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Abstract. Fuzziness based divide and conquer (D&C) is a recently proposed strategy for promoting the classifiers (i.e.,
fuzzy classifiers) performance, where the amount of fuzziness quantity associated with each data point (i.e., both labeled and
unlabeled) is considered as an important avenue to the empire for instance selection problem. This technique is regarded as a
semi-supervised learning (SSL) technique, where different categories of instances are obtained by using fuzziness measure,
and then the instances having less amount of fuzziness are incorporated into training set for improving the generalization ability
of a classifier. This study proposes some effective methods and presents a novel algorithm for categorizing the instances into
three groups that can effectively integrate with D&C strategy. It is observed by the experimental validation that considering
the splitting criteria for instances categorization can lead the classifier to perform better on withheld set. Results on different
classification data sets prove the effectiveness of proposed algorithm.
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1. Brief introduction of divide-and-conquer16

strategy17

Fuzziness based divide and conquer (D&C) strat-18

egy is proposed by Wang et al. [28] for improving19

the generalization capability of a classifier F (i.e.,20

the classifiers whose output is a membership or fuzzy21

vector v). In [28], fuzziness is considered as an impor-22

tant criterion for dividing the instances xi into three23

groups, and then a group having low fuzziness FGlow24

is incorporated into training set L. F is retrained on25

the new training set and obtained results are simulated26

by the experimental verification. Their strategy is27

regarded as an approach to semi-supervised learning28

(SSL), where the unlabeled instances having certain29
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Shenzhen 518060, China. Tel./Fax: +86 13700326811; E-mail:
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magnitude of fuzziness participate in the learning 30

process and provide better predictive ability on with- 31

held set [5]. 32

In their study, they conducted two different experi- 33

ments to observe the relationship among the fuzziness 34

F of a classifier and the classification accuracy 35

of X. Specifically, in first experiment, the relation- 36

ship between correctly classified instances xci and 37

their fuzziness fci is observed. For a set of labeled 38

instances D = (xi, yi)ni=1, where training set L and 39

testing set T are obtained by randomly splitting the 40

D with the proportion of 70% & 30%. A classifier F 41

whose output is analogous to v is chosen to perform 42

the following steps as listed below. 43

1. F′ = F(L) (i.e., Train a classifier). 44

2. Obtained a membership matrix of L by using 45

F′ : UL = (μij)C×L. 46

3. Obtained a membership matrix of T : UT = 47

(μij)C×T .
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4. Fuzziness of every instance fi in F (UL) and48

F (UT ) is computed.49

5. Sorting is performed both in F (UL) and F (UT )50

based on (fi)ni=1.51

6. Three groups i.e,. FGLow, FGmid and FGHigh52

are extracted based on (sorted) fuzziness values53

of the instances belonging to L and T .54

7. Obtained the accuracies on FGLow, FGmid55

and FGHigh that are extracted by using L56

and T .57

Authors in [28] designed this experiment to58

observe the correct rate of classification for three59

groups, where they experimentally showed that the60

instances belong to FGlow have higher classification61

rate than the FGmid and FGhigh. To further analy-62

sis and support this fact, they conducted a second63

experiment where some useful information i.e., how64

fuzziness intacts with the classified and misclassified65

instances xmi? is extracted. In their second experi-66

ment, above mentioned steps (i to iv) were common,67

but instead of the dividing the instances into three68

groups, they performed the following steps on L69

and T .70

1. Separate the correctly classified instances xci71

along with their fuzziness values fci both in L72

and T .73

2. Compute Average fuzziness of all correctly74

classified instances (fi)ci=1.75

3. Compute Average fuzziness of misclassified76

instances (fi)mi=1.77

It is also found by the experimental verification in78

their studies that the instances having higher fuzzi-79

ness values (i.e., that are grouped in FGhigh) have80

greater chance of misclassification, because those81

instances are near to the classification boundary,82

while the instances having low fuzziness are far from83

the boundary. In both cases they repeated their exper-84

iments multiple times to check the effectiveness of85

randomization.86

The steps (i.e., i to vi) in above mentioned experi-87

ment were the basic assumptions toward the fuzziness88

based D&C strategy, but the second experiment is89

conducted to figure out and prove the assumption that90

fuzziness has an essential impact on the classifier’s91

generalization ability (i.e., specially for the misclas-92

sified samples). It is also proved in their study that93

the risk of misclassification becomes higher as the94

fuzziness of instances increases in L.95

Therefore, for the most classification problem, it is96

difficult to obtain the correct rate of classification for97

Fig. 1. Flow chart of Experiment-1 reflecting fuzziness based cat-
egorization.

