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Abstract

This paper investigates an inverse problem of support vector machines (SVMs). The inverse

problem is how to split a given dataset into two clusters such that the margin between the two

clusters attains the maximum. Here the margin is defined according to the separating hyper-

plane generated by support vectors. It is difficult to give an exact solution to this problem. In

this paper, we design a genetic algorithm to solve this problem. Numerical simulations show

the feasibility and effectiveness of this algorithm. This study on the inverse problem of SVMs

is motivated by designing a heuristic algorithm for generating decision trees with high

generalization capability.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Support vector machines (SVMs) are a classification technique of machine
learning based on statistical learning theory [6,8]. Considering a classification
see front matter r 2005 Elsevier B.V. All rights reserved.
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problem with two classes, SVMs are to construct an optimal hyper-plane
that maximizes the margin between two classes. According to Vapnik statis-
tical learning theory [6,7], the maximum of margin implies the extra-
ordinary generalization capability and good performances of SVM classifiers
[1,2,3]. So far, SVMs have already been successfully applied to many real fields.
This paper aims to make a preparation for SVM’s application to decision tree
generation.

Given a training set, a general procedure for generating a decision tree can be
briefly described as follows. The entire training set is first considered as the root node
of the tree. Then the root node is split into two sub-nodes based on some heuristic
information. If the instances in a sub-node belong to one class, then the sub-node is
regarded as a leaf node, else we continue to split the sub-node based on the heuristic
information. This process repeats until all leaf nodes are generated. The most
popular heuristic information used in the decision tree generation is the minimum
entropy. This heuristic information has many advantages such as small number of
leaves and less computational efforts. However, it has a serious disadvantage—the
poor generalization capability.

The investigation to the inverse problem of SVMs is motivated by designing a new
decision tree generation procedure to improve the generalization capability of
existing decision tree programs based on minimum entropy heuristic. Due to the
relationship between the margin of SVMs and the generalization capability, the split
with maximum margin may be considered as the new heuristic information for
generating decision trees.

This paper has the following organization. Section 2 briefly reviews the basic
concept of support vector machines. Section 3 proposes the inverse problem of
SVMs and designs a genetic algorithm to solve this problem. Section 4 gives some
simulations to demonstrate the feasibility and effectiveness of the genetic algorithm.
And the last section briefly concludes this paper.
2. Support vector machines

2.1. The basic problem of SVMs

Let S ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN ; yN Þg be a training set, where xiARn and
yiA{�1,1} for i ¼ 1; 2; . . . ;N. The optimal hyper-plane of S is defined as f ðxÞ ¼ 0,
where

f ðxÞ ¼ w0 � xð Þ þ b0, (1)

w0 ¼
XN

j¼1

yja
0
j xj , (2)

w0 � xð Þ ¼
Pn

i¼1wi
0 � xi is the inner product of the two vectors, where w0 ¼

ðw1
0;w

2
0; . . . ;w

n
0Þ and x ¼ ðx1;x2; . . . ;xnÞ: The vector W0 can be determined
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according to the following quadratic programming [6]

Maximum W ðaÞ ¼
PN
i¼1

ai �
1
2

PN
i;j¼1

yiyjaiaj xi � xj

� �
;

Subject to
PN
j¼1

yjaj ¼ 0; C 	 ai 	 0; i ¼ 1; 2; . . . ;N;

(3)

where C is a positive constant. The constant b0 is given by

b0 ¼ yi � xi

XN

j¼1

yja
0
j xj

 !
. (4)

Substituting (2) for w0 in (1), we have

f ðxÞ ¼
XN

i¼1

yia
0
i xixð Þ þ b0. (5)

We can know separability of two subsets through checking whether the following
inequalities

yi w0xi � bð Þ 	 1; i ¼ 1; 2; . . . ;N (6)

hold well [6].
A procedure to compute maximum margin for two subsets is described below.

Procedure 1. The constant C in equation (3) is selected to be large at first.

Step 1. Solving the quadratic programming (3).
Step 2. Determining the separating hyper-plane (5) according to (4).
Step 3. Checking the separability between two subsets according to inequalities

(6).
Step 4. Let the margin be 0 if the two subsets are not separable.
Step 5. Computing the maximum margin according to 1/(w0 �w0) for the separable

case where the vector w is determined by (2).

2.2. Generalization in feature space

Practically the performance of SVMs based on the previous section may not be
very good for the nonlinear-separable cases in the original space. To improve the
performance and to reduce the computational load for the nonlinear separable
datasets, Vapnik [6] extended the SVMs from the original space to the feature space.
The key idea of the extension is that an SVM first maps the original input space into
a high-dimensional feature space through some nonlinear mapping, and then
constructs an optimal separating hyper-plane in the feature space. Without any
knowledge of the mapping, the SVM can find the optimal hyper-plane by using the
dot product function in the feature space. The dot function is usually called a kernel
function. According to Hilbert–Schmidt theorem [6], there exists a relationship
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between the original space and its feature space for the dot product of two points.
That is

