds as we can always add a trivial segment to make two segments being connected via the trivial segment

(refer to the bottom figure in Fig. 3(II)). According the inductive hypothesis,

h ≤ h′ + 2 ≤ 2m − 1 + 2 ≤ 2(m + 1) − 1 ≤ 2k − 1.

In conclusion, k ≤ h ≤ 2k − 1 holds. Thus the Formula 2.2 is proven inductively. �

Theorem 2.1 ensures the output quality of ConnSegAlg which does not met by DConnAlg. In Section 3, we also indicated that

the upper bound 2k − 1 is strict.

3. Experiments

To verify the characteristics of our algorithm, we provide extensive experimental comparisons against DisConnAlg, DConnAlg,

ConnSegAlg and FSW on a wide range of synthetic and real data sets.

For the real data sets, we adopt the 43 data sets from the UCR time series archive [3]. These data sets have been widely used

for evaluating time series algorithms.

We construct two synthetic data sets specially designed for the situations where all backward checking are successful and

failed, respectively. In the first data set, we generate a 105 sized disconnected time series (called DisConnect-Series) by the linear

function y = x − 10 ∗ (i − 1) − 1 with 10 points, where 0 < i ≤ 104 and ∀i, x ∈ [10 ∗ i − 9, 10 ∗ i]. In the second data set, we generate

a 1.9∗105 time series called Connect-Series by two consecutive linear function y = x − 18 ∗ (i − 1) − 1 and y = −x + 18 ∗ i + 1

with 9 points on each function in a iteration, where 0 < i ≤ 104, ∀i x ∈ [18 ∗ i − 17, 18 ∗ i − 9] for the former function and x ∈
[18 ∗ i − 8, 18 ∗ i] for the former one.

The original source codes are obtained from the authors of [9,12] . All algorithms, ConnSegAlg, DisConnAlg, DConnAlg and

FSW are implemented in Eclipse with C++. The test experiments are conducted on a PC with CPU of Intel Core 3.20GHz and 16G

memory. We have tested all the data sets on the error bound of 2.5 %, 5 % and 10 % of the value range. Due to the similarities, we

only show the results on the situation of 2.5 %. All the tested results are listed in Tables 2 and 3.

Regarding to the number of constructed segments, the results listed in Table 2 confirm the bound on the number of con-

structed segments from our algorithm. That is, the number of constructed segments from ConnSegAlg is within [k, 2k−1] on

all tested data sets and mostly much less than 2k − 1. However, DConnAlg and FSW do not satisfy this bound and the number

of constructed segments from DConnAlg can be more than 10 % of ours sometimes. Furthermore, the number of constructed

segments from ConnSegAlg is less than that from FSW in general.

6 H. Zhao et al. / Information Sciences 345 (2016) 1–8

Table 2

Tests on the real data sets.

Data set Length Number of segment Processing time (ms)

DConn DisConn/2k−1 Conn FSW DConn DisConn Conn FSW

50words 123,305 3253 1625/3249 2828 3541 3698 3283 3157 30

Adiac 69,207 2281 1532/3063 2277 2293 2101 1777 1492 20

Beef 14,131 91 61/121 90 95 455 382 379 1

Coffee 8037 673 476/951 646 739 227 184 159 1

OliveOil 17,131 581 391/781 538 617 518 441 341 10

CBF 116,100 69,652 40,183/80,365 69273 76,893 1684 946 1033 50

ECG200 9700 2308 1376/2751 2195 2761 241 179 168 1

FaceAll 223,081 44,681 29,994/59,987 42,541 49,636 5597 4204 3826 60

FaceFour 30,888 5916 3632/7263 5670 7230 780 608 557 10

FISH 81,201 1119 854/1707 1084 1189 2445 2225 1639 20

Gun-Point 22,650 1270 983/1965 1260 1370 665 550 410 10

Lighting2 38,918 1793 866/1731 1483 2219 1123 945 936 10

Lighting7 23,360 2119 1175/2349 1973 2615 650 544 540 10

OSULeaf 103,576 5289 3795/7589 5052 5598 2982 2521 1955 20

SwedishLeaf 80,626 6434 4415/8829 6200 6941 2282 1885 1542 10

synthetic-c-ontrol 18,301 11,695 6707/13,413 11626 12792 245 135 142 10

Trace 27,600 1080 627/1253 992 1290 852 700 536 1

Two-Patter-ns 516,000 226,095 129,045/258,089 224,964 246,252 10,149 6868 7335 170

yoga 1,281,000 49,531 36,078/72,155 47,730 52,887 37,420 31,901 24,761 300

wafer 943,092 64540 38309/76617 63726 66900 27685 23107 20736 230

ChlorineCo 641,281 124,413 62,393/124,785 113,284 142,499 16,236 13,353 13,491 175

