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Abstract—Images are uploaded to the Internet over time which
makes concept drifting and distribution change in semantic
classes unavoidable. Current hashing methods being trained
using a given static database may not be suitable for non-
stationary semantic image retrieval problems. Moreover, directly
re-training a whole hash table to update knowledge coming from
new arriving image data may not be efficient. Therefore, this
work proposes a new incremental hash-bit learning method. At
the arrival of new data, hash bits are selected from both existing
and newly trained hash bits by an iterative maximization of a 3-
component objective function. This objective function is also used
to weight selected hash bits to re-rank retrieved images for better
semantic image retrieval results. The three components evaluate
a hash bit in three different angles: information preservation,
partition balancing, and bit angular difference. The proposed
method combines knowledge preserved from previously trained
hash bits and new semantic knowledge learned from the new
data by training new hash bits. In comparison to table-based
incremental hashing, the proposed method automatically adjusts
the number of bits from old data and new data according to the
concept drifting in the given data via the maximization of the
objective function. Experimental results show that the proposed
method outperforms existing stationary hashing methods, table-
based incremental hashing, and online hashing methods in 15
different simulated non-stationary data environments.

Index Terms—Hashing, Non-stationary Environment, Image
Retrieval, Concept Drift, Hash Bit Learning.

I. INTRODUCTION

W ITH the increase in the number of cameras and smart-
phones being widely used in daily life, the number

of images available on the Internet grows explosively every
day. For instance, Flickr has announced that 6 billion images
are hosted and 3.5 million images are uploaded daily. Newly
added images change the data distribution of semantic classes
and therefore lead to the occurrence of concept drift problems.
Some of those millions of newly added images may present
as a new concept, e.g. new ideas like ice bucket challenge
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or posters of new movies, while some may change the dis-
tribution of an existing semantic class, e.g. a new model of
car being released. Even those images may not add dramatic
changes to the data distribution of images every time, gradual
and accumulated changes of data distribution may lead to the
failure of current fixed database hashing-based image retrieval
methods.

Tree-based retrieval methods, e.g. kd-tree [1] and cover
trees [2] are instances of early methods used to solve the
nearest neighbor search problems for image retrieval. In
ideal cases, theoretically, tree-based methods return accurate
retrieval results in sub-linear time complexity. However, the
performance of tree-based methods drops significantly when
the dimensionality of features is high. Moreover, the storage
of tree structures is memory demanding which makes them
impractical for large scale databases. Hashing methods are
approximated nearest neighbor search methods with sub-linear
complexity which project images from a high dimensional
feature space onto a low dimensional Hamming space to gen-
erate binary hash codes for images. Hash functions partition
the data feature space into many hash buckets where images
in the same hash bucket share the same hash code. Finally,
the similarity between images is evaluated by calculating the
Hamming distance between codes of images rather than the
Euclidian distance between their feature vectors.

However, most of existing hashing methods assume that
all images are available in advance and the data distribu-
tion will not change. In fact, the data environment on the
Internet is always non-stationary because new images are
uploaded over time. Meanwhile, the distribution of semantic
classes may drift, i.e., concept drift as aforementioned [3].
Therefore, semantic image retrieval problems are unavoidably
non-stationary with concept drift omnipresent in practical
environments. Both the Online Kernel-based Hashing (OKH)
[4] and the Online Sketching Hashing (OSH) [5] assume new
data appears in online manner but ignoring the concept drift
problems. The Incremental Hashing (ICH) [6] is proposed as
the first work to deal with the concept drift problem in non-
stationary data environments. However, employing multiple
hash tables and re-weight ensemble of hash tables from
different data batches may create duplicated hash bits and
reduce retrieval efficiency.

Therefore, the Incremental hash-Bit Learning (IBL) method
is proposed in this paper to train and select hash bits when new
data arrives via a maximization of a 3-component objective
function. The bit learning procedures in the IBL consist of bit
training, bit weighting, and bit selection steps. In the IBL, both
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TABLE I: List of symbols

i, j, k Index variables wk The projection vector of the kth hash function

x An image sample ak The intercept vector of the kth hash function

γ Similarity consistency in the ICH sgn() The sign function

δ Code variance in the ICH ψ The hash function pool

ri Weight for the ith hash table in the ICH υk The weight of the kth hash function in ψ

Q Number of images for return in the ICH Ψ The selected hash function set

fi(xj , xk)
The Hamming distance between xj and xk for

the ith hash table in the ICH
vk The weight of the kth hash function in Ψ

ϕ+ Similar image pairs set V The weight vector for hash functions in Ψ

ϕ− Dissimilar image pairs set H(xi, xj) The weighted Hamming distance between xi and xj

σk The variance for the kth hash bit P (hk) Information preservation of hk

K The number of bits in a hash table in the ICH B(hk) Partition balancing of hk

t Time step I(hk, hi) Bit angular difference between hk and hi

DT The data chunk arrives at time T XL The set of labeled images in the data chunk

n The number of images in a data chunk L The number of labeled images in XL

d Dimensionality of the vector describing an image S The pairwise similarity matrix

b
Number of hash functions (bits) being trained in

each time step
yk

The hash function value vector for all labeled images

based on the kth hash function

hk The kth hash function Yk
The hash function value vector for all images based

on the kth hash function

WT The set of hash functions trained at time T m The multiple of hash bits used in the light version of IBL

existing and newly trained hash functions are stored in a hash
function pool to preserve knowledge learned from both old
data chunks and the newly arrived data chunk. The weighting
scheme of the IBL selects the set of hash functions which
are the most suitable to the current updated data environment.
Selected bits are also weighed by the same objective function
to provide a weighed Hamming distance for image similarity
computation to enhance the retrieval results. Commonly used
symbols are listed in Table I.

The motivation behind the proposal of IBL is that existing
hashing methods proposed for non-stationary environments
update an entire hash table (a set of hash bits) in iteration
which may create redundant hash functions across different
tables and yield lower efficiency. Thus, the IBL is proposed
to learn at the bit-level instead of hash tables. To our best
knowledge, the IBL is the first bit learning method for
non-stationary semantic image retrieval. Moreover, the non-
stationary retrieval problem is newly proposed in [6] which
is different from incremental learning problems. Incremental
learning problems only focus on the classification or regression
on the most updated newly arrived samples while the non-
stationary retrieval problem retrieves image (or information)
from the entire database without regarding the time of ar-
rival for a given query from the newly updated distribution.
Moreover, a 3-component objective function is proposed to
evaluate a hash bit in three different angles for optimal hash
bit selection.

The major contributions of this paper are as follows:

• The IBL is the first semi-supervised hash bit learning
method for solving non-stationary semantic image re-

trieval problems with concept drift. In contrast to the
ICH, the IBL removes duplicated bits for better retrieval
efficiency. The IBL is adaptive to different non-stationary
data environments with concept drift.

• A bit weighting scheme is proposed in this paper. The
objective function of the IBL evaluates a hash bit in three
different aspects: information preservation, partition bal-
ancing, and bit angular difference. The objective function
values for hash bits are used as weights for both hash bit
selection in training and re-ranking in retrieval.

