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a b s t r a c t 

This paper focuses on the parameter pattern during the initialization of Extreme Learning Machines 

(ELMs). According to the algorithm, model performance is highly dependent on the matrix rank of its 

hidden layer. Previous research has already proved that the sigmoid activation function can transform 

input data to a full rank hidden matrix with probability 1, which secures the stability of ELM solution. 

In recent study, we notice that, under full-rank condition, the hidden matrix possibly has very small 

eigenvalue, which seriously affects the model generalization ability. Our study indicates such a negative 

impact is caused by the discontinuity of generalized inverse at the boundary of full and waning rank. 

Experiments show that each phase of ELM modeling possibly leads to this rank deficient phenomenon, 

which harms the test accuracy. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Introduced by Huang et al. [1,2] , the Extreme learning machines

(ELMs) as a type of single hidden layer feed-forward neural net-

work (SLFNs) with non-iterative algorithm, the training process

contains two parts: first, the weights and bias between input and

hidden layers are randomly assigned; second, the weights between

hidden and output layers are obtained by solving a system of lin-

ear equations using generalized inverse. 

In the recent decade, ELM has been studied by many re-

searches: deep learning techniques have been used to improve the

ELM performance [3] . Incorporating with other algorithms, hybrid

ELMs were proposed by Wang et al. [4,5] . And ELM has been used

to solve different problems in multiple areas [6] , such as imbal-

ance problem [7] , image processing [8] and time series forecasting

[9,10] . Also, [11] demonstrated its big data performance. Comparing

with the typical back-propagation (BP) algorithm for training feed-

forward neural networks, the ELM’s non-iterative training mecha-

nism gives it speed and efficiency in most of the cases [12] . Dif-

ferent from BP algorithm where the hidden layer keep tuning in

iteration, the hidden matrix of ELM is decided once by the weights

between input and hidden layers. And the tuning phase of ELM is

to solve a system of linear equations, so the structure and values

of hidden matrix play a critical role in model performance. For ex-

ample, [13] already proved that the sigmoid transformation lead to
∗ Corresponding author. 
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 full-rank hidden matrix with probability 1. And the stability of

olution depends on whether the hidden matrix has full column

ank. By looking deep into this full rank transformation, We find

hat with wide initial range, increasing number of hidden node,

articular pre-training method or special pattern of training data,

he hidden layer matrix could be weakly linear correlated. That

eans, the matrix is still full-rank but can be viewed as a per-

urbation from rank deficient matrix. And due to the discontinuity

f generalized inverse, the coefficients between hidden and output

ayers will have large absolute value and variance which leads to

obustness problem of ELM solutions [14] . 

In this paper, we first point out that the training of ELM is sen-

itive to the rank of hidden layer matrix, and give a detailed proof

n discontinuity of generalized inverse under waning rank matrix.

hen based on theoretical analysis, we are going to investigate the

ollowing questions: how and why initial range, number of hidden

odes, outliers in training data and unsupervised pre-training af-

ect the model performance respectively. 

The rest of this paper is organized as follows. Section 2 gives

 brief review on the related works. Section 3 investigates the

elationship between rank of matrix and its generalized inverse.

ased on the theoretical result, some examples and experiments

n different initial methods and network structures are shown in

ection 4 . And in Section 5 , we conclude this paper. 

. Extreme learning machine 

ELM means a three layer feed-forward networks with single

idden layer in which the weights and bias between input layer

https://doi.org/10.1016/j.neucom.2018.06.055
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.06.055&domain=pdf
mailto:huangzhiqi@szu.edu.cn
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Fig. 1. A simple ELM structure. 
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nd hidden layer are randomly assigned and the weights between

idden layer and output layer are solved by a system of linear

quations. A simple structure of ELM for regression problem is

hown in Fig. 1 with n nodes in input layer, m nodes in hidden

ayer and only one node in output layer, while the classification

roblem, number of output node equals to the number of cate-

ories. 

Given a set of samples S = { (x i , t i ) | x i ∈ R 

d , t i ∈ R 

t } n 
i =1 

, training

rocess of ELM is to determine model parameters { w ij , b j , β j }. Since

he weights w ij and bias b j are randomly selected, the training pro-

ess is only about determining the connections β j between hidden

ayer and output layer. Let 

 n ×m 

= 

⎡ 

⎢ ⎢ ⎣ 

w 1 x 1 + b 1 · · · w m 

x 1 + b m 

w 1 x 2 + b 1 · · · w m 

x 2 + b m 

. . . 
. . . 