Cricket-X 117,391 6722 3672/7343 6005 8049 3364 2809 2755 30

Cricket-Y 117,391 7659 3549/7097 5765 7659 3396 2868 2698 30

Cricket-Z 117,391 6738 3669/7337 5983 8065 3358 2802 2696 30

DiatomSize 105,877 2523 2045/4089 2500 2675 3147 2770 2133 30

ECGFiveDay-s 117,958 10,595 7419/14,837 10,417 11,542 3318 2669 2322 30

Haptics 336,645 5650 3028/6055 5188 6150 9960 8563 7486 70

InlineSkate 1035650 7794 4240/8479 6616 10,230 30672 26,546 23,750 220

MedicalIma-ges 76,000 7450 4633/9265 7068 8224 2155 1734 1575 20

MoteStrain 106,420 12,230 7486/14971 11,945 13,347 2926 2387 2207 30

SonyAIBOR-e 42,671 15,926 10,583/21,165 15,604 18,148 876 555 541 10

SonyAIBOR-eII 62,899 27,051 17,088/34,175 26,592 30,477 1215 747 748 20

Symbols 397,006 10,568 7174/14,347 10,245 11,105 11,832 10,216 8314 90

TwoLeadEC-G 94,537 14,126 9510/19,019 13,859 15,576 2441 1955 1806 30

WordsSyno-nyms 172„898 6099 4124/8247 5883 6361 5137 4387 4004 40

CinC-ECG-t-orso 2,263,201 21181 12001/24001 17,509 24,343 67,106 58,157 51,027 514

FacesUCR 270,601 54,370 37,101/74,201 52,250 60,427 6794 5019 4688 72

ItalyPower 25,726 11,610 7376/14751 11,494 12,769 479 285 288 10

MALLAT 2,403,626 77,637 51,763/103,525 72,900 81,401 70,407 62,472 47,341 540

StarLightCu-rves 8,441,901 93,008 58,599/117,197 85,024 98,145 257,568 237,367 191,292 1905

uWaveGest–X 1131913 39341 25709/51417 37005 41651 33540 28175 24049 266

uWaveGest–Y 1131913 40381 25396/50791 37543 42859 33893 28349 24895 266

uWaveGest–Z 1131913 41463 27169/54337 39159 43914 33746 28176 23752 266

Table 3

Tests on two synthetic data sets.

Data set Number of segment

DisConnAlg ConnSegAlg

Connected-series 10,000 19,999

DisConnected-series 38,000 38,000
Although the time complexities of three algorithms are O(n), their actual running time are different. As showed in Table 2, the

time cost of ConnSegAlg is less than that of DConnAlg on all the tested situations and outperforms DisConnAlg on most situations

except the 6 bold cases denoted. The time cost of FSW is much less than that of ConnSegAlg even through both algorithms have

line time complexity. Furthermore, also indicated in Table 2, our proposed algorithm scales well on bigger data size as it based

on DisConnAlg and DConnAlg. That is, the consuming time will grow in a similar scale of the increased data size.

The test results on synthetic data sets are listed in Table 3. ConnSegAlg constructs an optimal result and outputs the minimum

number of segments if all backward-checking are successful as the number of constructed segments from ConnSegAlg equals to

that of DisConnAlg. In contrast, the number of constructed segments from ConnSegAlg reaches the upper bound 2k − 1 where k

is the number of constructed segments by DisConnAlg. These results also indicate that the upper bound 2k − 1 is tight. Through

H. Zhao et al. / Information Sciences 345 (2016) 1–8 7

0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
DisConnAlg constructs 2 segments

0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
DConnAlg constructs 4 segments

0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
ConnSegAlg constructs 3 segments

Fig. 4. The result of Example 1.
referring the test results of Table 2 and the following example, it can be seen that the upper bound 2k − 1 does not hold for

DConnAlg yet.

The following example indicates that DConnAlg can generate more segments than that of ConnSegAlg in the situation of

“backward-checking” failure and “Length-Checking” adopted (refer to Fig. 4).

Example 1. Give a time series

P = (− 0.05, 0.88, 0.83, 0.57, 0.22, 0.06)

and error bound δ = 0.06. The number of segments constructed from DisConnAlg, DConnAlg and ConnSegAlg are 2, 4 and 3,

respectively.