those instances that are having high fuzziness as com- 98

pared to the low fuzziness instances. In other words, it 99

is difficult the handle the boundary points compared 100

to the points that are far from the boundary (i.e., inner 101

boundary). 102

The assumption behind D&C strategy is to sep- 103

arately handling the instances that are included in 104

FGlow, FGmid and FGhigh categories and to incor- 105

porate the group with highest accuracy into L, which 106

is an effective way to promote the classifier perfor- 107

mance. The flow chart of D&C strategy proposed by 108

Wang et al. [28] is depicted in Fig. 1 109

One can see the Fig. 1, where the FGlow is incor- 110

porated into L and retraining is performed with new 111

training set to achieve the better classification accu- 112

racy on withheld dataset T . From the literatures [4, 113

30], one can also find the studies related to the gener- 114

alization capability (i.e., prediction) of a classifier that 115

rely on the fuzziness. An important question arises: 116

how to effectively divide the training or unlabeled 117

instances into FGlow, FGmid and FGhigh that can 118

guarantee the distribution of useful instances for pro- 119

moting the D&C strategy?. We present some states 120

of the art mechanisms and provide a novel algorithm 121

to divide the instances into three different categories 122

based on their fuzziness magnitude. We also compare 123

the impact of these categorization on the generaliza- 124

tion ability by using a classifier called neural network 125

with random weight (NNRw), and observe their effec- 126

tiveness after integrating it with D&C strategy. 127

The rest of the paper is organized as follows. 128

Section 2 discusses some IS methods that rely on 129

the uncertainties. Section 3 presents the basic con- 130

cept of fuzziness and also illustrates how fuzziness 131

can be computed for a single layer feed forwarded 132

network(SLFN) called neural network with random 133
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weight (NNRw), whose output can be obtained like134