• A light version of the IBL (IBL/L) is proposed which
reduces the number of hash bits for light storage while
achieves similar performance with the original IBL.

The paper is organized as follows. Section II introduces
related works on representative hashing methods for stationary
and non-stationary environments. Section III proposes the IBL
in detail. Experimental results are discussed in Section IV. We
conclude this study in Section V.

II. RELATED WORKS

In hashing-based image retrieval problems, all images in
the database is hashed to a hash code according to a hashing
method. Such that, only the hash codes of images are stored
and used to compute similarity for reduction of both space
and retrieval time. When a query image arrives, its hash code
is computed and compared with hash codes of images in
the database. Images with hash codes yielding the smallest
Hamming distances from the hash code are retrieved.

In this section, we briefly elaborate on the existing hashing
methods for both stationary and non-stationary environments.
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Then, the incremental hashing method for non-stationary en-
vironments with concept drift is introduced in Section II-C.

A. Current Hashing Methods for Stationary Environments

Current hashing methods can be generally divided into three
categories: unsupervised, supervised, and semi-supervised
methods. The major difference between these methods is
how the semantic information is being used for training hash
functions. Unsupervised hashing methods generally train hash
functions based on the characteristics of the training data. The
Locality sensitive hashing (LSH) [7] is the most representative
unsupervised hashing method, which builds hash functions
randomly without even considering the distribution the data.
Locality-sensitive binary codes from shift-invariant kernels
(SKLSH) [8] and Kernelized LSH [9] are variants of the
LSH based on kernel methods. The Iterative Quantization [10]
finds the rotation matrix of mapped data and hash codes by
minimizing a quantization loss function. The spectral hashing
(SH) [11] finds efficient hash codes based on the spectral graph
partitioning. Based on the SH, the spectral embed hashing
[12] is proposed by introducing a new regularizer to the
objective function of the SH. The complementary hashing
(CH) [13] balances the retrieval precision and the recall ef-
fectively by training multiple complementary hash tables. The
unsupervised bilinear local hashing [14] learns discriminative
binary codes based on local features for image retrieval. The
asymmetric cyclical hashing [15] employs short hash codes
for stored images to reduce the storage requirement and
long hash codes for computing Hamming distance between
the query and stored images to improve retrieval accuracies.
In contrast to using hyperplanes to partition the data space
in majority of hashing methods, the spherical hashing [16]
applies hash hyperspheres to produce more efficient hash
codes. A bit selection method is proposed in [17], which trains
hash functions using different features of data and different
hashing methods to build a hash function pool. Then, both
the similarity preservation and the angular difference are used
to select appropriate hash functions. However, this method
is designed to handle stationary environments and ignores
the partition balancing problem. Moreover, the optimization
process achieving a high overall angular difference ignores the
angular difference between individual selected hash function.
The projection selection hashing [18] is designed for the
SKLSH using the Relief algorithm to improve its bit efficiency.
Semantic-assisted visual hashing [19] trains hash functions
with the extracted semantic information from auxiliary texts of
images. Based on the sparse hashing [20], the sparse hashing
with optimized anchor embedding [21] is recently proposed to
exploit non-linear projections based on spare representation of
data to preserve the complicated geometric structure of data.

When semantic information is available, supervised and
semi-supervised hashing methods yield better hashing func-
tions than unsupervised hashing methods′. The LDA hashing
[22] is an instance of supervised hashing methods which
aims to build similar hash codes for similar image pairs and
different hash codes for dissimilar image pairs. The objective
function is optimized by the linear discriminant analysis.

The Bayesian supervised hashing [23] generates hash codes
for training data by iteratively tuning hyperparameters to
maximize a posterior estimation while hash codes for queries
are generated by a linear regression. The sensitivity based
image filtering method [24] is proposed to use radial basis
function neural network to filter dissimilar candidate images
from multi-hashing. In recent years, we have also witnessed
the rapid development of hashing method based on deep neural
networks. The supervised semantics-preserving deep hashing
[25] employs a latent layer in the deep convolutional neural
network as hash functions, and learns hash bits by optimizing
an objective function based on both the classification error
and other properties of hash codes, i.e. the balancing prop-
erty. Nonlinear discrete hashing [26] utilizes the non-linear
multilayer neural network and learns hash codes based on
minimizing the information loss caused by hash projections
and maximizing the similarity preservation. Unfortunately, it
is impractical to require semantic information for all images in
databases for large scale image retrieval problems. Therefore,
semi-supervised hashing methods are proposed to use partially
labeled databases for hash function training. In general, semi-
supervised hashing methods learn hash functions by semantic
information in labeled images and partition balancing using
unlabeled images. The sequential projection learning hashing
(SPLH) [27] trains new hash functions iteratively by correcting
errors made by the previous one. A semi-supervised hashing
method is proposed based on the SPLH to train each hash
function by maximizing the conditional entropy with respect to
all previous ones [28]. Another representative semi-supervised
hashing method is the Bootstrap SPLH (BSPLH) [29], which
trains hash functions to correct errors made by all previous
hash functions. Based on the unsupervised method CH and
the semi-supervised method SPLH, the semi-supervised dual
complementary hashing (DCH) [30] is proposed to learn
complementary hash functions and hash tables simultaneously.
However, the DCH could not further improve its performance
after a small number of hash tables being trained. Thus,
a bagging-boosting-based multi-hashing method with query-
adaptive re-ranking [31] is proposed recently to handle this
problem, which increase the number of samples used for the
training of new hash tables and employs a category-specific
weighting schema for better retrieval performance.

B. Existing Non-stationary Hashing Methods

Most of current hashing methods are designed for station-
ary environments only which assume the training database
is available in advance and will not change afterward. In
contrast, with the rapid increment of digital images in the
real world, databases of semantic image retrieval problems
are unavoidably and naturally non-stationary and being updat-
ed over time. Therefore, online-based hashing methods are
proposed to handle this problem. The online kernel-based
hashing (OKH) [4] updates hash functions iteratively with
a pair of images and corresponding semantic relationship.
The adaptive online hashing [32] only updates selected hash
functions based on streaming data by the stochastic gradient
descent. The online sketching hashing (OSH) [5] updates the
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sketch of database dynamically when new images appear.
The online supervised hashing [33] updates hash functions
in a discriminative manner based on error correcting output
codes. In the MIHash [34], the mutual information between the
Hamming distance distribution and the similarity relationship
of images is used as the objective function for deep neural
network to generate hash bits. However, All of these online-
based hashing methods, except the unsupervised OSH, require
all images in the database and incoming being labeled. This
assumption makes them impractical because it is unreasonable
to force all images being labeled and manual labeling of
incoming images may be infeasible for the huge volume and
fast changing Internet environments. The OSH only focuses on
the sketch of the whole dataset without any semantic informa-
tion which is not suitable for distribution changing scenarios
of semantic classes. All of the aforementioned methods are
not designed for non-stationary environments with concept
drifts. Therefore, the incremental hashing (ICH) is proposed
recently to deal with semantic image retrieval problems in non-
stationary environments with concept drifts. Image retrieval
problems on the Internet and for big data are inherently non-
stationary and concept drift is expected to appear because of
the continuously updating database without central control.
However, researches in this area are still very limited. Both
the ICH and the proposed IBL in this work serve as one of
starters of this research area and provide two different ways
to solve this problem.

