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Abstract The incremental extreme learning machine (I-
ELM) was proposed in 2006 as a method to improve the
network architecture of extreme learning machines (ELMs).
To improve on the I-ELM, bidirectional extreme learning
machines (B-ELMs) were developed in 2012. The B-ELM
uses the samemethod as the I-ELMbut separates the odd and
even learning steps. At the odd learning step, a hidden node
is added like I-ELM. At the even learning step, a new hidden
node is added via a formula based on the former added node
result. However, some of the hidden nodes generated by the
I-ELM may play a minor role; thus, the increase in network
complexity due to the B-ELMmay be unnecessary. To avoid
this issue, this paper proposes an enhanced B-ELM method
(referred to as EB-ELM). Several hidden nodes are randomly
generated at each odd learning step, however, only the nodes
with the largest residual error reduction will be added to the
existing network. Simulation results show that the EB-ELM
can obtain higher accuracy and achieve better performance
than the B-ELM under the same network architecture. In
addition, the EB-ELM can achieve a faster convergence rate
than the B-ELM, which means that the EB-ELM has smaller
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network complexity and faster learning speed than the
B-ELM.
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1 Introduction

Feed-forward neural networks with random weights have
been studied for over 20years [1–4]. With the introduc-
tion of extreme learning machines (ELMs) [5], this field has
attracted the attention of many researchers. Extreme learning
machine (ELM) is a special single-hidden layer feed-forward
neural network with random weights (NNRW), where the
hiddenweights are randomly selected and kept fixed through-
out the training process while the output weights are obtained
analytically. Originally proposed by Huang et al. [5] in 2004,
ELMs extreme learning speed and overall performance, has
been widely used in scientific and engineering research [6].
Some notable applications include, traffic sign recognition
[7], 3D shapes recognition [8], recommendation system [9],
unsupervised and semi-supervised learning [10,11], electric-
ity price forecast [12], deep architecture and its applications
[13,14], etc. Although the ELM seems simple, Huang et al.
[15] have proved that ELMs have universal approximation
capabilities. ELMs also have a much faster training speed
than traditional tuning-based learning methods, such as the
back-propagation algorithm [16], with an acceptable accu-
racy.

One of the most intractable challenges in ELM is choos-
ing an appropriate network architecture (i.e., the number of
hidden neurons). Network architecture has a huge impact on
model performance. In the original ELMalgorithm, the num-
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ber of hidden neurons is predefined by users. However, this
method can’t always obtain the best network architecture and
further causes the ELM model to have sub-optimal perfor-
mance, which likely causes under-fitting or over-fitting.

To avoid the issues, researchers have developed a series
of solutions, including incremental ELM (I-ELM) [15],
enhanced incremental ELM (EI-ELM) [17], bidirectional
ELM (B-ELM) [18], pruned ELM (P-ELM) [19], optimally
pruned (OP-ELM) [20], adaptive growth ELM (AG-ELM)
[21], error minimized ELM (EM-ELM) [22], and subnet-
work ELM [23], in addition to other methods. An I-ELM
[15] randomly adds hidden nodes one by one and freezes
the output weights of the existing hidden nodes when a new
hidden node is added. An EI-ELM [17] is often seen as an
enhanced I-ELM. The main difference between an EI-ELM
and an I-ELM is that at each learning step in an EI-ELM, sev-
eral hidden nodes are randomly generated, but only the one
node that leads to a minimized residual error will be added
to the existing network. A B-ELM [18] divides the learning
step into two parts. When the number of hidden nodes in the
existing network is even, the newnodewill be added based on
the I-ELMmethod. While when the number of hidden nodes
is odd, the parameters of the new node will be calculated
via a set of formulas. A P-ELM [19] uses statistical meth-
ods to measure the relevance of neurons and then prunes the
irrelevant nodes based on their relevance to class labels. An
OP-ELM [20] uses a leave-one-out (LOO) criterion to opti-
mize the P-ELM and extend the application to regression
problems. In an AG-ELM [21], the networks are generated
within a group at each step. One or more existing hidden
nodes may be replaced by newly generated networks, which
have fewer hidden nodes and better performance. Thus, the
number of hidden nodes in the AG-ELM network changes
dynamically. The hidden nodes in an EM-ELM [22] can be
added one by one or group by group. Unlike I-ELMs and
EI-ELMs, the output weights in an EM-ELM are updated
as new hidden nodes are added. Subnetwork-ELMs [23] and
B-ELMs both try to pull back the network residual error to
the hidden layer. The B-ELM increases hidden nodes one by
one, while in the Subnetwork-ELM, the hidden nodes can be
a subnetwork (a subnetwork formed by several nodes). Thus,
unlike a B-ELM, the input weight in a Subnetwork-ELM is a
matrix and the subnetwork hidden nodes are calculated and
not generated randomly. The common goal of these methods
is to get a better network architecture for the ELM, to get
better performance and faster convergence rate.