a fuzzy or membership vector. Section 4 presents135

some states of the art approaches for splitting the136

instances into three groups, and propose an algorithm137

for instance categorization. Experimental verification138

and results are presented in Section 5. Finally, Sec-139

tion 6 concludes this paper.140

2. Instance selection process141

We consider instance selection as an essential142

process in the data reduction phase of knowledge143

discovery and data mining (KDD), whose aim is to144

reduce the amount of training instances from origi-145

nal data. In this process noisy instances may also be146

removed. Therefore, this process reduces the size of147

training set either by retaining the predictive ability148

or by improving the learning capability. According to149

[23], several instances participate in learning or train-150

ing process, but some instances are irrelevant or not151

useful for classifying, hence, to achieve an acceptable152

learning performance, it is possible to ignore these153

non-useful instances, however, this process is con-154

sidered as instance selection. In general, IS methods,155

that focus on improving the predictive performance156

of the classifier (apply after instance selection) are157

called edition techniques. Methods that contribute to158

the reduction of storage requirements are known as159

condensation algorithms. Some IS methods achieve160

both goals (i.e., generalization capability and stor-161

age reduction) simultaneously, they are called hybrid162

methods. In [6], authors described that the expecta-163

tion to achieve the accuracy either equal or better164

than the original training set is not usually achieved,165

and still a certain loss of accuracy is inevitable. For166

the better selection of instances, many other methods167

have been proposed in the recent literatures. Authors168

in [13] proposed a novel instance selection mecha-169

nism called LAMIS which employs the hyperplane170

with a large symmetric margin. In their approach,171

the core of instance selection process is based on172

keeping the hyperplane that separates the two-class173

data to provide the large margin separation. LAMIS174

selects the most informative instances, satisfying both175

objectives i.e., high accuracy and reduction rates. In176

[33], an instance reduction method is proposed to177

speed up the instance selection process for the various178

instance selection-based multiple-instance learning179

algorithms. Their method is based on pairwise sim-180

ilarity between instances in a training bag, where181

the performance can be enhanced by improving the182

similarity between the instances that are necessary 183

for learning. A detail review of instance selection 184

methods is presented in [23]. 185

Many instance selection methods that rely on 186

uncertainties have been proposed in the scientific lit- 187

eratures, e.g., author in [3] proposed the first instance 188

selection mechanism that queries an instance into 189

the uncertainty area. The method proposed by [3] 190

learns a concept by reducing the volume of uncer- 191

tainty area using the required instance. This method 192

evades to query those instances that exist in learned 193

area, but it queries only those instances which reside 194

in uncertainty area. This process increases the learn- 195

ing rate because it avoids to acquire the ineffective 196

instances. Another method called Query by Commit- 197

tee (QBC) is proposed by Seung et al. [27] in 1992, 198

which acquires the instances or examples according 199

to the principle of maximal disagreement of the com- 200

mittee. This method is based on the observation that 201

an instance with maximum disagreement is harder 202

to classify. Therefore, this type of disagreement is 203

considered as a type of uncertainty. Authors in [18] 204

and [19] also proposed the uncertainty based instance 205

selection strategy. Their strategies build a single clas- 206

sifier that could predict and provide the class label 207

to an instance, and also a measurement of certainty. 208

The uncertainty is associated with posterior proba- 209

bility using Bayes rule. It only selects the instance 210

which is considered to be misclassified, because the 211

class of the instance is unknown before asking to the 212

domain experts. Wang et al. [29] introduced a new 213

instance selection mechanism called maximum ambi- 214

guity based sample selection in fuzzy decision tree 215

induction, where the instances are selected based on 216

the principle of maximal classification ambiguity to 217

select the instances with maximal evaluated ambigu- 218

ity in fuzzy decision tree induction. It only selects the 219

instance with maximal evaluation ambiguity when it 220

has similarity with fuzzy decision tree. 221

3. Neural network with random weight 222

(NNRw) and fuzziness 223

3.1. Neural network with random weight (NNRw) 224

Schmidt et al. [26] are the first one, who earlier 225

studied and investigated the significance of random- 226

ization on the generalization performance of SLFN. 227

Authors in [26] experimentally demonstrated that 228

SLFN can gain a better predictive performance by 229

selecting the random weights that connect the input 230
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Fig. 2. A schematic overview of NNRw model.

layer and hidden layer nodes, and by analytically231

computing the weights of output layer nodes. This232

was the first study regarding the non-iterative training233

of neural network (NN) using randomization concept.234

The researchers also concluded that, in SLFN, the235

weights of the output layer nodes are significantly236

most important than the weights found in the hidden237

layer nodes. Authors in [26] did not propose the name238

of their SLFN, therefore, in order to recognize their239

work, we use the neural network with random weights240

(NNRw). An overview of the structure of NNRw is241

shown in Fig. 2.242

The idea of randomization of hidden layer in NN243

has been proposed several times. Pao et al. [24] pro-244

posed a very similar model called random vector245

functional-link network (RVFLN) and its generaliza-246

tion performance was investigated in [15]. Authors247

in [31] used this approach for initializing the weights248

of NN before training it with back-propagation (BP).249

From the literature [2, 15, 25], one can study that250

several ideas have been proposed for randomiza-251

tion that incorporate random hidden-layer weights252

and biases, and the direct connection between the253

input layer and the output layer. In NNRw, the254

parameters of hidden layer nodes (i.e, input weights255

and hidden layer biases) can be chosen randomly256

and the output weights between hidden and output257

layer can be analytically determined with Moore-258

Penrose generalized inverse. Similarly, authors in [7,259

14, 36, 37], introduced NN with a randomly initial-260

ized hidden layer and trained using pseudo-inverse.261

NNRw provides better training speed, because unlike262

BP (i.e., gradient-descent based algorithm), NNRw263

does not require the iterative tunning process for264

parameters at hidden layer nodes, that overcomes the265

drawback of local minimal as in conventional gradi-266

ent based algorithms. Conventional neural networks267

have great approximation capability but the behav-268

ior of those networks during the training process269

heavily depends on the training set. The classifi- 270

cation boundaries generated by the NNs are often 271

unpredictable in the presence of less amount of data. 272

Many extensions related to NNs have been proposed 273

in scientific literatures such as discrete-time stochas- 274

tic neural network [17], polygonal fuzzy NN used 275

to handle the polygonal fuzzy data [20] and weight 276

networks [16]. 277

NNRw algorithm. The key idea of NNRw is the ran- 278

dom initialization of the hidden layer weights and the 279

subsequent training consists of computing the least- 280

squares solution to the linear system defined by the 281

outputs of hidden layer and targets. 282

Consider a set of l distinct instances (xi, yi) with
xi ∈ R

l, and yi ∈ R. The output of SLFN with hidden
layer nodes K̃ can be represented as

f (x) =
K̃∑

i=1

β̃ig(wi, bi, x), x ∈ R
l (1)

In Equation (1), wi ∈ R
l and bi ∈ R represent the 283

random parameters (i.e., input weights and biases 284

respectively) at hidden layer nodes, β̃i ∈ R
m is the 285

output weight and β̃ig(wi, bi, x) is the output of ith 286

hidden node w.r.t input x. 287

Therefore, for a given dataset {(xi, yi)}li=1 ⊂ R
l ×

R
m, where xi is an input vector, and yi is the cor-

responding observed vector. SLFN with K̃ hidden
nodes approximating these n training instances with
zero error means that their exist β̃i, wi, and bi where
i = 1, · · · , L such that

K̃∑
i=1

β̃ig(wi, bi, xj) = yj, j = 1, · · · , l (2)

The above Equation (2) can be compactly written
as

Hβ̃ = Y (3)

where 288

Hl×K̃ 289

=

⎛
⎜⎜⎜⎜⎜⎝

g(w1, b1, x1) g(w2, b2, x1) · · · g(wK̃, bK̃, x1)

g(w1, b1, x2) g(w2, b2, x2) · · · g(wK̃, bK̃, x2)

...
...

. . .
...

g(w1, b1, xl) g(w2, b2, xl) · · · g(wK̃, bK̃, xl)

⎞
⎟⎟⎟⎟⎟⎠, 290
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Fig. 3. Sigmoid activation function.

β̃K̃×m =

⎛
⎜⎜⎜⎜⎝

β̃1

β̃2

...

