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Sensitivity of Data Matrix Rank in Non-iterative
Training

Zhiqi Huanga,b, Xizhao Wanga,∗

aComputer Science and Software Engineering, Shenzhen University, China
bGuangdong Key Laboratory of Intelligent Information Processing, China

Abstract

This paper focuses on the parameter pattern during the initialization of Extreme
Learning Machines (ELMs). According to the algorithm, model performance is
highly dependent on the matrix rank of its hidden layer. Previous research has
already proved that the sigmoid activation function can transform input data to
a full rank hidden matrix with probability 1, which secures the stability of ELM
solution. In recent study, we notice that, under full-rank condition, the hidden
matrix possibly has very small eigenvalue, which seriously affects the model
generalization ability. Our study indicates such a negative impact is caused by
the discontinuity of generalized inverse at the boundary of full and waning rank.
Experiments show that each phase of ELM modeling possibly leads to this rank
deficient phenomenon, which harms the test accuracy.

Keywords: Neural Network, Extreme Learning Machines, Rank of Matrix,
Generalized Inverse

1. Introduction

Introduced by [1, 2], the Extreme learning machines (ELMs) as a type of
single hidden layer feed-forward neural network (SLFNs) with non-iterative al-
gorithm, the training process contains two parts: first, the weights and bias
between input and hidden layers are randomly assigned; second, the weights5

between hidden and output layers are obtained by solving a system of linear
equations using generalized inverse.

In the recent decade, ELM has been studied by many researches: deep learn-
ing techniques have been used to improve the ELM performance [3]. Incor-
porating with other algorithms, hybrid ELMs were proposed by [4, 5]. And10

ELM has been used to solve different problems in multiple areas[6], such as
imbalance problem[7], image processing[8] and time series forecasting [9, 10].
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Also, [11] demonstrated its big data performance. Comparing with the typical
back-propagation (BP) algorithm for training feed-forward neural networks, the
ELM’s non-iterative training mechanism gives it speed and efficiency in most of15

the cases [12]. Different from BP algorithm where the hidden layer keep tuning
in iteration, the hidden matrix of ELM is decided once by the weights between
input and hidden layers. And the tuning phase of ELM is to solve a system
of linear equations, so the structure and values of hidden matrix play a critical
role in model performance. For example, [13] already proved that the sigmoid20

transformation lead to a full-rank hidden matrix with probability 1. And the
stability of solution depends on whether the hidden matrix has full column rank.
By looking deep into this full rank transformation, We find that with wide ini-
tial range, increasing number of hidden node, particular pre-training method
or special pattern of training data, the hidden layer matrix could be weakly25

linear correlated. That means, the matrix is still full-rank but can be viewed
as a perturbation from rank deficient matrix. And due to the discontinuity of
generalized inverse, the coefficients between hidden and output layers will have
large absolute value and variance which leads to robustness problem of ELM
solutions [14].30

In this paper, we first point out that the training of ELM is sensitive to
the rank of hidden layer matrix, and give a detailed proof on discontinuity
of generalized inverse under waning rank matrix. Then based on theoretical
analysis, we are going to investigate the following questions: how and why initial
range, number of hidden nodes, outliers in training data and unsupervised pre-35

training affect the model performance respectively.
The rest of this paper is organized as follows. Section 2 gives a brief review on

the related works. Section 3 investigates the relationship between rank of matrix
and its generalized inverse. Based on the theoretical result, some examples and
experiments on different initial methods and network structures are shown in40

Section 4. And in Section 5, we conclude this paper.

2. Extreme learning machine

ELM means a three layer feed-forward networks with single hidden layer in
which the weights and bias between input layer and hidden layer are randomly
assigned and the weights between hidden layer and output layer are solved by45

a system of linear equations. A simple structure of ELM for regression problem
is shown in Fig.1 with n nodes in input layer, m nodes in hidden layer and only
one node in output layer, while the classification problem, number of output
node equals to the number of categories.

Given a set of samples S = {(xi, ti)|xi ∈ Rd, ti ∈ Rt}ni=1, training process of
ELM is to determine model parameters {wij , bj , βj}. Since the weights wij and
bias bj are randomly selected, the training process is only about determining
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Figure 1: A simple ELM structure.

the connections βj between hidden layer and output layer. Let

Gn×m =




w1x1 + b1 · · · wmx1 + bm
w1x2 + b1 · · · wmx2 + bm

...
. . .

