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TABLE I
SELECTED UCI BENCHMARK DATASETS FOR PERFORMANCE COMPARISON

which focus on various learning fields. These datasets con-
tain both symbolic attributes and numerical attributes, which
will be used to verify the priority of RBM-GI. The detailed
information of these datasets is shown in Table I.

Datasets 1–13 are of numerical attributes and datasets
14–16 are of symbolic attributes. Since neural networks cannot
directly deal with the symbolic data, we need to transfer the
symbolic data to numerical data. For example, suppose that
the symbolic attribute F takes values a, b, and c. We trans-
form each symbolic attribute value as an numerical attribute,
finally, a, b, and c will become three numerical attributes tak-
ing value 0 or 1. Since one symbolic attribute will be replaced
by multiple numerical attributes, the final numerical dataset
may have an obvious increase of attribute number.

2) Experimental Design: Three algorithms are listed in the
following for performance comparison.

1) RWA1: This algorithm randomly assigns the weights of
all hidden layer nodes and analytically solve the inverse
of a matrix as parameters of output layer (the details are
in Section III).

2) DBN: This is the initial DL algorithm proposed by
Hinton et al. [13]. It uses RBM to initialize the weights
for all layers and then uses BP to iteratively tune these
weight parameters until the algorithm converges or the
error attains a predefined threshold.

3) RBM-GI: This algorithm uses RBM to determine the
weights of all hidden layer nodes and uses the same
methods as in RWA1 for computing the output layer
parameters (the details are in Section IV-A).

The purpose of conducting this experiment is to compare
the performance of RWA1, DBN, and RBM-GI for training an
MLFN. We want to find their respective advantages and disad-
vantages, which may provide users some helpful guidelines to
select an algorithm for training this type of neural networks.

It is noteworthy that datasets Optical Recognition of
Handwritten Digits, Pen-Based Recognition of Handwritten
Digits, USPS, and Landsat Satellite have their standard parti-
tions of training set and testing set. As for the other datasets,
our general scheme is to randomly select 90% of the samples
as the training set and the remaining 10% as the testing set.

The number of hidden layers for the above three models is
set to be 3. For each dataset, we tune the number of hidden
nodes in the three layers for the proposed RBM-GI method,
and select the network structure that can achieve the highest
validation accuracy. Since we want to compare the perfor-
mances of the methods under the same conditions, for fair
comparison, the same network structure determined by RBM-
GI is adopted for RWA1 and DBN. The detailed structural
information have been listed in the last column of Table II.
Moreover, the interval [a, b] is set as [0, 0.1] for RWA1, and
the maximum iteration number in DBN is set as 2000. The
three algorithms are implemented in MATLAB under the hard-
ware environment with Core i7-3632QM CPU, 4GB RAM and
64-bit windows 7 operating system.

For each dataset, our experiment will write down three
index values, i.e., training accuracy, training time, and testing
accuracy. The experimental results are listed in Table II.

3) Result Analysis: For fixed number of hidden layers and
number of each hidden layer nodes, from Table II we can view
that DBN has the highest accuracy on a couple of datasets but
has the longest training time on all datasets in comparison
with the other two algorithms. RWA1 has the shortest training
time but has the lowest prediction accuracy on all datasets.
The training time of RBM-GI is slightly longer than that of
RWA1, but is far less than DBN. We highlight that RBM-GI
has the testing accuracy worse than DBN on some datasets
but better than DBN on other datasets. It is hard to say which
one is better for RBM-GI and DBN with respect to the testing
accuracy. In this way, RBM-GI can replace DBN for reducing
the computational complexity when tackling a classification
problem for big data.

It is noteworthy that the above experiments are conducted
with three fixed hidden layers. Each hidden layer has the same
number of nodes for the three algorithms. One question is
whether the number of nodes for each hidden layer has a crit-
ical impact on the testing accuracy. To answer this question we
conduct an additional experiment. Let the number of hidden
layer nodes vary, we observe the accuracy change. The hidden
structure is set as 10-10-10, 50-50-50, 100-100-100, 500-500-
500, 1000-1000-1000. The accuracy change with the network
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TABLE II
COMPARATIVE RESULTS ON THE SELECTED UCI BENCHMARK DATASETS

Fig. 5. Testing accuracy on 5-hidden layer structures. (a) Pen-Based Recognition of Handwritten Digits. (b) Landsat Satellite.

structure on datasets pen-based recognition of handwritten dig-
its and landsat satellite is shown in Fig. 5, where the horizontal
coordinate represents the five structures and the vertical coor-
dinate denotes the testing accuracy. Basically, the results show
that the performance of RBM-GI is being improved with the
increase of hidden layer node numbers.

From Fig. 5 we can see that, with the number of hidden
nodes increasing, RBM-GI has an improved performance but
DBN has not. One speculated reason is that DBN may not
converge to its global optimum due to the insufficient number
of samples. Besides, the number of hidden layer nodes has a
critical impact on the testing accuracy of RBM-GI. This point
has been confirmed by a comparison between DBN and ELM-
autoencoder in [18] where ELM-autoencoder has a structure
more complex than DBN. Since the training complexity of
ELM-autoencoder is much lower than DBN, this type of com-
parison between two neural networks with different numbers
of hidden layer nodes is still regarded as fair.