β̃K̃

⎞
⎟⎟⎟⎟⎠

T

and

Tl×m =

⎛
⎜⎜⎜⎜⎝

t1

t2

...

tl

⎞
⎟⎟⎟⎟⎠

T

H is a hidden layer output matrix with respect to
the input vectors xi, where i = 1, · · · , l, and g(z) is a
sigmoid activation function. A sigmoid activation or
cost function uses the sigmoid function to determine
its activation and it can be defined as

g(z) = 1

1 + e−z
(4)

A typical sigmoid function is presented in Fig. 3,291

which has the curve in two direction and resem-292

blances to the English letter “S”. This function293

transforms an input value to an output ranging from 0294

to 1. It is worth noting that this function only returns295

the positive values. If one needs the NN to return the296

negative values then this function will be unsuitable.297

The above mentioned (3) becomes a system of lin-
ear equations, which in most cases can be transferred
to a regular system of linear equations.

HT Hβ̃ = HT Y (5)

Suppose that HT H is non-singular, the solution of
system according to Equation (5) can be expressed as

β̃ = (HT H)−1HT Y = H†Y. (6)

In Equation (6), H† denotes the pseudo-inverse. 298

The (NNRw) algorithm is summarized in Algo- 299

rithm 1.

Algorithm 1 Illustration of NNRw algorithm
Require:

1: L = {(xi, yi)|xi ∈ R
l, yi ∈ R

m, i = 1, · · · , l}
2: Hidden node output function g(w, b, x)
3: Number of hidden nodes K̃

Ensure:
4: Weight Matrix β̃

Basic steps:
5: Randomly select the input parameters wi and bi

where i = 1, · · · , K̃
6: Compute the hidden layer output matrix H.
7: By using Eq. (6), calculate the output weight β̃

300

The proposed solution to the equation Hβ̃ = Y 301

in the NNRw algorithm, as β̃ = H†Y has following 302

characteristics making it an attractive solution. 303

1. Minimum training error can be achieved due to 304

provision of the least-squares solutions. 305

2. It is considered as the solution with the smallest 306

norm among the least-squares solutions 307

3. The smallest norm solution among the least- 308

squares solutions is unique for a H, and 309

represented as β̃ = H†Y . 310

The strength of the NNRw is the fact that there is 311

no need to iteratively tune of the randomly initialized 312

weights as compared to BP. Due to this advantage 313

(i.e., non-iterative) this process makes its learning 314

speed extremely fast. 315

3.2. Theory of fuzzy set 316

The theory of fuzzy set is introduces by Zadeh [34] 317

and it relates to classes of objects with un-sharp or 318

unclear boundaries where the membership degree is a 319

significant matter of interest. Conventional crisp sets 320

contain values that only satisfy precise or compact 321

characteristics required for membership. 322

Suppose a set S consists of values from 1 to 5 is a
representation of a crisp set then it can be expressed
as
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Fig. 4. Membership function of crisp set S.

S = {n ∈ �}

where � represents a set of real numbers. Hence S can
be modeled by its membership function FS(n) : �.
A membership function is also called characteristic
function or indicator function

FS(n) =
{

1 (1 ≤ n ≤ 5

0 (else)
(7)

The above membership function will produce a323

value 1, if and only if S ∈ n. Otherwise, it will pro-324

duce a value 0. A graph of membership function for325

crisp set S is depicted in Fig. 4 One can visualize the326

above Fig. 4, that shows a clear distinction between327

the elements either these belong to the set or not. It328

is worth noted that there is a problem in defining the329

numbers between 6 to 10, which are also crisp. A sim-330

ilar situation comes to our daily life. For example, in331

deciding, the person is either tall or short. Regarding332

the conventional phenomenon or logic, there must be333

need to define a height threshold that differentiates a334

tall person to the smaller one. For example, A person335

is taller, if its height is greater than the threshold (i.e.,336

6 feet) otherwise that person is shorter. However, this337

mechanism obviously can not reflect the actual judg-338

ment based on human thinking. So, it can be better339

described as soft switching mechanism rather than340

threshold. This may lead us to often add some mod-341

ifiers to the word taller or shorter (i.e., very, more,342

not, not very, somehow etc.) in order to express the343

degree of height rather than absolute value i.e., either344

True or False.345

A fuzzy set, enables us to make decision according346

to human thinking. Therefore, in a fuzzy set, “height347

of a person”, degree related the height is defined that348

provides us a continous transition rather than a sharp349

transition (i.e., from true to false).