...
w1xn + b1 · · · wmxn + bm)


 (1)

be the middle matrix, where wj is the jth column of the weight matrix W
between input layer and output layer. Let g(·) be the sigmoid function and H
be hidden layer matrix, then

Hn×m = (g(G))n×m = (hij)n×m (2)

Suppose the target matrix is T = [t1, t2, · · · , tn]T , then the training of ELM
is transferred to solve the system of linear equations Hβ = T. In general,
the solution H− is not unique. [12, 2] suggested to use the minimum-norm
least square solution. Instead of solving the system of linear equations, the
optimization problem change to:

min
||β||

( min
β∈Rm

||T−Hβ||2) (3)

the solution of (3) is the Moore-Penrose pseudo-inverse of matrix H, represented
as H†.

Hβ = T→ β̂ = H†T (4)

The Moore-Penrose pseudo-inverse and solution has the following properties:50

1. m = n, H† = H− if A is full rank. But most of cases in ELM, the number
of hidden node is smaller than the number of observations.

2. m > n (kinematically insufficient manipulator), This is the case there are
more constraining equations than there are free variables. Hence, it is not
generally possible find a solution to these equations. The pseudo-inverse55
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gives solution such that H†T is closest (in a least-squared sense) to the
desired solution vector T.

3. m < n (kinematically redundant manipulator), then the Moore-Penrose
solution minimizes the norm of β. In this case, there are generally an infi-
nite number of solutions, and the Moore-Penrose solution is the particular60

solution whose 2-norm is minimal.

Now the training process of an ELM can be divided into three steps:

1. Dimension increases from input S to middle matrix G. Generally, the
number of hidden nodes m is greater than number of input attributes d;

2. The sigmoid function transfers middle matrix G to hidden layer matrix65

H with rank increased;

3. Solving a system of linear equations with full rank of coefficient matrix.

Furthermore, the activation function in step 2 not only increases the rank of
middle matrix to hidden layer matrix, but also guarantee full column rank of
hidden layer matrix with the following proposition.70

Proposition 1. Assume that V = {v1,v2, · · · ,vn}, vi = {vi1, vi2, · · · , vin},
i = 1, 2, · · · , N denotes a set of n-dimensional vectors, such that 1 ≤ rank(V) ≤
n. Then with probability 1, the sigmoid transformation will transfer V in to a
set of vectors of full rank.

rank(H) = n w.p.1 (5)

where H = {h1, h2, · · · , hN}, hi = {hi1, hi2, · · · , hin}, hij = sigmoid(vij) =
1/(1 + evij ), i = 1, 2, · · · , N , j = 1, 2, · · · , n.

Remark 1. The proof of Proposition 1 can be found in [13]. In step 2,75

the middle matrix G is coming from input data S via a linear transformation
and is generally waning rank. Proposition 1 guarantees the sigmoid transfor-
mation will transfer a waning rank matrix G to a full rank matrix H. In the
next section, we investigate the relationship between full rank and generalized
inverse.80

3. Continuity of Generalized Inverse

In this section, we will first proof the generalized inverse is continuous if H
is a full-rank matrix. Along with Proposition 1, these two properties guaran-
tee the stability of ELM solution. Thus, the full-rank matrix H is insensitive85

to the perturbation and can get the more stable solution for Hβ = T. Then,
we discuss a special case which the perturbation increases the rank of matrix
and discontinuity of generalized inverse under this circumstances. We use the
notation δA to represent a perturbation of matrix A.

90
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Proposition 2. The generalized inverse A† is continuous if A is a full-rank
matrix.

Proof. Assume rank(A) = n, then ATA is a n × n non-singular matrix.
In fact, it is a symmetric and positive matrix and A† = (ATA)−1AT , then we
have

(A + δA)T (A + δA) = ATA + (A + δA)T δA + (δA)TA

According to Banach theorem, we know that (A + δA)T (A + δA) is a non-
singular matrix if ||(ATA)−1[(A + δA)T δA + (δA)TA]|| < 1. This inequality
will holds if we take the ||δA|| small enough. So there exists a small positive η
such that the inequality holds if ||δA|| ≤ η. Now, the generalized inverse matrix
is

(A + δA)† = [(A + δA)T (A + δA)]−1(A + δA)T

Let ||δA|| → 0, we have

lim
||δA||→0

[(A + δA)T (A + δA)]−1 = (ATA)−1 and lim
||δA||→0

(A + δA)T = AT

which implies lim
||δA||→0

(A+δA)† = (ATA)−1AT = A†, the proposition is proved.