This paper proposes an improved bidirectional extreme
learning machine based on enhanced random search (EB-
ELM), where the enhanced random search method is incor-
porated into a B-ELM. In an EB-ELM, at the odd learning
step several hidden nodes are randomly generated and only
the one leading to the largest residual error reduction will
be added to the existing network. In this way, the reliabil-

Fig. 1 Basic network structure of an ELM

ity of the B-ELM algorithm will be improved. Simulation
results on ten benchmark regression problems show that an
EB-ELM can obtain better generalization performance and
has a faster convergence rate, and we can get a more compact
networkwith an EB-ELM thanwith a B-ELMor an EI-ELM.

The organization of this paper is as follows: Sect. 2 briefly
introduces the ELM, I-ELM, EI-ELM, and B-ELMmethods.
The details of the EB-ELMalgorithm are proposed in Sect. 3.
Section 4 describes the experimental procedure and simula-
tion results. The conclusions are provided in Sect. 5.

2 Review of extreme learning machines

Abasic network structure forELMhas three layers, including
an input layer, hidden layer, and output layer. Any two adja-
cent layers are connected via weight parameters as shown in
Fig. 1:

In the figure, the term d denotes the number of input
neurons, L denotes the number of hidden neurons, and
mdenotes the number of output neurons. The output of ELM
is expressed as follows:

L∑

i=1

βi g(ωi · x j + bi ) = t j , ωi ∈ Rn, bi ∈ R, j = 1, . . . , N

(1)

In Eq. (1), β denotes the weight between hidden and output
layers, g(ωi ·x j+bi )denotes the output of the i th hidden node
with parameters (ωi , bi ), L denotes the number of hidden
nodes, t j denotes the computational value of ELM, and N is
the size of the dataset. Equation (1) can be re-written simply
as

Hβ = T, (2)
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whereH =
⎛
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L×m
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⎤
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N×m

.

In Eq. (2), H represents the hidden layer output matrix of
ELM and T denotes the expected output matrix. The residual
error is used to measure the closeness between output func-
tion fn and the target function f , which can be expressed by

en = fn − f (3)

In the I-ELM algorithm, Huang proposes a method to add
hidden nodes one by one and fix the output weights of exist-
ing hidden nodes when adding a new hidden node [15]. In
this way, the hidden node can be added automatically until
the ELMmodel satisfies the given precision or the number of
hidden nodes beyond the given maximum. The output func-
tion fn at the nthstep can be expressed by the equation

fn(x) = fn−1(x) + βnGn(x), (4)

where the βn denotes the weight between the new hidden
node and the output nodes, and Gn(x) is the corresponding
output of the hidden node at the n-th step.

The network architecture generated by the I-ELMmay be
very complex because some of the hidden nodes may play a
minor role in the network output.

To avoid this problem, Huang et al. [17] and Yang et al.
[18] proposed the EI-ELM and B-ELM, respectively. In the
EI-ELM algorithm, Huang generates several hidden nodes
randomly at each learning step; only the optimal hidden node,
which leads to the smallest residual error, is chosen. Obvi-
ously, this method can pick a better hidden node than the
I-ELM, with a higher probability. As expected, the method
can achieve a faster convergence rate and a more compact
network architecture [17].

In the B-ELM algorithm, Yang divides the training pro-
cess into two parts [18]. When the number of hidden nodes
L ∈ {2n + 1, n ∈ Z}, the hidden node parameter (ωi , bi ) is
generated randomly, as in the I-ELM. When the number of

hidden nodes L ∈ {2n, n ∈ Z}, the hidden node parameter
(ωi , bi ) is obtained according to the following formulas.