ðz1z2Þ ¼ Kðx1; x2Þ, (7)

where it is assumed that a mapping F from the original space to the feature space
exists, such that Fðx1Þ ¼ z1 and Fðx2Þ ¼ z2, and K(x1,x2) is conventionally called a
kernel function satisfying the Mercer theorem [6]. Usually the following three types
of kernel functions can be used: polynomial with degree p, radial basis function and
sigmoid function [6]. Replacing the inner product (x1 � x2) in (5) with the kernel
function K(x1,x2), the optimal separating hyper-plane becomes the following form:

f ðxÞ ¼
XN

i¼1

yia
0
i K xi;xð Þ þ b0. (8)

It is worth noting that the conclusion of Section 2.1 is still valid in the feature
space if we substitute K(x1,x2) for the inner product (x1 �x2).
3. An inverse problem of SVMs and its solution based on genetic algorithms

For a given dataset of which no class labels are assigned to instances, we can
randomly split the dataset into two subsets. Suppose that one is the positive instance
subset and the other is the negative instance subset, we can calculate the maximum
margin between the two subsets according to Procedure 1 where the margin is equal
to 0 for the non-separable case. Obviously the calculated margin depends on the
random split of the dataset. Our problem is how to split the dataset such that the
margin calculated according to Procedure 1 attains the maximum.

It is an optimization problem. We mathematically formulate it as follows. Let
S ¼ fx1; x2; . . . ; xNg be a dataset and xiARn for i ¼ 1; 2; . . . ;N, O ¼ ff jf is a
function from S to f1;�1gg. Given a function f 2 O, the dataset can be split to
two subsets and then the margin can be calculated by Procedure 1. We denote the
calculated margin (the functional) by Margin (f). Then the inverse problem is
formulated as

Maximumf2O Marginðf Þð Þ. (9)

Due to the exponentially increased complexity, it is not feasible to enumerate all
possible functions in O for calculating their margins according to Procedure 1. It is
difficult to give an exact algorithm for solving the optimization problem (9). This
paper makes an attempt to solve (9) by designing a genetic algorithm [4]. Because of
the limit of the paper length, we only present the encoding mechanics and fitness
function of our proposed genetic algorithm to solve Eq. (9). For details about genetic
algorithms, one can refer to [4].

Each function f 2 O corresponds to a binary partition of the dataset S. Therefore
each f can be viewed as a N-dimensional vector such as 100011101?01 with N bits.
Each bit taking value 0 or 1 is regarded as a gene corresponding to an instance in S.
Thus each chromosome (a bit string such as 100011101?01) consisting of N genes
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represents a function in O where if a bit is 1 it means that the corresponding instance
is positive; and a value 0 represents that the corresponding instance is negative. The
fixed length of each chromosome’s coding is N, the number of instances of the initial
dataset.

Noting that each chromosome corresponds to a training set given in Section 2, we
define the fitness value for each chromosome as the margin value computed by
Procedure 1. Here the fitness value is 0 if the chromosome corresponds to a non-
separable training set, and is the real margin of the SVM if the chromosome
corresponds to a separable training set.

Suppose that we initially have a dataset {x1,x2, y, xN}, xiARn, i ¼ 1; 2; . . . ;N. A
N-dimensional Boolean vector c ¼ a1a2 . . . aN is considered as a chromosome, f (j)
denotes the fitness value of the jth chromosome. Random(A) denotes a random
number uniformly distributed in [0, A]. Specifying the penalty factor C, the
population size M, the crossover probability pc, the mutation probability pm, the
procedure flowchart of this algorithm is shown as Fig. 1. In the last box of Fig 1,
c1 ¼ a1a2 . . . aN is the optimal chromosome, which corresponds to a function f

splitting dataset into two subsets based on the above what has been mentioned in this
section. f(c1) is the margin between the two subsets calculated by Procedure 1. The
decision function f denotes the optimal or approximately optimal solution of
problem (9) when the parameters in GA are selected properly.

4. Numerical examples

To verify the effectiveness of the proposed genetic algorithm, we construct a small
dataset with twenty 2-dimesional points (Table 1). Fig. 2 shows the distribution of
the 20 points of Table 1. Respectively we use the proposed genetic algorithm and the
enumeration method to acquire the maximum margin on Table 1. The parameters
specified in the genetic algorithm are shown in Table 2 where the probability of
mutation is enlarged to be 0.8. Enlarging the mutation probability aims to enhance
the effect of mutation, which is expected to generate more excellent chromosomes
and to accelerate the evolutionary process. Table 3 shows the experimental results on
the original space for both the genetic algorithm and the enumeration. From Table 3
one can see that the running time of the proposed genetic algorithm is significantly
less than the enumeration method, but the performance of the genetic algorithm for
searching the second best margin is not very good. This is because that the genetic
algorithm is a type of incomplete search on the complete space. Genetic algorithms
cannot guarantee obtaining the optimal solution every time, but it is expected to
have a big probability for obtaining the optimal or approximately optimal solution.
To raise the probability of obtaining optimal solution, one needs to increase the
population size or the maximum number of generations, which obviously is at the
price of running time increase. Practically we need a reasonable balance between the
accuracy and the running time.