3.3. Fuzziness of a fuzzy set 350

The term fuzziness refers to the unclear boundary 351

between two linguistic variables and firstly proposed 352

by Zadeh [34] with the proposed concept of fuzzy set. 353

According to Dubois and Prade [11], A fuzzy set is a 354

set that contains the elements with varying the mem- 355

bership quantity or values. The elements of a fuzzy 356

set are mapped to a universe of membership values 357

by using a function (i.e, membership function), and 358

it maps the elements of objects of a fuzzy set into 359

the real values in the interval of [0, 1] [1]. Fuzzy set 360

is different from classical crisp set where the ele- 361

ments in a set have full membership which means 362

that membership value must be equal to 1. 363

Zadeh in [35] also generalized the probability mea- 364

sure of an event to a fuzzy event and suggested using 365

entropy in information theory to interpret the uncer- 366

tainty associated with the fuzzy event [30]. Authors 367

in [9], considered fuzziness to be a type of uncer- 368

tainty and defined fuzzy entropy which is based on 369

Shannon’s entropy function, and also introduced the 370

set of properties for which a fuzziness should satisfy. 371

These properties of fuzziness have widely accepted 372

and become a criteria for defining the fuzziness [1]. 373

Those properties also depict that a fuzziness degree 374

attains itsmaximum when the membership degree of 375

every element is equal and minimum when every ele- 376

ments either belongs to fuzzy set or absolutely not. 377

We consider fuzziness as a type of cognitive uncer-

tainty, coming from the transition of uncertainty from
one linguistic variable to another. where a linguistic
variable is a fuzzy set and defined in a certain uni-
verse of discourse. Let S = {μ1, μ2, · · · , μn} be a
fuzzy set then the fuzziness of S can be defined as

F (S) = −K
∑n

i=1
(μi log μi + (1 − μi) log(1 − μi))

(8) 378

In Equation (8), μi represents the membership 379

function and K is a constant and equal to (1/n). 380

The fuzziness of fuzzy set defined by Equation (8) 381

attains its maximum when the membership degree of 382

every element is μi = 0.5 for every i = 1, 2, · · · , n 383

and minimum when every element belongs to the 384

fuzzy set or absolutely not for every μi = 0 or μi = 1, 385

i(1 ≤ i ≤ n). 386

3.4. Fuzziness of training/testing instances 387

Now we associate fuzziness with the output of a 388

classifier. It is well found that many classifiers have 389
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the output in the form of fuzzy vector, where each390

component of vector corresponds to the member-391

ship degree of the testing instances belonging to a392

class. These types of classifiers include artificial neu-393

ral network (ANN) [12, 22], support vector machines394

(SVMs) [8, 10, 32], fuzzy decision tree [29] and etc.395

It is important to mention here that some classifiers,396

such as NN, a simple transformation can transfer the397

initial output to a form a fuzzy vector if the compo-398

nents of the initial output are not in the interval of399

[0, 1].400

Therefore, for a given set of training instances
xi

n
i=1, a fuzzy partition of these examples assigns the

membership degrees of every example to the class
C. Hence, the fuzzy partition can be described by a
membership matrix as shown in below Equation (9)

U = (μij)C×n (9)

In Equation (9), (μij) represents the jth instances
of x belonging to ith class. The elements in the mem-
bership matrix have to obey the following properties∑C

i=1
μij = 1

where

0 <
∑n

j=1
μij < n

and

μij ∈ [0, 1]

Therefore, once the training process (of a classi-
fier) completes, U upon n can be obtained. For the
jth instance of x, the output of a trained classifier is
represented as a fuzzy set i.e.,

μj = {μ1j, μ2j, μ3j, · · · , μCj}
Based on the Equation (8), the fuzziness of a train-401

ing classifier on xj can be depicted as Equation (10)402

F (U) = − 1

C

∑C

i=1
(μij log μij403

+ (1 − μij) log(1 − μij)) (10)404

3.5. Fuzziness of a classifier405

Once the training process is completed, we can eas-406

ily obtain the fuzziness of learned classifier. Let the407

membership vectorU of a classifier onn training sam-408

ples with C classes be U = (μij)C×n, the fuzziness409

associated with classifier is given in Equation (11)

F (U) = − 1

Cn

∑C

i=1

∑n

j=1
410

(μij log μij + (1 − μij) log(1 − μij)) (11) 411

Above Equation (11) illustrates the fuzziness of a 412

trained classifier that has output analogous to a fuzzy 413

vector. (11) also plays an essential role for investigat- 414

ing the classifier’s generalization based on fuzziness. 415

This equation actually represents the average fuzzi- 416

ness of classifier’s output on all training instances 417

or we can say that it is the training fuzziness of the 418

classifier. 419

The most appropriate representation of classifier 420

fuzziness must be the average fuzziness of entire 421

instance space that includes both the training and 422

testing instances. However the fuzziness of testing 423

samples is generally unknown and for any supervised 424

learning, there is a well acknowledged assumption, 425

that is, the training samples have a distribution identi- 426

cal to the distribution of samples in the entire space. It 427

indicates the reason-ability that we use Equation (11) 428

for the classifier’s fuzziness. 429

4. Splitting approaches for group formation 430

How to effectively categorize the instances into 431

low, mid and high fuzziness group is a major con- 432

cern of this research studies. The formation of groups 433

(or categories) in-fact depends on the situation of a 434

specific problem, where different approaches can be 435

utilized about how and what threshold has to set for 436

dividing the instance into 3 categories. 437

We illustrate two state of the art techniques and 438

present an algorithm that can be used to categorize 439

the instances into 3 categories based on the fuzziness 440

quantity. We illustrate them briefly. 441

4.1. Percentage split (P-split) 442

In this technique, a vector V = {v1, v2, · · · , vn},
that represents the sorted fuzziness values of respec-
tive instances X = {x1, x2, ....xn} in ascending order.
where n represents the total number of samples and
vi is the value (i.e., fuzziness) corresponds to the ith