Example 1. Let A =




1 0
0 0
0 0


, then rank(A) = 1, which is not full-rank.95

It is easy to calculate that A† =

[
1 0 0
0 0 0

]
. Suppose that δA =




0 0
0 ε
0 0


,

ε 6= 0. then A + δA =




1 0
0 ε
0 0


. Noting that the rank is increase from 1 to 2

and A + δA is full-rank. we get (A + δA)† =

[
1 0 0
0 ε−1 0

]
. It is easy to see

that limit of (A + δA)† does not exists when ε→ 0. So the generalized inverse
A† is discontinuous if A is waning rank. Next, we will give a theoretical proof100

about this property.

Proposition 3. Suppose the singular values of Am×n are λ1 ≥ λ2 ≥ · · · ≥
λk > 0, then

||A|| = λ1 and ||A†|| = λ−1
k (6)

Proof. The definition of norm

||A|| = max
||x||=1

||Ax||, x = Rn

According to the definition of Euclidean norm

||Ax||2 = xTATAx

5



The eigenvalue of ATA are λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
k and eigenvector v1,v2, · · · ,vk,

so
max
||x||=1

||Ax||2 = max
||x||=1

(xTATAx)

= max
||x||=1

(xT
k∑

1

λiviv
T
i )x

= max
||x||=1

k∑

1

λ2
i (x

TvTi )2

with
∑k

1(xTvi)
2 ≤ 1, then max

||x||=1
||Ax||2 ≤ λ2

1. If let x = v1, then

xTATAx = λ2
1 ↔ max

||x||=1
||Ax||2 = λ2

1 ↔ ||A|| = λ1

Now consider the ||A†||. Assume A has singular value decomposition (SVD)
A = UΣVT then A† = VΣ†UT , where

Σ =



λ1

. . .

λk


 and Σ−1 =



λ−1

1

. . .

λ−1
k




||A†||2 = max
||x||=1

||A†x||2

= max
||x||=1

{(VΣ−1UTx)T (VΣ−1UTx)}

= max
||y||=1

yTΣ−2y

Same as the norm of A, the norm of A† is the square root of the largest
eigenvalue of Σ−2 which is λ−1

k . Now, suppose a small perturbation δA and
B = A+δA. Regarding to the singular values of A and B, we have the following105

Proposition 4. Suppose rank(A) = rank(B) = k and the singular values
of A are λ1 ≥ λ2 ≥ · · · ≥ λk, because B has the same rank with A, B has
singular values σ1 ≥ σ2 ≥ · · · ≥ σk. Then

σi ≤ λi + ||δA|| (7)

Proof. According to the singular value decomposition (SVD), ATA has the
eigenvalue λ2

1, λ
2
2, · · · , λ2

k and eigenvector v1,v2, · · · ,vk, then apply the Courant-
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Fischer minimax theory [15, 16], we have

σ2
r+1 ≤ max

||x||=1

xT pi=0

xTBTBx

= max
||x||=1

xT pi=0

xT (A + δA)T (A + δA)x

≤ max
||x||=1

xT pi=0

{(xTATAx)
1
2 + (xT (δA)T (δA)x)

1
2 }2

≤ { max
||x||=1

xT pi=0

(xTATAx)
1
2 + max

||x||=1

xT pi=0

(xT (δA)T (δA)x)
1
2 }2

≤ (λr+1 + ||δA||)2, r = 1, 2 · · · , k − 1.

Thus
σr+1 ≤ λr+1 + ||δA|| ↔ σr ≤ λr + ||δA||

Also called the singular perturbation theory, Proposition 4 establishes a rela-
tionship between original matrix and its perturbation. And gives a perturbation
bounds to singular values. According to Proposition 3 and Proposition 4,
we can conclude the discontinuity of generalized inverse in waning rank matrix.110

Proposition 5. If the m×n (m < n) matrix A is waning rank, rank(A) =
k < n, the small perturbation δA increases the rank of B = A + δA.

rank(A + δA) > rank(A) > k (8)

Then we have the inequation:

||(A + δA)†|| ≥ 1

||δA|| (9)

Proof. Assume rank(A + δA) = r > k, then the rth singular value of matrix
A is λr = 0. According to Proposition 4, the rth singular value of A + δA,
σr has

σr ≤ ||δA||
Meanwhile, apply Proposition 3, the norm of (A + δA)† has

||(A + δA)†|| ≤ 1

σr

Therefore

||(A + δA)†|| ≥ 1

||δA||
Remark 4. In fact, this conclusion is related to the continuity of singular

value. As we can see, for diagonal matrix Σ, the generalized inverse is calculated
by taking the reciprocal of each non-zero element on the diagonal, leaving the

7



zeros in place, and then transposing the matrix. The discontinuity is coming115

from taking the reciprocal of matrix elements.