Figs. 3–6 show the separating hyper-planes with maximum margin and second
maximum margin for both the proposed genetic algorithm and the enumeration on
the original space.
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Fig. 1. Flowchart for solving the inverse problem of SVMs.

X.-Z. Wang et al. / Neurocomputing 68 (2005) 225–238230



ARTICLE IN PRESS

Table 1

A small dataset

Case Feature1 Feature2 Case Feature1 Feature2

1 0.428 0.064 11 0.12 0.552

2 0.416 0.082 12 0.15 0.53

3 0.388 0.098 13 0.128 0.562

4 0.444 0.12 14 0.09 0.592

5 0.468 0.092 15 0.174 0.58

6 0.762 0.272 16 0.466 0.786

7 0.784 0.302 17 0.442 0.802

8 0.75 0.314 18 0.438 0.764

9 0.728 0.272 19 0.502 0.742

10 0.712 0.332 20 0.482 0.82

Fig. 2. Sample distribution of Table 1.

Table 2

Parameters in genetic algorithm

POPSIZE ¼ 150 Size of population

PC ¼ 0.7 Probability of crossover

PM ¼ 0.8 Probability of mutation

NB ¼ 0.3 Gen mutation proportion

G ¼ 0.6 Generation gap

MAXGENERATION ¼ 20; Maximum generation

X.-Z. Wang et al. / Neurocomputing 68 (2005) 225–238 231
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Table 3

Experimental results on the original space

Time (min) The best margin The second best margin

Numeration method 922.45 0.4596 0.3156

Genetic algorithm 3.37 0.4596 0.2546

Fig. 3. Max margin by enumeration on the original space.

Fig. 4. Second max margin by enumeration on the original space.

X.-Z. Wang et al. / Neurocomputing 68 (2005) 225–238232
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Fig. 5. Max margin by GA on the original space.

Fig. 6. Second max margin by GA on the original space.
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Selecting the 3rd polynomial as the kernel function and keeping the parameters
of the GA unchanged, we repeat the experiments on the feature space for the
small dataset given in Table 1. The experimental results are shown in Table 4 and
Figs. 7–10.

Comparing Figs. 3–6 with Figs. 7–10, we find a similar consequent. Due to the use
of kernel functions, Fig. 10 shows a nonlinear boundary. This is the essential
difference between the original space and the feature space. From Tables 3 and 4 we
find that, for the small dataset both in the original space and in the feature space, the
running time of the genetic algorithm is significantly less than the enumeration. It
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Fig. 7. Max margin by enumeration on the feature space.

Fig. 8. Second max margin by enumeration on the feature space.

Table 4

Experimental results on the feature space

Time (min) The best margin The second best margin

Numeration method 1051.4 0.98694 0.6285

Genetic algorithm 3.57 0.98694 0.60667

X.-Z. Wang et al. / Neurocomputing 68 (2005) 225–238234
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Fig. 9. Max margin by GA on the feature space.

Fig. 10. Second max margin by GA on the feature space.
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implies that the proposed genetic algorithm has much smaller time-complexity than
the enumeration. However, with an increase of dataset size, the time complexity of
the proposed genetic algorithm is increasing rapidly. It is the main defect of this type
of genetic algorithms.

Since the main difficulty in the genetic algorithm is the searching time, we now
experimentally check the time change with the increase of samples.

A well-known dataset called Iris [5] is selected to verify the relationship between
the running time and the number of samples. We use 100 samples of the dataset
(the second class and the third class) for the verification. Table 5 shows the running
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Table 5

Running time with the increase of samples in Iris dataset

Sample number Running time (min) Sample number Running time (minutes)

5 0.42943 55 25.455

10 0.90247 60 30.925

15 1.7772 65 36.793

20 3.3708 70 42.832

25 5.4337 75 50.649

30 7.2144 80 59.036

35 10.013 85 67.508

40 12.96 90 77.152

45 16.646 95 87.893

50 21.045 100 98.792

Fig. 11. Running time change with the increase of sample.

X.-Z. Wang et al. / Neurocomputing 68 (2005) 225–238236
time change with the increase of samples. From Table 5 and Fig. 11 we observe that
the running time rapidly increase with the samples. The increase seems to be
exponential.

One reason that the proposed genetic algorithm has large time complexity is the
process of solving quadratic programs. We do not know whether the quadratic
programming can be replaced with an approximate and fast algorithm for acquiring
the maximum margin. It is an issue really being valuable to investigate.

The large time complexity downgrades the applicability of the proposed genetic
algorithm. How to reduce the time complexity of the algorithm for large databases is
a very important issue to be investigated further.
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5. Concluding remarks

Motivated by designing a new heuristic procedure of generating decision trees
with higher generalization capability, this paper proposes a genetic algorithm
for solving an inverse problem of SVMs. The algorithm is effective and efficient
for small datasets. The main disadvantage of this algorithm is its large time
complexity. Practically it is expected to give an improved version with time
complexity reduction.
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