instance. This is a very simple mechanism, which
actually focus the proportion of percentage of those
instances that are having lower fuzziness values and
higher fuzziness values. For example, if there are
5000 instances in a data set and after obtaining a
V , we assign a lp value and hp value for the FGlow

and FGhigh. if V is a sorted list and we assign 30%
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instance for low category groups and 20% for high
category groups than it calculates the total instances
in each category as (12).

nlow = n × lp

100
(12)

Hence the FGlow will contain the instances
{x1, x2, · · · , x(nlow)}. Similarly, the total amount of
elements in FGhigh can be computed as (13).

nhigh = n × hp

100
(13)

Based on the total number of elements in high443

groups we obtain the instances that belong to FGhigh444

as FGhigh = {x(n−nhigh+1), .., xn}. All remaining ele-445

ments will be included in FGmid category.446

4.2. Natural split (N-split)447

This is also a simple mechanism, that distributes
the entire set into 3-parts. For example, if there are
n instances. It will assign the equal distribution of
instance to every group by using (14).

d = n

3
(14)

Hence by using (14), the instances for each group448

can be extracted as (16)449

FGlow = x1, x2, · · · , xd450

FGmid = xd+1, · · · , x2×d (15)451

FGhigh = x(2×d)+1, x(2×d)+2, · · · , xn452

The instances must be sorted based on their fuzzi-453

ness quantity in ascending order before applying the454

N-split criteria.455

4.3. Proposed splitting method456

In this technique we present an algorithm that will
auto extract the instances for FGlow, FGmid and
FGhigh categories based on their fuzziness values. We
will use the measure i.e., median to illustrate this algo-
rithm called M-split. Median is the middle value in
the set of elements. To compute the median value, the
vector V must be arranged in the ascending order first,
there are two ways to compute the median depending
on the amount of elements in a set. If the total number
of elements n in a set V are even then the median Mv

can be computed as (16).

Mv =
(

n
2

)th
term + (

n
2 + 1

)th
term

2
(16)

If the total number of elements n in a set V are odd
then the median Mv can be obtained by using (17).

Mv =
(

n + 1

2

)th

term (17)

The illustration of M-split is depicted in Algo- 457

rithm 2, the algorithm first finds the median of all 458

values [1, 2, 3, · · · , n] in a set and place the obtained 459

value into q1. Now we have 2 ranges of values (i.e., 460

2 sets); one is from first element to q1th element and 461

the other is q1th + 1 to nth element. Again we find 462

the median values of both sets and keep this value 463

in q1 and q2 respectively. At this stage we create 3 464

groups i.e., FGlow, FGmidandFGhigh and place the 465

elements in these groups as mentioned in (19). We can 466

also use mean instead of median, but in this study, we 467

are only categorizing the instance based on median. 468

FGlow = 1, 2, · · · , q1 469

FGmid = q1 + 1, q1 + 2, · · · , q2 (18) 470

FGhigh = q2 + 1, q2 + 2, · · · , n 471

5. Experimental validation 472

The splitting techniques are applied on 10 bench- 473

mark data sets, that are taken from UCI machine 474

learning repository [21] to experimentally acquire the 475

statistical relation between instances obtained by pro- 476

posed fuzziness based categorization mechanism and 477

the their correct rate of classification. The data sets 478

which are selected (during the experiments) belong 479

to a wide variety of classification problems, where 480

the number of instances, their classes and types of 481

features differ. The detail of these data sets is sum- 482

marized in Table 1. 483

For the purpose of experimental design, we use 484

10-fold cross validation technique to evaluate the per- 485

Table 1
List of data sets acquired for experimentation

Data set Instances Input features Classes

Automobiles 159 15 6
Autompg 392 5 3
Cleveland 297 5 5
Ecoli 336 5 8
Glass 214 9 6
Penbased 10992 16 10
Vehicle 846 8 4
Vowel 990 10 11
Wine Quality 4898 11 7
Yeast 1484 8 10
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Algorithm 2 Proposed M-split algorithm
Require:

1: Set of sorted instances X = (xi)ni=1 along with
fuzziness values V = {v1, v2, · · · , vn}

Ensure:
2: FGlow, FGmid, FGhigh {i.e., instances in low,

mid and high categories}
Basic steps:

3: initialize q1 = q2 = 0
4: M1 = Mv(V )
5: if M1 /= 0 then
6: q1 = Mv(V < M1)
7: if (q1 = 0) then
8: lowM = q1
9: if max(V /= q1) > 0 then
10: q2 = Mv(V > q1)
11: highM = q2
12: end if
13: else
14: q2 = Mv(V > M1)
15: V1 = V < m and V ≥ q1)
16: lowM > m and V ≥ q2)
17: highM = Mv(V1)
18: end if

19: end if
20: if M1 = 0 then
21: lowM = M1;
22: if max(V /= M1) > 0 then
23: q2 = Mv(V > M1)
24: highM = q2
25: end if
26: if max(V ) > q2 then
27: highM = Mv(V > q2)
28: end if

29: end if
30: for i = 1 to n do
31: if Vi ≤ lowM then
32: FGlow = xi

33: else if (Vi ≤ lowM and Vi ≤ highM) then
34: FGmid = xi

35: else if Vi ≥ highM then
36: FGhigh = xi

37: end if
38: end for

formance of all splitting approaches. We performed486

necessary normalizing between [0, 1]. For the NNRw,487

the initial interval for the random parameters is set to488

[0, 1], and the number hidden nodes are selected as489

60 corresponding to each dataset. We applied all three490

mechanisms for splitting the instances into 3 groups491

during the experimental process. Table 2 lists the 492

results obtained by using 10-times 10-fold cross vali- 493

dation scheme, where average is taken to demonstrate 494

the effectiveness of sampling method. 495

5.1. Analysis of results 496

For further analysis of our experiments, we take 497

a typical case of one data set (i.e., automobile), We 498

vary the number of hidden nodes from 10 to 100, 499

and check the impact of categorization by using 3 500

splitting approaches. One can see in Fig. 5, where 501

the proposed splitting approach gains more accuracy 502

than the others. For the NNRw, we also analyze the 503

impact of different initialization intervals on the over- 504

all performance of our proposed splitting approaches. 505

The initialization interval is set to [0, λ], 1 ≤ λ] ≤ 10 506

during the simulation. The input weights wi between 507

input layer nodes and hidden layer nodes, and biases 508

bi at the hidden layer of NNRw are the random values 509

that follow the uniform distribution over [0, λ]]. The 510

impact of initialization interval is shown in Fig. 6. 511

The results which are shown in Table 2, a smaller 512

interval, i.e., [0, 1] is selected for all the data sets. 513

One can analyze the Figs. 5 and 6, that all 514

splitting methods are improving the accuracy rate, 515

where FGlow is extracted after applying each split- 516

ting method and incorporating into original training 517

set L. In-fact, the division of instances into 3 groups 518

depends on the nature of a problem, and the amount 519

of instances that the data sets hold. Suppose in a case, 520

we have limited fuzziness values then M-split crite- 521

ria may fail to produce the desirable results, hence, 522

we further need to judge the impact of fuzziness 523

values. The other two types of splitting can be effec- 524

tively utilized in such type of situation. Same is the 525

case with penbased and yeast data sets, where the 526

M-split criteria achieves slightly low or equivalent 527

results than N-split and P-split dividing approaches. 528

M-split criteria is useful in the case, when most of 529

the fuzziness values are similar, for example, in the 530

case of 100 instances, if 50 instances are outputting 531

the same fuzziness values i.e., 0, then the M-split cri- 532

teria will place all similar values in one category, and 533

other values will be further divide into two groups. 534

The main step in D&C strategy was to incorporate 535

that group with L, that are having high accuracy. All 536

splitting methods are following this phenomenon, we 537

have listed the accuracy obtained by FGlow, FGmid 538

and FGhigh in Table 2, where one can see the accura- 539

cies obtained by 3 groups by using different splitting 540

approaches. By using any splitting method, FGlow is 541
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Table 2
Experimental Results using different splitting methods for instance categorization

Data set Split method Groups accuracy (Orignal accuracy) D&C Accuracy
FGlow FGmid FGhigh Trainacc, Testacc (L ∪ FGlow)

Trainacc, Testacc Trainacc, Testacc Trainacc, Testacc Trainacc, Testacc

Automobile
M-split 98.8182, 80.1375 93.8207, 62.6682 81.8428, 52.6000

91.2747, 66.0861
90.7516, 69.9414

N-split 99.1458, 83.1538 94.4605, 63.2000 81.1195, 52.6154 90.8728, 68.2418
P-split 99.7241, 87.8750 92.7433, 65.3034 78.3583, 47.3750 91.1446, 67.0458

Autompg
M-split 96.8211, 95.2013 93.3508, 86.7625 73.0313, 60.7509

87.0946, 80.8026
87.4273, 81.2254

N-split 96.8811, 95.7807 93.3381, 86.3577 71.4244, 59.9167 87.3888, 81.0976
P-split 97.2375, 96.8442 91.4578, 83.9874 63.8414, 54.2857 87.3036, 80.9244