Furthermore, RBM-GI has a training time much less than
DBN. For example, regrading the five structures in Fig. 5(a),
the training time is 1.8096 s, 6.924 s, 30.8726 s, 74.3501 s,
and 205.2973 s for RBM-GI, and is 200.71 s, 861.172 s,
5484.9 s, 27 267 s, and 154 820 s for DBN, respectively. It
is observed that, with the increase of hidden layer number,
the magnitude of time-increasing for DBN is much faster
than that for RBM-GI. In this situation, the convergence rate

of DBN is very slow, or the iteration does not converge.
Comparatively, the training complexity of RBM-GI is insen-
sitive to the increase of hidden layer nodes number, and
therefore, RBM-GI implies a great potential in handling big
data classification problems.

Finally, experimental results confirm the crucial impact of
RMB weight initialization in the proposed method. The DBN
model proposed by Hinton et al. [13], [14] is to produce a
multilayer generative model by layer-wise pretraining. The
training process uses greedy algorithm to stack a plurality of
RBMs to produce many nonlinear feature extractors, which
can be used to effectively learn complex statistical structure
in the data. Using RBM to initialize parameters of each layer
in the network can avoid shortcomings of gradient dispersion
that often occurs in global tuning. The performance of RMB
weight initialization plus BP fine tuning is much better than
that of the traditional BP algorithm in the process of DNN
training on normal sized datasets, but is not competitive on big
data. RMB weight initialization in this model plays a different
role in comparison with RBM-GI.

B. Experiment on MNIST Handwritten Dataset

In this section, we conduct experiment on the MNIST
handwritten digits recognition dataset.1 This dataset contains

1http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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Fig. 6. Sample images in MNIST dataset.

TABLE III
PERFORMANCE COMPARISON ON MNIST DATASET

60 000 training samples and 10 000 testing samples. Each
sample is a 28×28-pixel gray-level image representing a hand-
written digit from classes “0”–“9.” Some sample images in this
dataset are demonstrated in Fig. 6. We use the 28 × 28 = 784
raw pixels as the input features, and compare the performances
of RWA1, DBN, and the proposed RBM-GI. The optimal
network structure for DBN on this dataset is set as 500-500-
2000 as reported in [13]. Besides, empirical studies show that
a larger number of hidden layers can improve the performance
of RWA1 and RBM-GI on this dataset. Thus, we apply four
hidden layers and tune the network structure as 700-500-500-
10000 for RWA1 and RBM-GI. The comparative results are
demonstrated in Table III. It can be observed that the proposed
RBM-GI has achieved similar results with RWA1. Compared
with DBN, although its testing accuracy is slightly lower, the
execution time is much faster. Besides, according to the results
reported in existing works, the state-of-the-art methods for this
dataset, i.e., MLP-BP [29] and deep forest [41], have achieved
testing accuracy of 97.39% and 96.80%, respectively, which
are very close to the proposed RBM-GI.

C. Experiment on ORL Face Recognition Dataset

In this section, we conduct experiment on the ORL face
recognition dataset.2 This dataset is composed of 400 face
images from 40 persons. Each person has ten images with
different face expressions from different angles. The sample
images for two persons in this dataset are demonstrated in
Fig. 7. We randomly select nine images as the training samples
for each person, and use the rest image as the testing sample.
We resize each face image into 32 × 32 pixels, and use the
32 × 32 = 1024 pixel values as the input features. Empirical
studies show that on this sataset, a smaller number of hidden
layers is suitable for DBN, and a larger number of hidden
layers can improve the performance of RWA1 and RBM-GI.
Finally, the network structure is tuned as 2500-2500-10000
for DBN, and 2500-2500-2500-10000 for RWA1 and RBM-
GI. The comparative results are demonstrated in Table IV. On
this dataset, RBM-GI and RWA1 have obvious advantage over
DBN regarding both accuracy and execution time.

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Fig. 7. Sample images in ORL dataset.

TABLE IV
PERFORMANCE COMPARISON ON ORL DATASET

VI. CONCLUSION

The general criterion for training an MLFN is the
minimization of error between computed outputs and expected
outputs. DL tries to achieve this minimization by iteratively
tuning the weight parameters based on gradient descent tech-
nique. This paper proposes the RBM-GI approach, with the
idea that the minimization is unnecessarily to be achieved by
iterative technique but can be achieved by noniterative learn-
ing method. Due to the much lower training complexity and
good generalization ability, the random assignment mecha-
nism for training an MLFN can replace the iterative tuning
mechanism for big data classification problems. It is high-
lighted that, as a noniterative training technique, the heuristic
assignment of weight parameters (such as the RBM and the
Auto-encoder) can improve the training efficiency and testing
accuracy significantly.
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