C. Incremental Hashing for Non-stationary Image Retrieval

In non-stationary environments, every arriving batch of
images is usually partly labeled and ratio of images in different
semantic classes may not follow the distribution of images
in the database. Therefore, the ICH is proposed to deal with
both semi-supervised and concept drift properties of semantic
image retrieval problems in non-stationary environments.

The ICH trains a hash table using the BSPLH [29] for each
arrived image data chunk. Then, the performance of existing
hash tables (including the newly trained one and tables in the
ICH from last time step) are evaluated by a ranking weight
ri which is computed by the product of [0, 1]-normalized γi
(similarity consistency) and δi (code variance) for the ith

hash table. If the number of hash tables exceeds a preselected
threshold, the ICH removes the hash table yielding the smallest
ri. If Q images are required for a given query, Q images
yielding smallest Hamming distances from the query image
are returned by each hash table in the ICH to form a candidate
set. The rank of each image in the candidate set is computed
by the sum of ri of hash tables returning this image. Finally,
Q images yielding the largest ranks are returned as results of
retrieval.

By updating the ensemble of hash tables and corresponding
ranking weights, the ICH adapts to new non-stationary data
environments. The BSPLH prevents repeated hash function
(bit) in each hash table of the ICH. However, when the concept
drifting is slow, hash functions in hash tables being trained
in different time steps may be similar or even the same.
Moreover, the ensemble of hash tables requires a large storage

cost for large scale retrieval problems. More importantly,
the ICH rank the entire hash table with a single weight
while different hash functions in a table may yield different
significances with respect to a given data environment. These
may reduce the performance of the ICH. Therefore, the IBL
is proposed to alleviate these weaknesses of the ICH for non-
stationary semantic image retrieval problems.

In summary, most of hashing-based image retrieval methods
are designed for stationary environments while non-stationary
hashing-based image retrieval methods impractically require
fully labeled databases. The ICH is able to deal with concept
drift for non-stationary image retrievals. However, table-wise
semi-supervised incremental hashing in the ICH creates re-
dundant hash bits in different hash tables which may reduce
the retrieval efficiency. Therefore, a bit-wise semi-supervised
hashing-based image retrieval method for non-stationary envi-
ronments is eagerly needed. This motivates us to propose the
IBL in this work.

III. THE IBL
Without losing generality, in non-stationary environment,

we assume images arrive in chunks with the same size
sequentially for simplicity. The chunk of images arrives at
time t = T is denoted as DT ∈ Rn×d where n and d denote
the number of images in this chunk and the dimensionality
of each image, respectively. The IBL works the same when
sizes of chunks are different over time. The overview of major
processes in the IBL is shown in Figure 1. The third process
is the core of the IBL and will be elaborated in detail.

Fig. 1: The overview of major processes in the IBL

At time t = T , the IBL learns a new set of b hash functions
WT = {h1, h2, ..., hb} based on DT using the semi-supervised
hashing method BSPLH [29] where hk denotes the kth hash
function computed as follows:
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hk(x) = sgn(wkx+ ak) (1)

where sgn(·), wk, and ak denote the sign function, the
projection vector and the intercept vector of the hyperplane of
the kth hash function. In case of necessary, the hash function
value can be converted to 0-1 binary hash code easily by
1
2 (1 + hk(x)) [35]. Then, the newly learned hash functions
are added to the hash function pool consisting of all hash
functions being learned from the beginning till time T −1, i.e.
ψ(T ) = {h1, h2, ..., hTb}. The two major components of the
IBL are hash function selection and hash function weighting
by the maximization of a 3-component objective function.
In bit selection phase, b hash functions are selected from
ψ(T ) to form the current set of hash function at time T , i.e.
Ψ(T ) = {h1, h2, ..., hb}.

Objective values of each selected hash function are stored
in V = {v1, v2, ..., vb} to serve as the weight for computing
the weighted Hamming distances of images to enhance the re-
trieval accuracy in the retrieval phase. The weighted Hamming
distance between two codes of images xi and xj is calculated
as follows:

H(xi, xj) =

b∑
k=1

vk{
1

2
(1 + hk(xi))⊕

1

2
(1 + hk(xj))} (2)

where H(·) and ⊕ denote the weighted Hamming distance
function and the XOR operator, respectively.

In Section III-A, the bit selection process of the IBL is
introduced. The three components of the objective function
and the hash function weighting scheme are introduced in
Section III-B. Finally, we introduce the light version of the
IBL in Section III-C.

A. Hash Function Selection

The subscript time t is ignored for simplicity in this section
and weight is calculated at a given time. The objective function
value of hash function hk ∈ ψ is denoted as υk. Three
weight components are employed in the objective function to
evaluate the performance of hash functions: the information
preservation (P ), the partition balancing (B), and the bit
angular difference (I). These three components evaluate a hash
function in three different important aspects, i.e. precision
and entropy to the new data, and the dissimilarity between
hash functions being selected. The IBL select b hash functions
at time T iteratively. The weight component I evaluates the
difference between two hash functions, therefore only the P
and B are used for the selection of the first hash function in
each time T . In this way, the hash function yielding the best
information preservation and the best balance partitioning of
the space is selected as the first hash bit of the IBL for time
t. The bit angular different is not used for the selection of
the first bit. In the process to select the first hash function, the
objective function value υk of hk ∈ ψ is calculated as follows:

υk = P (hk)B(hk) (3)

The hash function yielding the maximum υk is moved from
ψ into Ψ as the first selected hash function Ψ1. Meanwhile,
the weight of Ψ1 is stored as V1. For the second and following
hash functions to the bth hash function selection, the full 3-
component objective function is calculated as follows:

υk = P (hk)B(hk)min{I(hk, hi)|hi ∈ Ψ} (4)

where min{I(hk, hi)|hi ∈ Ψ} denotes the minimum angular
differences between the hk ∈ ψ and each hi ∈ Ψ. For the
selection of hash bit, except the first one, the bit angular
difference is as important as the information preservation and
the partition balancing and used to prevent redundant or highly
similar hash bits. The minimum angular different is used
instead of the average or the summation because a newly
selected hash function should be different from any other
selected hash functions. The hash function hk ∈ ψ yielding the
maximum υk is moved from ψ into Ψ and its weight is stored
as Vk. The pseudo-code of the IBL is shown in Algorithm 1.

The objective function uses multiplication instead of sum-
mation because the multiplication of components relieves
the interference of the scale of individual components. The
multiplication-based objective function is maximized if and
only if all components are maximum. In contrast, the magni-
tude of summation-based objective function is easily misled by
a very large value in an individual component. Although this
problem can be relieved by adding scaling parameters in the
objective function, its selection for non-stationary environment
in every iteration is very time consuming. Therefore, the
multiplication is used in our objective functions.