Cleveland
M-split 84.0777, 68.4866 73.6655, 55.8810 59.7145, 38.3875

72.3882, 54.6837
72.1898, 55.9016

N-split 84.9461, 71.3651 73.4587, 55.8000 59.1743, 36.8889 72.2759, 55.3746
P-split 88.6638, 77.4444 72.6884, 53.8333 55.1925, 34.7778 72.3295, 54.7008

Ecoli
M-split 97.7287, 95.5022 91.0613, 85.5333 84.3161, 73.6883

91.0333, 84.8736
91.2654, 85.1053

N-split 97.9787, 95.6667 90.9200, 86.1409 84.3977, 72.8000 91.1821, 85.0232
P-split 98.7580, 97.6515 90.8700, 85.3113 83.7884, 70.7121 91.1656, 84.9089

Glass
M-split 92.9371, 78.1214 85.0707, 64.6923 77.5583, 48.7368

85.2432, 64.5897
84.9568, 66.1966

N-split 93.6922, 80.3647 85.0273, 65.1484 77.0230, 48.7368 85.0629, 64.8355
P-split 96.5216, 84.2333 84.5175, 65.7500 76.1611, 39.9666 85.1487, 64.5491

Penbased
M-split 99.4064, 99.3752 96.7494, 96.5805 88.5855, 88.2326

94.6845, 94.5011
94.7906, 94.5366

N-split 99.8337, 99.8131 96.2213, 96.0770 84.9236, 84.4599 94.7557, 94.5693
P-split 99.5307, 99.5087 96.7504, 96.5688 87.9733, 87.6387 97.7854, 94.5384

Vehicle
M-split 91.8648, 86.2321 79.8904, 72.6243 69.5294, 62.8333

80.5101, 74.1843
80.6501, 74.8663

N-split 92.9659, 87.3471 90.0156, 73.4436 68.5645, 61.7837 80.5101, 74.7486
P-split 95.9224, 92.4435 80.6590, 73.7958 64.6470, 57.1399 80.7266, 74.2444

Vowel
M-split 96.5716, 90.2376 91.0909, 82.8485 83.6699, 72.8125

90.3770, 82.0379
90.3772, 83.6818

N-split 96.9635, 91.0681 91.1370, 83.3778 83.2443, 71.5292 90.3860, 83.3485
P-split 98.1420, 93.9135 91.0029, 82.4839 80.7112, 68.6154 90.4339, 82.5303

Wine Q.
M-split 61.9334, 59.5643 55.4848, 54.6103 50.4094, 49.7300

56.0007, 54.6395
56.2356, 55.0391

N-split 62.4835, 60.0390 55.4844, 54.4016 50.0505,49.4889 56.2289, 55.0107
P-split 63.9780, 61.1239 55.6447, 54.4331 49.0918, 48.7773 56.1774, 54.9376

Yeast
M-split 69.9695, 67.7769 59.6117, 56.5937 58.2914, 53.6273

62.8497, 59.6581
62.9979, 59.8140

N-split 70.8206, 68.7880 59.3902, 56.4407 58.4635, 54.0169 63.0291, 59.8308
P-split 73.0670, 70.8039 60.8055, 58.3083 58.7928, 52.5645 63.0335, 59.7451

Fig. 5. Comparison of splitting methods (Testing accu-
racy).

Fig. 6. Impact of different initialization interval (Testing
accuracy).
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getting higher accuracy than FGmid and FGhigh, and542

for many data sets M-split criteria is reflecting higher543

accuracy rate on withheld set than the original test-544

ing accuracy. Table 2 and both Figs. 5 and 6 prove545

the effectiveness of M-Split criteria.546

For the so called problem of big-data, selection547

of M-split criteria may be much useful than other548

criteria, because N-split or P-split may extract much549

misclassified instances for FGlow. During this study,550

we have also observed some interesting findings by551

adding two groups collectively along with L, we will552

present this part in our next study.553

6. Conclusion554

Fuzziness based divide and conquer strategy is an555

effective and useful strategy for promoting the classi-556

fier’s performance. However, the critical problem is557

to categorize the instances according to their fuzzy558

values into 3 groups. We have investigated differ-559

ent states of the art methods for categorization, and560

proposed an efficient mechanism that can effectively561

extract the instances for low, mid and high fuzziness562

categories. We used NNRw to obtain the member-563

ship vector corresponding to each data point by using564

simple transformation. Other classifiers i.e., Fuzzy k-565

nearest neighbor, support vector machine (SVM) or566

BP can also be utilized to compute the fuzziness for567

data points. It is observed by the experimental simula-568

tion that proposed splitting algorithm provides better569

solution for placement the data points into respec-570

tive categories, and also promotes the efficacy of571

D&C strategy. This technique of categorization can572

be much helpful for the so called problem of big-data.573

Experimental results have shown its effectiveness.574
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