The continuity of generalized inverse plays an important role for getting a
stable solution in ELM. Moreover, from the above propositions, we know that
full rank hidden layer matrix cannot secure the model performance because120

the full rank could be a consequence of matrix perturbation and generalized
inverse will not be continuous from waning rank to full rank. In the following
section, some numerical experiments were carried out from different perspectives
to show this special hidden layer matrix pattern and its final impact on model
performance.125

4. Experiments

4.1. Different random initial range

During the training of ELM, weights and bias between input and hidden
layers are random selected and a common choice is sampling from standard
normal distribution. Because the sigmoid function is bounded between 0 and130

1, if we change the random initial range by using different variance in normal
distribution, the full rank hidden layer could move close to a waning rank matrix
which will eventually harm the model generalization ability. This experiment is
based on the House Prices dataset with 50 hidden layer nodes and results are
visualized in Fig. 2135

From upper two graphs in Fig. 2, we can see the different distributions
adopted by random initialization give different range to weights and bias. And
wider range of initialization gives more separated value in hidden layer. With
initial distribution following Normal(0, 5) and Normal(0, 10), most of the hid-140

den layer values are either 0 or 1. Such pattern in hidden layer matrix create
a high possibility of collinearity among columns. In this circumstance, the full
column rank of hidden layer still holds but with tiny eigenvalue (almost zero
eigenvalue in Fig. 2 lower left). Therefore, the ELM model runs into a per-
turbed matrix rank situation. And the discontinuity of generalized inverse lead145

to unstable model performance (large range of mean square in Fig. 2 lower
right).

This experiment can be repeated based on other distributions with different
ranges, for example uniform distribution or student’s-t distribution. It is worth150

mentioning that [17, 18] also pointed out this phenomenon related to Moore-
Penrose pseudo-inverse and Random Vector Functional Link Networks (RVFL).
With the proof in Section 3 and visualization in Fig 2, we can have a more
comprehensive understanding of this issue.
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Figure 2: Model comparison between different initial ranges

4.2. Increasing hidden layer nodes155

The choice of network structure in ELM, especially the number of hidden
nodes, requires a balance between training accuracy and model efficiency. In
this part, we show that because the number of hidden node is exactly the num-
ber of columns in hidden layer matrix, the more number of hidden nodes the
model has, the closer hidden layer columns to linear correlation. The following160

experiment will demonstrate this phenomenon.

Training House Price dataset with increasing number of hidden nodes, each
time recorded the test mean square error and smallest eigenvalue of hidden
layer matrix. From Fig. 3 right, the mean square error first decreases and165

then increases with number of nodes increasing from 10 to 150. On the left,
the smallest eigenvalue decreases to 7.5 × 10−6. When decreasing, the hidden
layer is moving close to the boundary of full and waning rank. With number
of hidden nodes greater than 80, the analytical part of ELM already starts to
suffer from the matrix rank perturbation effect.170

9



20 40 60 80 100 120 140
number of hidden nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

7.5e-06

Smallest eigenvalue on different hidden nodes

20 40 60 80 100 120 140
number of hidden nodes

15

20

25

30

35

40

45

m
ea

n 
sq

ua
re

 e
rro

r

Mean square error on different hidden nodes

Figure 3: Model comparison between different number of hidden nodes

4.3. Training set with outliers

Training set with outliers could effect most of the machine learning algo-
rithms. For ELM, outliers will cause the rank perturbation problem. To verify,
we create an artificial dataset with significant outlier for ELM training. Suppose
we have a two dimension structural dataset with 500 instances, and the data
is following a normal distribution with low variance except one outlier. The
construction of this dataset is shown in 10.