Algorithm 1 IBL Hash Function Selection at time T
Input: the recent chunk of data DT , the hash functions pool
ψ(T−1) before t = T .
Output: the selected hash functions set Ψ(T ), the weights of
selected hash functions V (T ).
Initialize: Ψ(T ) = ∅, V (T ) = ∅

1. Train b hash functions WT using the BSPLH method and
DT ;

2. Add trained b hash functions in WT into ψ(T−1) to get
Tb hash functions set ψ(T ), i.e. ψ(T ) = WT → ψ(T−1);

3. Calculate υk for each hk ∈ ψ(T ), k = 1, 2, ..., T b using
Eq.(3);

4. Select the hash function hi ∈ ψ(T ) yielding the largest
weight υi as the first selected hash function, i.e. Ψ(T ) ←
hi, V

(T )
1 = P (hi)B(hi).

5. Delete the selected hi from ψ(T );
6. for k = 2 to b do
7. Calculate weights for all hash functions in ψ(T ) by

Eq.(4);
8. Find the hash function hj ∈ ψ(T ) yielding the largest

weight υj ;
9. Ψ(T ) ← hj , V

(T )
k = υj ;

10. Deleted the selected hj from ψ(T ).
11. end for
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B. Weight Components of the IBL Objective Function

The IBL evaluates hash functions based on its performance
to the updated data environment in three aspects: information
preservation (P ), partition balancing (B), and bit angular
difference (I). Usually only a small portion of images being
added to the database is labeled, hence it is a semi-supervised
learning environment. With semantic information provided by
labeled images, similar images are expected to share similar
hash codes while the differences of hash codes for dissimilar
images should be as large as possible. Hence, the information
preservation (P ) measures the semantic similarity preservation
ability of a hash function. On the other hand, each hash
function is a hyperplane partitioning the original data space
into two parts (h = −1 or 1). In information theory mind,
a variable with higher entropy contains more information.
Therefore, a hash function partitioning the data space evenly
to achieve the maximum entropy is preferred [27]. Finally,
hash functions selected should be independent with each other
to avoid redundancy. Therefore, the minimum bit angular
difference between two hash functions should be maximized
to prevent similar or redundant hash functions.

1) Information Preservation: For a single hash hyperplane
(function) with a good semantic information preservation
capability, similar images should be partitioned to the same
side of the hyperplane while dissimilar images should be
partitioned to different sides. When data distribution changes,
a good hash function should still be able to partition similar
images to the same side and dissimilar images to different
sides of its hyperplane. Therefore, the information preservation
of a hash function is computed to evaluate its precision and
adaptability to the new data distribution.

Let XL ∈ RL×d be the set of labeled images in the newest
data chunk DT where L denotes number of labeled images.
Then, the element Sij for labeled images xi and xj in XL of
the pairwise similarity matrix S is calculated as follows:

Sij =


+1 if (xi, xj) ∈ ϕ+

−1 if (xi, xj) ∈ ϕ−
0 otherwise

(5)

where ϕ+ and ϕ− denote the set of similar image pairs
and the set of dissimilar image pairs, respectively. Let yk ∈
{+1,−1}L×1 be the hash function values for images in XL

using the hash function hk and yki ∈ {+1,−1} be the
hash function value of xi using hk. Then, the information
preservation (P ) for the hash function hk is calculated as
follows:

P (hk) =
∑

(xi,xj)∈ϕ+

ykiykj −
∑

(xi,xj)∈ϕ−

ykiykj

=
1

2
(

L∑
i=1

L∑
j=1

Sij(ykiykj)− L)

=
1

2
(y′kSyk − L)

(6)

where y′k denotes the transpose of yk.

2) Partition Balancing: Most of images in the database are
unlabeled. Without any a priori knowledge, a hash hyperplane
evenly partitioning the input space yields the largest entropy
and provides the largest amount of information according
to the information theory. When new images are added, the
data distribution may stew to some direction and therefore a
hyperplane evenly partitioning the old database may not be
able to evenly partition the updated database. So, the partition
balancing capability of a hash function needs to be traced
whenever the data changes.

For a hash function hk, partition balancing (B) evaluates
whether the hash hyperplane partition the data space evenly.
Let Yk ∈ {+1,−1}n×1 denotes the hash function values using
hash function hk for the newest data chunk DT where n
denotes the number of images in this chunk. By regarding one
hash function value as a variable, the B of hk is computed by
its entropy as follows:

B(hk) = −p(Yk = 1)log2(p(Yk = 1))−
p(Yk = −1)log2(p(Yk = −1)) (7)

where p(Yk = 1) and p(Yk = −1) denote the probability of
the hash function value equals to 1 and −1 for all images in
the data chunk, respectively.

3) Bit Angular Difference: Two same or highly similar
hash hyperplanes may both yield high information preservation
and partition balancing, but are redundant. Therefore, hash
functions being selected by the IBL should yield high scores
in the two previous components while being different. Each
hash function can be regard as a hyperplane as shown in
Eq.(1). Therefore, the redundancy of hash functions can be
evaluated by the angular difference between hyperplanes of
hash functions. The average angular difference between a
hash function and all other hash functions may be misled
by a single large angular difference. Therefore, the angular
difference between the candidate hash function and the most
similar previously selected hash function is used to compute
the minimum angular difference. A candidate hash function
yielding the maximum minimum angular difference is the most
dissimilar to other hash functions and is the most preferable.

A large sinusoidal function value means a angular large
difference between two hyperplanes. So, the Bit Angular
Difference between two hash functions hk and hi is computed
by the sinusoidal function value between the two hyperplanes
as follows:

I(hk, hi) =

√
1− (

wkwi

‖ wk ‖‖ wi ‖
)2 (8)

where wk and ‖ · ‖ denote the projection vector of hk and the
norm function.

C. Light Version of the IBL

With chunks of data arriving continuously, the size of the
hash function pool increases without limit. Both the computa-
tional time and the storage requirement of the IBL will become
intolerable. Therefore, we propose a light version of the IBL
(i.e. IBL/L). The IBL/L only stores mb hash functions in the
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pool instead of possibly infinitely many hash functions, where
m is a non-negative natural number.

At each time step T , a new set of b hash function is learned
and added to hash function pool ψ(T ). After selecting b hash
functions for the current IBL, b hash functions yielding the
smallest objective function values are removed from ψ(T ) to
maintain mb hash functions being stored. Experimental results
show that IBL/L using m = 1 yields similar performance of
the IBL without limiting the value of m.

D. Time and Space Complexity Analysis of the IBL

The IBL trains and selects hash functions adaptively. This
method consists of two major steps in iteration: 1) Train a new
set of hash functions using the BSPLH; 2) Select the optimal
set of hash functions. The time complexity of the whole IBL at
time T is O((nd2+bL2)+(Tb2L2)+(Tbn+b2n)+(Tb3d2)).
These four components of the time complexity corresponding
to the time complexity of the BSPLH training, the computation
of the Information Preservation, the Partition Balancing, and
the Bit Angular Difference, respectively.