. . . 
w 1 x n + b 1 · · · w m 

x n + b m 

) 

⎤ 

⎥ ⎥ ⎦ 

(1) 

e the middle matrix, where w j is the jth column of the weight

atrix W between input layer and output layer. Let g ( · ) be the

igmoid function and H be hidden layer matrix, then 

 n ×m 

= (g(G )) n ×m 

= (h i j ) n ×m 

(2)

uppose the target matrix is T = [ t 1 , t 2 , · · · , t n ] 
T , then the training

f ELM is transferred to solve the system of linear equations H β =
 . In general, the solution H 

− is not unique. [2,12] suggested to

se the minimum-norm least square solution. Instead of solving

he system of linear equations, the optimization problem change

o: 

in 

|| β|| 
( min 

β∈ R m 
|| T − H β|| 2 ) (3)

he solution of (3) is the Moore–Penrose pseudo-inverse of matrix

 , represented as H 

† . 

 β = T → 

ˆ β = H 

† T (4)

he Moore–Penrose pseudo-inverse and solution has the following

roperties: 

1. m = n, H 

† = H 

− if A is full rank. But most of cases in ELM, the

number of hidden node is smaller than the number of observa-

tions. 

2. m > n (kinematically insufficient manipulator), This is the case

there are more constraining equations than there are free vari-

ables. Hence, it is not generally possible find a solution to these

equations. The pseudo-inverse gives solution such that H 

† T is

closest (in a least-squared sense) to the desired solution vector

T . 

3. m < n (kinematically redundant manipulator), then the Moore–

Penrosesolution minimizes the norm of β. In this case, there
are generally an infinite number of solutions, and the Moore–

Penrose solution is the particular solution whose 2-norm is

minimal. 

Now the training process of an ELM can be divided into three

teps: 

1. Dimension increases from input S to middle matrix G . Gener-

ally, the number of hidden nodes m is greater than number of

input attributes d ; 

2. The sigmoid function transfers middle matrix G to hidden layer

matrix H with rank increased; 

3. Solving a system of linear equations with full rank of coefficient

matrix. 

Furthermore, the activation function in step 2 not only increases

he rank of middle matrix to hidden layer matrix, but also guar-

ntee full column rank of hidden layer matrix with the following

roposition. 

roposition 1. Assume that V = { v 1 , v 2 , . . . , v n } , v i =
 v i 1 , v i 2 , . . . , v in } , i = 1 , 2 , . . . , N denotes a set of n-dimensional

ectors, such that 1 ≤ rank ( V ) ≤ n. Then with probability 1, the sig-

oid transformation will transfer V in to a set of vectors of full rank.

ank (H ) = n w.p. 1 (5)

here H = { h 1 , h 2 , . . . , h N } , h i = { h i 1 , h i 2 , . . . , h in } , h i j =
igmoid (v i j ) = 1 / (1 + e v i j ) , i = 1 , 2 , . . . , N, j = 1 , 2 , . . . , n . 

emark 1. The proof of Proposition 1 can be found in [13] . In step

, the middle matrix G is coming from input data S via a linear

ransformation and is generally waning rank. Proposition 1 guaran-

ees the sigmoid transformation will transfer a waning rank matrix

 to a full rank matrix H . In the next section, we investigate the

elationship between full rank and generalized inverse. 

. Continuity of generalized inverse 

In this section, we will first proof the generalized inverse is

ontinuous if H is a full-rank matrix. Along with Proposition 1 ,

hese two properties guarantee the stability of ELM solution. Thus,

he full-rank matrix H is insensitive to the perturbation and can

et the more stable solution for H β = T . Then, we discuss a special

ase which the perturbation increases the rank of matrix and dis-

ontinuity of generalized inverse under this circumstances. We use

he notation δA to represent a perturbation of matrix A . 

roposition 2. The generalized inverse A 

† is continuous if A is a full-

ank matrix. 