{
x1,j ∼ Normal(1, 0.1) j = 1, 2, · · · , 499 and x1,500 = 10

x2,j ∼ Normal(3, 0.1) j = 1, 2, · · · , 499 and x2,500 = 30
(10)

For simplicity, we first re-scale the input range in [0, 1], then apply them to
a SLFN with number of hidden nodes m = 5, and randomly assign weights
and bias between input and hidden layers. The setting of outliers will cause
robustness problem. The rank of H is 5 which means it is a full rank hidden175

layer matrix. Yet the column-wise variances are all near zero which indicates the
columns are actually close to each other and the full-rank is just a perturbation
from waning rank. In fact, the smallest eigenvalue of HTH is 6.08×10−6. When
computing the generalized inverse, it will have large norm and variance. In this
case, the norm ||H†|| = 2.41 × 105 and variance Var(H†) = 2.32 × 107. With180

such generalized inverse, the model will fail to learn the real pattern of dataset.
In general, the rank of input matrix also plays an important part of the ELM
model training[19].

4.4. Unsupervised pre-training with RBM

Now we consider another ELM approach: instead of random assigning, the185

Restricted Boltzmann machines (RBMs) [20, 21] are used as an unsupervised
pre-training phase for weights between input and hidden layers[22]. RBM is
a generative stochastic model which can be used to capture the probability
distribution over a set of inputs. Recent study and application of RBM can be
found in [23]. After RBM pre-training, the network is analytical solved by GI190
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as a supervised fine-tuning phase. Named RBM-ELM, this approach in SLFN
is mentioned in [24] and extended to multiple-hidden layer feed-forward neural
networks (MLFNs) in [25]. We found for some dataset, the RBM pre-trained
hidden matrix could also be a waning rank perturbation. The experiments are
based on the Letter Recognition dataset from UCI Machine Learning Repository195

[26], results are shown in Fig.4.
First, we train both models with 800 hidden nodes. Taking a random ob-

servation, although both hidden layer matrices are full rank, the ELM hidden
values are close to a uniform distribution within [0, 1], while the RBM hidden
values is nearly a perturbation around constant 0.5, see Fig.4 upper left. Then200

the values of column-wise variance have different pattern between two hidden
matrices, see Fig.4 upper right. That means, the column vectors of RBM hid-
den matrix are close to each other. Furthermore, the generalized inverses are
compared in Table 1. The large norm and variance are noteworthy. Same as
other experiments, this pattern is due to the discontinuity. At last, we compare205

the test accuracy based on 10-fold cross validation. Fig.4 lower shows when the
full rank matrix is a perturbation from waning rank, the model generalization
ability will be reduced.

0 200 400 600 800
number of nodes in hidden layer

0.0

0.2

0.4

0.6

0.8

1.0

hi
dd

en
 la

ye
r o

ut
pu

t

Letter - hidden layer output of an observation

ELM
RBM-ELM

0.5 1.0 1.5 2.0
variance

0

20

40

fre
qu

en
cy

Letter - distribution of weight variance
ELM

0.001 0.002 0.003 0.004 0.005 0.006 0.007
variance

0

20

40

60

fre
qu

en
cy RBM-ELM

ELM RBM-ELM

0.900

0.905

0.910

0.915

0.920

0.925

0.930

ac
cu

ra
cy

Letter - Model Comparison

Figure 4: Model comparison between different initial methods
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Table 1: Generalized inverse (GI) comparison

Model GI-Mean GI-Variance GI-Norm

ELM 1.7052× 10−7 0.0362 94.62
RBM-ELM 1.5632× 10−7 14518.80 2637.16

5. Conclusion

This paper presents a study on sensitivity of hidden layer matrix rank in210

ELM. We first review the training process of ELM from the matrix transfor-
mation standpoint. Then focus on the relationship between rank of matrix and
continuity of generalized inverse. The experiments are carried out to visually
analyze this issue. The conclusion can be listed as follow:

1. Generalized inverse is continuous with full rank matrix, but discontinuous215

when waning rank matrix perturbs to full rank or vice versa.

2. Even if the sigmoid function transform input data to a full rank hidden
matrix with probability 1, it is possible that the full rank is actually close
to a waning rank.

3. Because of the solution of ELM highly depends on the full column rank220

assumption, the rank degeneration will prevent model from learning the
pattern of data.

4. During training of ELM, initial range, initial method, outliers and network
structure all could cause the rank perturbation problem.

5. To ensure the generalization ability of ELM, we suggest that special atten-225

tion should be paid to monitor the data pattern and eigenvalue of hidden
matrix.
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