The space complexity of the IBL is determined by three
main parts: hash functions pool, space used to store inter-
mediate variables for computing objective values, and hash
codes of images in the database. The space complexities of
storing the hash functions pool, storing intermediate variables
for computing objective values, and hash codes of images in
the database are O(Tbd), O(L + Tb + n + d), and O(nb),
respectively. Therefore, the overall space complexity of the
IBL at time T is O((Tbd) + (L+ Tb+ n+ d) + (nb)).

When T gets large over time, the number of hash functions
in the pool becomes very large (i.e. Tb) which leads to a very
large time complexity of the IBL. Therefore the light version
is proposed to reduce the time and space complexities of the
IBL. Given that m is set to be 1 in this work, the time and
space complexities of the IBL/L are O(nd2 + bL2 + b2L2 +
Tbn+b2n+b3d2) and O(bd+L+b+n+d+nb), respectively.

IV. EXPERIMENTAL STUDIES

As far as we know, there is no open database for non-
stationary semantic image retrieval problems, therefore, we
simulates 15 non-stationary scenarios with different concept
drifts in Section IV-A. These 15 scenarios are used to test
the IBL and the IBL/L with existing representative hashing
methods in Section IV-B.

The IBL is compared with the IBL/L, ICH, the OKH, the
OSH, the BSPLH, the SPLH, the SH, and the LSH. The ICH,
the OKH, and the OSH are representative hashing methods
for non-stationary environments. Both the BSPLH and the
SPLH are representative semi-supervised hashing methods for
stationary environments. The SH and the LSH are widely
used baseline hashing methods. In experiments, parameters
of all comparison methods are adjusted according to their
corresponding papers or officially released MATLAB codes.
Moreover, the IBL without weighting (IBL/-w) is also com-
pared to show the influence of weight to the IBL. The IBL/-w
uses the same learning method as of the IBL except it selects
hash functions randomly and uses standard Hamming distance

for retrieval instead of the weighted Hamming distance in the
IBL.

In our experiments, the top 100 precision and the top
1% precision [6] are used to evaluate the performances of
different hashing methods. The top 100 precision is computed
by the precision of top 100 retrieved images yielding the
smallest Hamming distances from the queries for each method.
However, in non-stationary environments, the precision of the
top 100 retrieved images tends to increase when the number
of images in the database increases. In addition to the change
of the data distribution, the change of the number of images in
database also affects the top 100 precision of hashing methods.
Densities of samples in the feature space increases when new
chunks of data being added to the database over time. This
leads to an overall increment of precision without regarding
the performance of hashing methods because more samples are
located closely. As we want to test the performance of different
hashing methods during the addition of image over time, the
top 1% metric is proposed in [6] to adapt the continuous
increment of the number of images over time. The top 1%
precision evaluate on more retrieved images when the number
of images in the database increase. This provides a better
evaluation metric for non-stationary relieves the influence of
increasing sample density and number of images over time.
The number of hash bits is set to be 64 for all hashing
methods in experiments. All experiments are repeated 10 times
to compute their average results for the final performance
assessments.

A. Databases for Non-stationary Environment Simulations

Four real world image databases are used: the CIFAR-
10 database [36], the CIFAR-100 database [36], the MNIST
database [37], and the NUSWIDE database [38]. The CIFAR-
10 database consists of 60, 000 images uniformly distributed
in 10 classes e.g. airplane, bird, etc. Each image is a 32× 32
pixel color image and is described by a 512-dimensional
GIST descriptor. The MNIST database consists of 70, 000
images hand-written digital black-and-white images uniformly
distributed in 10 classes i.e. 0, 1, , 9. Each image is described
by 784-dimensional binary features. The CIFAR-100 database
consists of 60, 000 32×32 pixel color images evenly distribut-
ed in 100 classes. Moreover, these 100 classes are grouped
into 20 super-classes. Each image in the CIFAR-100 database
is described by a 512-dimensional GIST feature vector. The
NUSWIDE database consists of 269, 648 images belonging to
81 concepts. Each image is described by a 500-dimensional
bag of words descriptor based on the SIFT descriptor [38].
In our experiments, 209, 347 images belonging to at least one
concept are used and images sharing at least one common
concept are regard as similar images.

In this paper, we focus on the two most common concept
drift problems: new class appearing and distribution drifting.
15 non-stationary data environments are simulated including
7 new class appearing, 5 distribution drifting, and 3 combined
scenarios. Setting of the 15 data environments are shown in
Tables II, III, and IV. The CIFAR-10 database, the MNIST
database, and the NUSWIDE database are used to simulate
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TABLE II: Settings of experiments for new class appearing scenarios

Database 0 ≤ t ≤ 5 (0 ≤ t ≤ 10 for NUSWIDE) t > 5 (t > 10 for NUSWIDE) Scenario name

CIFAR-10

Images randomly selected from 5 original classes Images randomly from 5 original classes and 1 new class CIFAR10 1

Same as above Images randomly from 5 original classes and 3 new classes CIFAR10 3

Same as above Images randomly from 5 original classes and 5 new classes CIFAR10 5

MNIST

Images randomly selected from 5 original classes Images randomly from 5 original classes and 1 new class MNIST 1

Same as above Images randomly from 5 original classes and 3 new classes MNIST 3

Same as above Images randomly from 5 original classes and 5 new classes MNIST 5

NUSWIDE Images randomly selected from 20 original classes Images randomly from 20 original classes and 61 new classes NUSWIDE 20

TABLE III: Settings of experiments for distribution drifting scenarios

Database t = 0 t > 0 Scenario name

CIFAR-100

Images randomly selected from 20 classes Each super-class drifts as shown in Figure 3 CIFAR100 20

Images randomly selected from 15 classes Same as above CIFAR100 15

Images randomly selected from 10 classes Same as above CIFAR100 10

Same as above Only 6 super-classes drifts as shown in Figure 3 CIFAR100 10 6

Same as above Only 3 super-classes drifts as shown in Figure 3 CIFAR100 10 3

TABLE IV: Settings of experiments for combined non-stationary scenarios

Database 0 ≤ t ≤ 20 21 ≤ t ≤ 40 Scenario name

CIFAR-100

• 5 stationary super-classes and 5

super-classes drift when 0 ≤ t ≤ 20
• 10 new super-classes appear since t = 21 CIFAR100 DN

• 15 original super-classes without any change at 0 ≤ t ≤ 20
• Since t = 21, 10 out of 15 original super-

classes begin drift as shown in Figure 3 CIFAR100 ND

• 5 new super-classes appear since t = 6 • The 5 new super-classes continuously appear

• 5 super classes remain unchanged

• 5 super-classes drift at 0 ≤ t ≤ 20 Experiment ends at t = 20 CIFAR100 D&N

• 10 new super-classes appear since t = 6

scenarios with new class appearing, i.e. images from new
class(es) will arrive at a specified time. For new class appear-
ing scenarios with the CIFAR10 and the MNIST databases,
5 classes are randomly selected to build data chunks. After
time t > 5, images from randomly selected new classes
(1, 3, and 5 classes in different scenarios) are added into
newly appearing data chunks. For the new class appearing
scenario with the NUSWIDE database, images belonging to
20 randomly selected concept classes are randomly drawn to
form data chunks at the beginning. Due to the complexity
of the database at the beginning (20 concepts), new classes
appears when t > 10 to give all hashing methods more time
to learn from the data environment. After 10 time steps, images
from all 81 concepts are drawn to form data chunks.