∧
ω 2n = g−1(u(H2n)) · x−1 (5)
∧
b 2n =

√
mse(g−1(u(H2n)) − ω2n · x) (6)

∧
H 2n = u−1(g−1(ω2n · x + b2n)) (7)

where g−1 and u−1 represent the inverse functions of g and
u, respectively.

We can infer that the ELM model accuracy is sharply
affected by parameters from the odd hidden nodes in the
B-ELM. In the learning process of the B-ELM, some newly
added hidden nodes only play a minor role in the final net-
work, and thus may increase the network complexity without
an appropriate advantage.

To avoid this issue, we take advantage of the EI-ELM to
improve the B-ELM. At each odd learning step of the B-
ELM, several hidden nodes are randomly generated and we
only choose to add the node that leads to the largest residual
error reduction to the existing network.

3 The proposed algorithm

In this section,we propose an improved bidirectional extreme
learningmachine that is based on an enhanced random search
(EB-ELM). In the EB-ELM, we use an enhanced random
search method originated in the EI-ELM and incorporate it
into the B-ELM.

In the EB-ELM, when the number of hidden nodes L ∈
{2n + 1, n ∈ Z}, we first generate k random hidden nodes
and calculate the corresponding hidden layer output, which
are denoted by {H1, H2, . . . , Hk}, respectively. Then, the
corresponding residual errors, denoted by {E1, E2, . . . , Ek},
are determined. Finally, we choose the node that leads to
the min{E1, E2, . . . , Ek} as the newly added hidden node.
It should be noted that the B-ELM is a specific case of the
EB-ELM when k = 1.

With number of hidden node L ∈ {2n, n ∈ Z}, we use the
same method presented in the B-ELM. The proposed EB-
ELM algorithm can be summarized as follows:
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4 Experimental verification

In this section, we compare the performance of the EB-ELM,
B-ELM and EI-ELM on ten benchmark regression problems
from theUCI database [24]. The specification of these bench-
mark problems is given in Table 1. In our experiment, the
input data is normalized into [−1, 1]. The weight ω, between
input layer and hidden layer, is randomly chosen from [−1,
1], while the threshold b of hidden nodes is chosen from

Table 1 Specification of ten benchmark regression problems

Name Training data Testing data Attributes

Airfoil Self-noise 750 753 5

Combined cycle power plant 4500 5068 4

Concrete compressive strength 500 530 8

Energy efficiency 400 368 8

Housing 250 256 13

Abalone 2000 2177 8

Wine quality 2000 2898 11

Auto MPG 200 192 8

Machine CPU 100 109 6

Gas Turbines 6000 5934 16

[0, 1] based on a uniform sampling distribution probability.
The Sigmoid function is chosen as the activation function
of all the algorithms, i.e., G(ω, x, b) = 1/(1 + exp(−(ω ·
x + b))). The simulations are conducted in the MATLAB
2008a environment and the same Windows 7 machine with
Intel Core i7 3.60GHz CPU and 8GB RAM. For each prob-
lem, the average results over 50 trials are obtained for the
EB-ELM, B-ELM, and EI-ELM.

The generalization performance of the EB-ELM, B-ELM,
and EI-ELM, with the same number of hidden nodes, are
first compared with ten real benchmark problems: Airfoil
Self-noise, Combined Cycle Power Plant [25], Concrete
Compressive Strength [26], Energy efficiency [27], Hous-
ing, Abalone, Wine Quality [28], AutoMPG,Machine CPU,
and Gas Turbines [29]. We set 200 as the maximum num-
ber of hidden nodes in every algorithm, and we suppose ten
hidden nodes are randomly generated at each step of the EB-
ELM and EI-ELM, i.e., k = 10. The average performance
[the training time, training root mean square error (Train-
ing RMSE) and the testing root mean square error (Testing
RMSE)] of the EB-ELM, B-ELM, and EI-ELM are shown in
Table 2. The closed results are underlined and the improved
results are in boldface.

As shown in Table 2, the EB-ELM obtains a smaller train-
ing RMSE and testing RMSE than the B-ELM under the
same node in most cases, compared with the B-ELM using
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the Combined Cycle Power Plant Data Set case. In addi-
tion, the EB-ELM produces a smaller standard deviation of
the testing RMSE as opposed to the B-ELM in most cases,
which means the performance of the EB-ELM is more sta-
ble than the B-ELM. In other words, the EB-ELM obtains
higher accuracy and better generalization performance than
the B-ELM under the same network architecture. Compared
with the EI-ELM, the EB-ELM achieves better performance
and a smaller standard deviation in most cases, except the
Energy efficiency and Gas Turbines cases.