roof. Assume rank (A ) = n, then A 

T A is a n × n non-singular ma-

rix. In fact, it is a symmetric and positive matrix and A 

† =
(A 

T A ) −1 A 

T , then we have 

(A + δA ) T (A + δA ) = A 

T A + (A + δA ) T δA + (δA ) T A 

ccording to Banach theorem, we know that (A + δA ) T (A + δA )

s a non-singular matrix if || (A 

T A ) −1 [(A + δA ) T δA + (δA ) T A ] || < 1 .

his inequality will holds if we take the || δA || small enough. So

here exists a small positive η such that the inequality holds if

| δA || ≤η. Now, the generalized inverse matrix is 

(A + δA ) † = [(A + δA ) T (A + δA )] −1 (A + δA ) T 

et || δA || → 0, we have 

lim 

|| δA ||→ 0 
[(A + δA ) T (A + δA )] −1 = (A 

T A ) −1 

and lim 

|| δA ||→ 0 
(A + δA ) T = A 

T 
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which implies lim || δA ||→ 0 
(A + δA ) † = (A 

T A ) −1 A 

T = A 

† , the proposition

is proved. �

Example 1. Let A = 

[ 

1 0 

0 0 

0 0 

] 

, then rank (A ) = 1 , which is not full-

rank. It is easy to calculate that A 

† = 

[
1 0 0 

0 0 0 

]
. Suppose that

δA = 

[ 

0 0 

0 ε
0 0 

] 

, ε � = 0. then A + δA = 

[ 

1 0 

0 ε
0 0 

] 

. Noting that the

rank is increase from 1 to 2 and A + δA is full-rank. we get (A +
δA ) † = 

[
1 0 0 

0 ε−1 0 

]
. It is easy to see that limit of (A + δA ) † does

not exists when ε → 0. So the generalized inverse A 

† is discontin-

uous if A is waning rank. Next, we will give a theoretical proof

about this property. 

Proposition 3. Suppose the singular values of A 

m × n are

λ1 ≥λ2 ≥ ��� ≥λk > 0, then 

|| A || = λ1 and || A 

† || = λ−1 
k 

(6)

Proof. The definition of norm 

|| A || = max 
|| x || =1 

|| Ax || , x = R 

n 

According to the definition of Euclidean norm 

|| Ax || 2 = x 

T A 

T Ax 

The eigenvalue of A 

T A are λ2 
1 

≥ λ2 
2 

≥ · · · ≥ λ2 
k 

and eigenvector

v 1 , v 2 , . . . , v k , so 

max 
|| x || =1 

|| A x || 2 = max 
|| x || =1 

(x 

T A 

T Ax ) 

= max 
|| x || =1 

(x 

T 
k ∑ 

1 

λi v i v 
T 
i ) x 

= max 
|| x || =1 

k ∑ 

1 

λ2 
i (x 

T v T i ) 
2 

with 

∑ k 
1 (x T v i ) 

2 ≤ 1 , then max || x || =1 
|| Ax || 2 ≤ λ2 

1 
. If let x = v 1 , then 

x 

T A 

T Ax = λ2 
1 ↔ max 

|| x || =1 
|| Ax || 2 = λ2 

1 ↔ || A || = λ1 

Now consider the || A 

† ||. Assume A has singular value decomposi-

tion (SVD) A = U�V 

T then A 

† = V�† U 

T , where 

� = 

⎡ 

⎣ 

λ1 

. . . 

λk 

⎤ 

⎦ and �−1 = 

⎡ 

⎣ 

λ−1 
1 

. . . 

λ−1 
k 

⎤ 

⎦ 

|| A 

† || 2 = max 
|| x || =1 

|| A 

† x || 2 

= max 
|| x || =1 

{ (V�−1 U 

T x ) T (V�−1 U 

T x ) } 
= max 

|| y || =1 
y T �−2 y 

Same as the norm of A , the norm of A 

† is the square root of the

largest eigenvalue of �−2 which is λ−1 
k 

. Now, suppose a small per-

turbation δA and B = A + δA . Regarding to the singular values of A

and B , we have the following �

Proposition 4. Suppose rank (A ) = rank (B ) = k and the singular val-

ues of A are λ1 ≥λ2 ≥ ��� ≥λk , because B has the same rank with A,

B has singular values σ 1 ≥σ 2 ≥ ��� ≥σ k . Then 

σ ≤ λ + || δA || (7)
i i 
roof. According to the singular value decomposition (SVD), A 