4. Conclusions and future works

In this paper, we propose a new linear time algorithm to generate connected lines with guaranteed error bound for PLA.

Comparing with the existing two approaches, our proposed algorithm guarantees to generate less number of segments and

is practically efficient. Extensive experiments on both real and synthetic data sets indicate that our algorithm has better per-

formance than the existing algorithms. Our future work would consider how to design an optimal algorithm that constructs

minimum number of connected segments for PLA.

Acknowledgments

This work was partially supported by the Hebei “One Hundred Plan” Project (no. E2012100006), Hebei Academy of Sciences

Project (no. 15606) and Natural Science Foundation of China (grant no. 61572022). The authors would like to thank the authors

of [9,12] for their generous giving us their source code for the comparison tests in this paper.

References

[1] U. Appel, A.V. Brandt, Adaptive sequential segmentation of piecewise stationary time series., Inf. Sci. 29 (1) (1983) 27–56.
[2] E. Keogh, S. Chu, D. Hart, M. Pazzani, Segmenting time series: A survey and novel approach., Data Mining in Time Series Databases, World Scientific, 2003,

pp. 1–22.
[3] E. Keogh, X. Xi, L. Wei, C. Ratanamahatana, The UCR Time Series Classification/Clustering Homepage, 2006.

[4] E.J. Keogh, M.J. Pazzani, Scaling up dynamic time warping to massive datasets, Principles of Data Mining and Knowledge Discovery, Lecture Notes in Com-

puter Science, 17041999, pp. 1–11.
[5] A. Koski, M. Juhola, M. Meriste, Syntactic recognition of ECG signals by attributed finite automata, Pattern Recognit. 28 (12) (1995) 1927–1940.

[6] X. Liu, Z. Lin, H. Wang, Novel online methods for time series segmentation, IEEE Trans. Knowl. Data Eng. 20 (12) (2008) 1616–1626.
[7] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, Streaming time series summarization using user-defined amnesic functions, IEEE Trans. Knowl. Data Eng.

20 (7) (2008) 992–1006.
[8] C. Pang, Q. Zhang, X. Zhou, D.P. Hansen, S. Wang, A.J. Maeder, Computing unrestricted synopses under maximum error bound, Algorithmica 65 (1) (2013)

1–42.

[9] J. Qi, R. Zhang, K. Ramamohanarao, H. Wang, Z. Wen, D. Wu, Indexable online time series segmentation with error bound guarantee, World Wide Web (2013)
1–43.

[10] D. Rafiei, A. Mendelzon, Efficient retrieval of similar time sequences using dft, in: Proceedings of the 5th International Conference on Foundations of Data
Organization and Algorithms (FODO), Kobe, 1998, pp. 249–257.

[11] C. Perng, H. Wang, S.R. Zhang, D.S. Parker, Landmarks: a new model for similarity-based pattern querying in time series databases, in: Proceedings of the
16th International Conference on Data Engineering(ICDE), 2000, pp. 33–42.

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0009

8 H. Zhao et al. / Information Sciences 345 (2016) 1–8
[12] Q. Xie, C. Pang, X. Zhou, X. Zhang, K. Deng, Maximum error-bounded piecewise linear representation for online stream approximation, VLDB J. (2014) 1–23.
[13] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, W. Truppel, Online amnesic approximation of streaming time series, in: Proceeding of the 20th International

Conference on Data Engineering, 2004, pp. 339–349.
[14] R. Bellman, On the approximation of curves by line segments using dynamic programming, Commun. ACM 284 (6) (1961).

[15] B. Gluss, Further remarks on line segment curve-fitting using dynamic programming, Commun. ACM 5 (8) (1962) 441–443.
[16] E. Keogh, S. Chu, D. Hart, M. Pazzani, An online algorithm for segmenting time series, in: Proceedings of the 2001 IEEE International Conference on Data

Mining, 2001, pp. 289–296.

[17] G.M. Phillips, Algorithms for piecewise straight line approximations, Comput. J 11 (2) (1968) 211–212.
[18] D.G. Wilson, Piecewise linear approximations of fewest line segments, in: Proceedings of the 1972 Spring Joint Computer Conference on AFIPS, 40, 1972,

pp. 187–198.
[19] D.H. Douglas, T.K. Peucker, Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, Can. Cartogr. 10 (2)

(1973) 121–122.

http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00671-4/sbref0017

	Segmenting time series with connected lines under maximum error bound
	1 Introduction
	2 Algorithm
	2.1 Methodology
	2.2 Properties

	3 Experiments
	4 Conclusions and future works
	 Acknowledgments
	 References