Furthermore, Fig. 2 shows the training RMSE with
updated curves for the EB-ELM, B-ELM, and EI-ELM on
Housing data. From Fig. 2, we can infer that the EB-ELM
achieves a faster convergence rate than the two algorithms,
which means the EB-ELM can obtain the most compact net-

work architecture compared with the B-ELM and EI-ELM,
under the same accuracy. Similar results can be found in other
cases.

5 Conclusions

As described above, the performance of B-ELM model is
drastically affected by parameters generated at the odd learn-
ing step. That is, some of odd hidden nodes generated in
B-ELM play a minor role and may cause the unnecessary
increase in network complexity. To deal with this prob-
lem, in this paper, we proposed an improved bidirectional
extreme learning machine based on enhanced random search
(EB-ELM) in which an enhanced random search method is
incorporated into B-ELM. In EB-ELM, several hidden nodes

Table 2 Performance comparison of the EB-ELM, B-ELM, and EI-ELM with 200 hidden nodes

Datasets Algorithm Testing time (s) SD Mean

Training RMSE Testing RMSE

Airfoil Self-noise EB-ELM 0.0178 0.0023 0.0709 0.0726

B-ELM 0.0197 0.0027 0.0723 0.0745

EI-ELM 0.0056 0.3161 0.0472 0.2574

Combined cycle power plant EB-ELM 0.0602 0.0002 0.0233 0.0233

B-ELM 0.0599 0.0002 0.0233 0.0233

EI-ELM 0.0625 0.0934 0.0213 0.0370

Concrete compressive strength EB-ELM 0.0175 0.0021 0.0217 0.0233

B-ELM 0.0159 0.021 0.0229 0.0316

EI-ELM 0.0075 0.0209 0.0076 0.0433

Energy efficiency EB-ELM 0.0172 0.0004 0.0092 0.0093

B-ELM 0.0159 0.0016 0.0094 0.0097

EI-ELM 0.0044 0.0001 0.0011 0.0019

Housing EB-ELM 0.0178 0.0011 0.0178 0.0195

B-ELM 0.014 0.0061 0.0217 0.0233

EI-ELM 0.0044 0.1363 0.0043 0.2089

Abalone EB-ELM 0.9928 0.0070 0.0092 0.0161

B-ELM 1.0366 0.0155 0.0132 0.0168

EI-ELM 0.0294 0.0071 0.0004 0.0168

Wine quality_ white EB-ELM 0.0421 0.0014 0.0149 0.0163

B-ELM 0.0443 0.002 0.0158 0.0173

EI-ELM 0.0469 45.5285 0.0108 24.2822

Auto MPG EB-ELM 0.9969 0.0002 0.0026 0.0027

B-ELM 1.0394 0.0005 0.0026 0.0029

EI-ELM 0.0003 0.0691 0.0012 0.0488

Machine CPU EB-ELM 0.0641 0.0074 0.0145 0.0220

B-ELM 0.0744 0.0570 0.0161 0.0421

EI-ELM 0.0006 2.8013 0.0069 1.9659

GT_Turbine EB-ELM 1.0781 0.0006 0.0003 0.0004

B-ELM 1.0994 0.0084 0.0054 0.0056

EI-ELM 0.0869 <0.0001 <0.0001 <0.0001
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Fig. 2 TheTrainingRMSEUpdatingCurves of the EB-ELM,B-ELM,
and EI-ELM

are randomly generated at each odd learning step, however,
only the nodes with the largest residual error reduction are
added to the existing network. The parameters of even hid-
den nodes are calculated in a same way as in the original
B-ELM. It should be noted that B-ELM is a specific case of
EB-ELM when k= 1. According to the simulation results of
ten benchmark regression problems, we can find that the EB-
ELM achieves superior performance and smaller standard
deviation when compared with the B-ELM and EI-ELM.
In addition, the EB-ELM has the fastest convergence rate
among the three algorithms, which means that the EB-ELM
can achieve a much more compact network architecture. In
the future,wewill construct amulti-layer EB-ELMand apply
it to more complex problems. In addition, the performance of
the EB-ELM using additional hidden nodes will be reported
in future work.
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