The CIFAR-100 database is used to simulate distribution
drifting scenarios. This database consists of 20 super-classes
with 5 sub-classes each. In Figure 2, five super-classes in
CIFAR-100 database with five sub-classes each are shown. For
instance, the super-class Fish has sub-classes of aquarium fish,
flat fish, ray, shark, and trout. The distribution drifting scenario
for the super-class Fish is simulated by changes over sub-
classes as shown in Figure 2. At the beginning, only images of
aquarium fish sub-class are available for training. Then, images
from other sub-classes of the Fish super-class appear over

time. In our experiments, distribution drifting scenarios are
simulated by adjusting ratios of images belonging to different
sub-classes in the super-class as shown in Figure 3. The
ratio of each sub-class appearing in a data chunk follows
the Gaussian function. The super-class label is used as the
semantic label for images in the same super-class without
regarding the sub-class it belonging to.

For distribution drifting scenarios with CIFAR-100
database, we randomly select a number (e.g. 20, 15, and 10)
of super-classes firstly and adjust the appearance ratio of
sub-classes belonging to each super-class in data chunks over
time. Moreover, for the scenarios that 10 super-classes are
employed, two additional experiments (i.e. CIFAR100 10 6
and CIFAR100 10 3) are also performed in which distribution
drifting happens on randomly selected super-classes only (6
and 3 classes, respectively). Other super-classes do not have
distribution drifting and use images from the first sub-class
only.

Moreover, 3 combined non-stationary environments are sim-
ulated by combining two aforementioned scenarios in either
different orders or together to generate more complicated
scenarios to validate the performance of the IBL. Setting of
these combined scenarios are shown in IV. Both training and
testing sets are extracted from the same data environment.
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There are 41 data chunks in experiments from t = 0 to 40
for both the CIFAR100 ND and the CIFAR100 DN. All other
scenarios consists of 21 data chunks from t = 0 to 20.

For each time step, a data chunk consisting of a training
set and a testing set are built and both sets consists of 1, 000
images each randomly selected according to the characteristic
of different non-stationary scenarios. In experiments using the
CIFAR-10, the CIFAR-100, and the MNSIT databases, 100
images in the training set are randomly selected to serve
as the labeled images while the other 900 images serve as
unlabeled images. In the experiment using the NUSWIDE
database which images may have multiple labels, 200 images
in the training set are randomly selected as the labeled images
and the other 800 images serve as unlabeled images. For all
experiments, semantic labels of all images in the testing set
are used for the performance evaluation. Owing to the fact
that the OKH is fully supervised, all 1, 000 training images
are provided with labels. However, with this handicap, the
OKH still perform worse than both the IBL and the IBL/L.

Fig. 2: Distribution drifting for super-classes

Fig. 3: Appearance ratio of 5 sub-classes in a super-class

B. Comparison with Existing Hashing Methods

Experimental results of new class appearing, distribution
drifting, and combined non-stationary scenarios are shown and

discussed in Sections IV-B1, IV-B2, and IV-B3, respectively.
Their settings are shown in Tables II, III, and IV, respectively.

1) Experiments for New Class Appearing: The setting of
the 7 scenarios with new class appearing is shown in the
Table II. Experimental results of top 100 precision and top
1% precision are shown in Figures 4 and 5, respectively.

According to the Figures 4 and 5, both the IBL and
the IBL/L achieve the highest and similar performance. The
IBL/-w yields a worse performance in comparison to both
the IBL and the IBL/L. This shows the importance of the
weighting scheme and hash function selection of the IBL and
the IBL/L. The ICH, the OSH, and the OKH yield better
performance than hashing methods designed for stationary
retrieval environments. These show that existing stationary
hashing methods cannot adapt to new non-stationary envi-
ronments. Moreover, in most scenarios, the performance of
stationary semi-supervised hashing methods, i.e. the SPLH
and the BSPLH, yield worse performance than unsupervised
hashing methods (i.e. the SH and the LSH) after concept drift
happening. Stationary semi-supervised hashing methods train
hash functions using the original training set given at time
t = 0 and do not update afterward. Therefore, after concept
drifts, the preserved semantic information becomes incorrect
and misleads stationary semi-supervised hashing methods. In
contrast, stationary unsupervised hashing methods generate
hash functions randomly without using the semantic informa-
tion at t = 0. Therefore, when the concept drifts and semantic
information provided at t = 0 becomes outdated, unsupervised
hashing methods suffer less influences in comparison to semi-
supervised hashing methods.

The performance of all hashing methods drops more se-
riously when more new classes appear. Performance drop
at the new class(es) appearing is unpreventable because the
difficulty of image retrieval increases by the addition of new
semantic class(es). According to Figures 4 and 5, both the
IBL and its light version IBL/L are more adaptive to new data
environments.

2) Experiments with Distribution Drifting: Table III shows
the setting of 5 non-stationary scenarios with distribution
drifting. Experimental results of top 100 precision and top
1% precision are shown in Figures 6 and 7, respectively.

Figures 6 and 7 show that both the IBL and IBL/L outper-
form all other hashing methods in experiments. Five different
levels of distribution drift complexities with different numbers
of super-classes drifting are tested. According to Figures 6 and
7, performances of all hashing methods drop when distribution
drifts appear in all semantic classes (the CIFAR100 20, the
CIFAR100 15, and the CIFAR100 10). The CIFAR100 10 6
and the CIFAR100 10 3 simulate scenarios that distributions
of only 6 and 3 randomly selected super-classes drift out of
10, respectively. Comparing with the other three distribution
drifting scenarios, top 1% performances of hashing methods
in these two scenarios drop slightly only because distributions
of several super-classes are unchanged. When only 3 out
of 10 classes change, performances of all hashing methods
drop slightly in top 1% precisions and increase in top 100
precisions. As aforementioned, the top 100 precision increases
when the number of images increases. Hence, the increments
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(a) CIFAR10 1 (b) CIFAR10 3 (c) CIFAR10 5

(d) MNIST 1 (e) MNIST 3 (f) MNIST 5

(g) NUSWIDE 20

Fig. 4: The top 100 precisions of 7 non-stationary scenarios with new class appearing.