T A

as the eigenvalue λ2 
1 
, λ2 

2 
, . . . , λ2 

k 
and eigenvector v 1 , v 2 , . . . , v k ,

hen apply the Courant-Fischer minimax theory [15,16] , we have 

σ 2 
r+1 ≤ max 

|| x || =1 

x T p i =0 

x 

T B 

T Bx 

= max 
|| x || =1 

x T p i =0 

x 

T (A + δA ) T (A + δA ) x 

≤ max 
|| x || =1 

x T p i =0 

{ (x 

T A 

T Ax ) 
1 
2 + (x 

T (δA ) T (δA ) x ) 
1 
2 } 2 

≤ { max 
|| x || =1 

x T p i =0 

(x 

T A 

T Ax ) 
1 
2 + max 

|| x || =1 

x T p i =0 

(x 

T (δA ) T (δA ) x ) 
1 
2 } 2 

≤ (λr+1 + || δA || ) 2 , r = 1 , 2 . . . , k − 1 . 

hus 

r+1 ≤ λr+1 + || δA || ↔ σr ≤ λr + || δA || 
lso called the singular perturbation theory, Proposition 4 estab-

ishes a relationship between original matrix and its perturbation.

nd gives a perturbation bounds to singular values. According to

ropositions 3 and 4 , we can conclude the discontinuity of general-

zed inverse in waning rank matrix. �

roposition 5. If the m × n (m < n) matrix A is waning rank,

ank (A ) = k < n, the small perturbation δA increases the rank of

 = A + δA . 

ank (A + δA ) > rank (A ) > k (8)

hen we have the inequation: 

| (A + δA ) † || ≥ 1 

|| δA || (9)

roof. Assume rank (A + δA ) = r > k, then the rth singular value

f matrix A is λr = 0 . According to Proposition 4 , the rth singular

alue of A + δA , σ r has 

r ≤ || δA || 
eanwhile, apply Proposition 3 , the norm of (A + δA ) † has 

| (A + δA ) † || ≤ 1 

σr 

herefore 

| (A + δA ) † || ≥ 1 

|| δA || 
�

emark 4. In fact, this conclusion is related to the continuity of

ingular value. As we can see, for diagonal matrix �, the general-

zed inverse is calculated by taking the reciprocal of each non-zero

lement on the diagonal, leaving the zeros in place, and then trans-

osing the matrix. The discontinuity is coming from taking the re-

iprocal of matrix elements. 

The continuity of generalized inverse plays an important role

or getting a stable solution in ELM. Moreover, from the above

ropositions, we know that full rank hidden layer matrix cannot

ecure the model performance because the full rank could be a

onsequence of matrix perturbation and generalized inverse will

ot be continuous from waning rank to full rank. In the following

ection, some numerical experiments were carried out from differ-

nt perspectives to show this special hidden layer matrix pattern

nd its final impact on model performance. 
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Fig. 2. Model comparison between different initial ranges. 

4

4

 

h  

p  

t  

r  

r  

w  

i  

n

 

t  

w  

a  

N  

a  

p  

f  

v  

E  

d  

m

 

t  

s  

p  

i  

t  

m

4

 

o  

m  

h  

t  

h  

m

 

d  

s  

m  

b  

e  

l  

W  

o  

e

4

 

l  

b  

n  

s  

n  

s

{

F  

p  

d  

T  

o  

t  

c  

a  

o  
. Experiments 

.1. Different random initial range 

During the training of ELM, weights and bias between input and

idden layers are random selected and a common choice is sam-

ling from standard normal distribution. Because the sigmoid func-

ion is bounded between 0 and 1, if we change the random initial

ange by using different variance in normal distribution, the full

ank hidden layer could move close to a waning rank matrix which

ill eventually harm the model generalization ability. This exper-

ment is based on the House Prices dataset with 50 hidden layer

odes and results are visualized in Fig. 2 

From upper two graphs in Fig. 2 , we can see the different dis-

ributions adopted by random initialization give different range to

eights and bias. And wider range of initialization gives more sep-

rated value in hidden layer. With initial distribution following

ormal (0, 5) and Normal (0, 10), most of the hidden layer values

re either 0 or 1. Such pattern in hidden layer matrix create a high

ossibility of collinearity among columns. In this circumstance, the

ull column rank of hidden layer still holds but with tiny eigen-

alue (almost zero eigenvalue in Fig. 2 lower left). Therefore, the

LM model runs into a perturbed matrix rank situation. And the

iscontinuity of generalized inverse lead to unstable model perfor-

ance (large range of mean square in Fig. 2 lower right). 