(a) CIFAR10 1 (b) CIFAR10 3 (c) CIFAR10 5

(d) MNIST 1 (e) MNIST 3 (f) MNIST 5

(g) NUSWIDE 20

Fig. 5: The top 1% precision of 7 non-stationary scenarios with new class appearing.

of top 100 precisions in Figure 6(e) may not be solely led by
the performance of hashing methods. The performance of all
hashing methods increases when the new appearing sub-class
occupies a majority ratio in a super-class of the newest data
chunk e.g. at t = 5, 6, and 7. It is because images in both

the training and the testing sets are mostly selected from this
sub-class according to the distribution drift shown in Figure
3 and the number of images in this sub-class being added
to the database increases significantly at this time period.
After this time step, e.g., at t = 8 and 9, the distribution
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(a) CIFAR100 20 (b) CIFAR100 15 (c) CIFAR100 10

(d) CIFAR100 10 6 (e) CIFAR100 10 3

Fig. 6: The top 100 precision of 5 non-stationary scenarios with distribution drifting.

(a) CIFAR100 20 (b) CIFAR100 15 (c) CIFAR100 10

(d) CIFAR100 10 6 (e) CIFAR100 10 3

Fig. 7: The top 1% precision of 5 non-stationary scenarios with distribution drifting.

of this super-class drifting to another unseen new sub-class
gradually and hence the retrieval performance of a super-class
decreases. Again, stationary unsupervised hashing methods
achieve better performances than stationary semi-supervised
hashing methods because they are not misled by the outdated
semantic information in t = 0.

3) Experiments for Combined Non-stationary Scenarios:
Table IV shows the experimental setting of three combined
non-stationary scenarios which both new class appearing and
distribution drift occur. Top 100 precision and top 1% pre-
cision of different scenarios are shown in Figures 8 and 9,
respectively.

Figures 8 and 9 show that the IBL and the IBL/L outperform
other hashing methods in all 3 combined non-stationary sce-
narios. The CIFAR100 DN scenario and the CIFAR100 ND
scenario are simulated with a longer time period, i.e. t = 0 to
40, because two types of concept drifts happen consecutively.
In contrast, the CIFAR100 D&N scenario is simulated with a
period to be the same with other experiments, i.e. time t = 0 to
20, because two types of concept drifts happen simultaneously.

For both the CIFAR100 DN and the CIFAR100 ND scenar-

ios, the consecutively occurrence of different types of concept
drifts show no obvious interference to others. The fluctuations
of the distribution drifting part of the CIFAR100 ND in Figure
9(b), i.e. t = 21 to 40 is smaller than that of the CIFAR100 10
in Figure 7(c). It is because distribution drift appears in only
10 out of 20 super-classes in the CIFAR100 ND scenario
while distribution drift appears in all 10 super-classes in the
CIFAR100 10. Therefore, the complexity of concept drifts
(e.g. portions of super-classes drifting) influences the retrieval
performances.

For the CIFAR100 D&N scenario, two types of concept
drifts happen simultaneously. Performances of all hashing
methods drop significantly when 10 new super-classes appear.
This is the most complicated scenario in our experiments and
all hashing methods yield poor performances. In this most
complicated scenario, both the IBL and the IBL/L yield the
best performances in comparison to other hashing methods.

C. Parameter Selection

Generally, a longer hash code yields a higher accuracy but
also uses more time and space cost. For the IBL, similar to
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(a) CIFAR100 DN (b) CIFAR100 ND (c) CIFAR100 D&N

Fig. 8: The top 100 precision of 3 combined non-stationary scenarios.

(a) CIFAR100 DN (b) CIFAR100 ND (c) CIFAR100 D&N

Fig. 9: The top 1% precision of 3 combined non-stationary scenarios.

(a) CIFAR10 5 (b) CIFAR100 20

Fig. 10: The top 1% precision of the IBL with different number
of hash bits.

all other hashing methods, the number of hash bits is a key
parameter to its performance. A representative scenario from
new class appearing (CIFAR10 5) and a representative sce-
nario from distribution drift (CIFAR100 20) are used to show
the influence of the number of hash bits to the performance
of the IBL.

Figure 10 shows that top 1% precisions improve when the
number of hash bits increase in both scenarios. However, the
doubling the number of hash bits does not yield a double in the
performance. The improvement between 128 bits and 64 bits
is smaller than that between 64 bits and 32 bits. Therefore, by
the trade-off of computational time and overall performances,
64 bits are used for all hashing methods in our experiments.

D. Comparison with Modified Stationary Hashing Methods

The IBL, the ICH, the OKH, and the OSH are all dynamic
hashing methods which update hash functions whenever a
new data chunk arrives. The experiments in previous sections
show that existing stationary hashing methods are not suit-
able for non-stationary environments. A direct idea to apply
these methods to non-stationary environments is to re-train
their hash functions over time using the newest data chunk
or all stored data. Therefore, we perform the comparison
between the IBL and existing stationary hashing method with
aforementioned simple modifications to show the superiority

(a) CIFAR10 5 (b) CIFAR100 20

Fig. 11: The top 1% precision of the IBL, the BSPLH N,
BSPLH A, and the BSPLH.

of the IBL. Among those stationary hashing methods in
comparison, the BSPLH is the most state-of-the-art semi-
supervised hashing method. Moreover, the IBL employs the
BSPLH to train new hash functions when new data chunk
arrives. Therefore, two modified versions of the BSPLH (i.e.
BSPLH N and BSPLH A) for non-stationary environments
are performed for comparison. When a new data chunk arrives,
the BSPLH N updates hash functions by using the training set
in the newest data chunk while the BSPLH A updates hash
functions using all stored data as the training set. Only labeled
images in the training set of the newest data chunk are used
as supervise information for both methods because they reflect
the current data distribution of semantic classes. The IBL is
compared with the original BSPLH, the BSPLH N, and the
BSPLH A on two representative scenarios i.e. CIFAR10 5
and CIFAR100 20. Experimental results are shown in Figure
11.

The original stationary BSPLH is used as the baseline
method and shown in Figure 11. The BSPLH yields the worst
result because its hash functions are trained based on the initial
training set only which is very different from the current
data environment. Both the BSPLH N and the BSPLH A
update hash functions over time utilizing information from the
newest data chunk, therefore they yield a bit better retrieval
performance than the original stationary BSPLH but much
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TABLE V: Average top 1% precision of hashing methods in 15 non-stationary data environments

Scenario name LSH SH SPLH BSPLH OSH OKH ICH IBL

CIFAR10 1 0.346±0.021∗ 0.320±0.019∗ 0.331±0.047∗ 0.374±0.041∗ 0.394±0.028∗ 0.376±0.028∗ 0.404±0.034∗ 0.467±0.038

CIFAR10 3 0.295±0.019∗ 0.277±0.012∗ 0.296±0.034∗ 0.329±0.023∗ 0.341±0.017∗ 0.328±0.019∗ 0.345±0.018∗ 0.401±0.017

CIFAR10 5 0.265±0.011∗ 0.250±0.008∗ 0.262±0.024∗ 0.284±0.017∗ 0.307±0.009∗ 0.289±0.011∗ 0.307±0.011∗ 0.353±0.009

MNIST 1 0.761±0.046∗ 0.748±0.043∗ 0.597±0.088∗ 0.707±0.097∗ 0.836±0.038 0.815±0.042# 0.796±0.042∗ 0.851±0.031

MNIST 3 0.683±0.025∗ 0.686±0.021∗ 0.520±0.056∗ 0.615±0.059∗ 0.766±0.018∗ 0.729±0.026∗ 0.744±0.029∗ 0.803±0.023

MNIST 5 0.623±0.022∗ 0.637±0.013∗ 0.485±0.046∗ 0.548±0.036∗ 0.707±0.010∗ 0.653±0.023∗ 0.698±0.011∗ 0.748±0.009

NUSWIDE 20 0.412±0.005∗ 0.407±0.007∗ 0.443±0.014∗ 0.452±0.004∗ 0.438±0.002∗ 0.436±0.003∗ 0.460±0.004∗ 0.501±0.004

CIFAR100 20 0.109±0.007∗ 0.103±0.003∗ 0.105±0.005∗ 0.112±0.004∗ 0.129±0.005∗ 0.116±0.006∗ 0.129±0.003∗ 0.137±0.004

CIFAR100 15 0.143±0.007∗ 0.135±0.006∗ 0.138±0.013∗ 0.151±0.012∗ 0.169±0.009∗ 0.154±0.010∗ 0.171±0.008∗ 0.188±0.009

CIFAR100 10 0.204±0.015∗ 0.188±0.008∗ 0.194±0.019∗ 0.208±0.018∗ 0.235±0.014∗ 0.221±0.014∗ 0.235±0.012∗ 0.261±0.011

CIFAR100 10 6 0.237±0.019∗ 0.218±0.014∗ 0.213±0.020∗ 0.243±0.020∗ 0.270±0.016∗ 0.250±0.018∗ 0.279±0.017∗ 0.311±0.017

CIFAR100 10 3 0.242±0.020∗ 0.229±0.016∗ 0.228±0.017∗ 0.256±0.023∗ 0.287±0.021∗ 0.270±0.022∗ 0.296±0.020∗ 0.339±0.021

CIFAR100 DN 0.196±0.016∗ 0.183±0.012∗ 0.19±0.0210∗ 0.209±0.026∗ 0.231±0.018∗ 0.216±0.022∗ 0.242±0.020∗ 0.269±0.019

CIFAR100 ND 0.151±0.023∗ 0.140±0.017∗ 0.145±0.019∗ 0.159±0.023∗ 0.182±0.025 0.168±0.024∗ 0.184±0.025 0.201±0.025

CIFAR100 D&N 0.170±0.021∗ 0.157±0.014∗ 0.159±0.021∗ 0.179±0.026∗ 0.201±0.021$ 0.186±0.021∗ 0.204±0.022# 0.227±0.023

worse than the IBL. However, both the BSPLH N and the
BSPLH A ignore the data distribution information of existing
learned data while these learned data with old data distribution
is also used for retrieval. This shows that simply re-training
hash functions using newly appearing data is not enough
for adapting non-stationary image retrieval problems. More
accurate bit weighting and selection schemes are necessary
for the adaptation to new non-stationary environments. This is
also the main motivation of the proposal of the IBL.

E. Statistical Significance of Experimental Results

In this section, we apply t-test to the average top 1%
precision of all scenarios to show the statistical significance of
the IBL performance over all other existing hashing methods
in our experiments. The average top 1% is computed by
averaging top 1% precision values over all time steps and the
average top 1% precisions of 15 scenarios of hashing methods
are shown in Table V. The t-test is performed between the IBL
and other methods for each scenario. Symbols ∗, $, # in Table
V denote that the IBL outperforms the corresponding hashing
method with 99%, 98%, and 95% statistical significance,
respectively.

According to Table V, the IBL achieves the highest average
top 1% precisions in all non-stationary scenarios. More impor-
tantly, the IBL outperforms other hashing methods with 99%
significance in 94.3% (99 out of 105) cases. For the 7 new
class appearing scenarios, the IBL outperforms other hashing
methods with 99% significance in 47 out of 49 (95.9%) cases.
For the 5 distribution drifting scenarios, the IBL outperforms
other hashing methods with 99% significance in all 35 (100%)
cases. For the 3 combined non-stationary scenarios, the IBL
outperforms other hashing methods with 99% significance in
17 out of 21 (81.0%) cases.

Therefore, we conclude that the IBL outperforms other
hashing methods for semantic image retrieval problems in non-
stationary environments with statistical significance.

V. CONCLUSIONS

Semantic image retrieval problems in big data and Internet
environments are inherently non-stationary and with concept
drifts. However, most of current hashing methods are designed
for stationary environments. The very few online hashing
methods are proposed to solve the image retrieval problems
in non-stationary data environment without regarding concept
drift issues and impractically requiring fully labeled image
databases. The semi-supervised ICH may generate duplicate
or highly similar hash bits in different hash tables learned
in different time steps. Therefore, the IBL is proposed in
this work to improve the hash efficiency and adaptability
to concept drifts in non-stationary environments by selecting
and weighting hash bits individually by using a 3-component
weight. Experimental results show that the IBL outperforms
other stationary and non-stationary hashing methods.

The IBL, as one of the very limited works on hashing for
semantic image retrieval in non-stationary environments with
concept drift, serves as a milestone and starter of this important
research area. However, there are still many future works to be
done to further explore this area. The major drawback of the
IBL is that new hash functions being learned in each time step.
Updating hash bits per time step may be unnecessary when
concept does not drift in some time steps. Therefore, one of
our future works is to develop a concept drift detection method
specifically designed for semantic image retrieval problems.
With the concept drift detection method, one may design
strengths or types of concept drifts to trigger the updating
of new hash bits or tables. It is unknown that whether current
concept drift detection techniques developed for pattern clas-
sification problems to be suitable for semantic image retrieval
or not. Nonetheless, they will serve as a good starting point
to research on the concept drift detection for semantic image
retrieval problems in non-stationary environments.

Furthermore, another drawback of the IBL is the pre-
selected number of hash bits being learned in each time
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step. This may not be feasible to pre-determine the degree of
concept drifts in the non-stationary environment before data
chunks arrival. Therefore, the current version of IBL with pre-
selected number of hash bits being learned per time step is
primitive and may be inefficient. A changeable number of hash
bits being learned in each time step may be more efficient for a
given strengths and types of concept drifts in a given time step.
Meanwhile, a new optimization method of hash bits or tables
will also be needed to accommodate strengths and types of
concept drift and also both semantic and unlabeled distribution
information provided by data chunk per time step.

In addition to the non-stationary environment, imbalanced
class distribution and multi-label images provide further chal-
lenges to the IBL. An extended version of the IBL needs
to be researched to adapt to those highly complicated data
environment.

Last but not the least, if we detect the type and the strength
of a concept drift in a time step, can we reverse the drifted
data back to the original distribution? By this, off-the-shelf
hashing methods for stationary environments may provide
good retrieval performances.
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