This experiment can be repeated based on other distribu-

ions with different ranges, for example uniform distribution or

tudent’s-t distribution. It is worth mentioning that [17,18] also

ointed out this phenomenon related to Moore–Penrose pseudo-

nverse and Random Vector Functional Link Networks (RVFL). With

he proof in Section 3 and visualization in Fig. 2 , we can have a

ore comprehensive understanding of this issue. 

.2. Increasing hidden layer nodes 

The choice of network structure in ELM, especially the number

f hidden nodes, requires a balance between training accuracy and

odel efficiency. In this part, we show that because the number of
idden node is exactly the number of columns in hidden layer ma-

rix, the more number of hidden nodes the model has, the closer

idden layer columns to linear correlation. The following experi-

ent will demonstrate this phenomenon. 

Training House Price dataset with increasing number of hid-

en nodes, each time recorded the test mean square error and

mallest eigenvalue of hidden layer matrix. From Fig. 3 right, the

ean square error first decreases and then increases with num-

er of nodes increasing from 10 to 150. On the left, the smallest

igenvalue decreases to 7 . 5 × 10 −6 . When decreasing, the hidden

ayer is moving close to the boundary of full and waning rank.

ith number of hidden nodes greater than 80, the analytical part

f ELM already starts to suffer from the matrix rank perturbation

ffect. 

.3. Training set with outliers 

Training set with outliers could effect most of the machine

earning algorithms. For ELM, outliers will cause the rank pertur-

ation problem. To verify, we create an artificial dataset with sig-

ificant outlier for ELM training. Suppose we have a two dimension

tructural dataset with 500 instances, and the data is following a

ormal distribution with low variance except one outlier. The con-

truction of this dataset is shown in 10 . 

x 1 , j ∼ Normal (1 , 0 . 1) j = 1 , 2 , . . . , 499 and x 1 , 500 = 10 

x 2 , j ∼ Normal (3 , 0 . 1) j = 1 , 2 , . . . , 499 and x 2 , 500 = 30 

(10) 

or simplicity, we first re-scale the input range in [0,1], then ap-

ly them to a SLFN with number of hidden nodes m = 5 , and ran-

omly assign weights and bias between input and hidden layers.

he setting of outliers will cause robustness problem. The rank

f H is 5 which means it is a full rank hidden layer matrix. Yet

he column-wise variances are all near zero which indicates the

olumns are actually close to each other and the full-rank is just

 perturbation from waning rank. In fact, the smallest eigenvalue

f H 

T H is 6 . 08 × 10 −6 . When computing the generalized inverse, it
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Fig. 3. Model comparison between different number of hidden nodes. 

Fig. 4. Model comparison between different initial methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Generalized inverse (GI) comparison. 

Model GI-Mean GI-Variance GI-Norm 

ELM 1 . 7052 × 10 −7 0.0362 94.62 

RBM-ELM 1 . 5632 × 10 −7 14518.80 2637.16 
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c  

m  

o  

g  

v  

i  

b  

r  

a

will have large norm and variance. In this case, the norm || H 

† || =
2 . 41 × 10 5 and variance Var (H 

† ) = 2 . 32 × 10 7 . With such general-

ized inverse, the model will fail to learn the real pattern of dataset.

In general, the rank of input matrix also plays an important part of

the ELM model training [19] . 

4.4. Unsupervised pre-training with RBM 

Now we consider another ELM approach: instead of random

assigning, the Restricted Boltzmann machines (RBMs) [20,21] are

used as an unsupervised pre-training phase for weights between

input and hidden layers [22] . RBM is a generative stochastic model

which can be used to capture the probability distribution over a

set of inputs. Recent study and application of RBM can be found

in [23] . After RBM pre-training, the network is analytical solved by

GI as a supervised fine-tuning phase. Named RBM-ELM, this ap-

proach in SLFN is mentioned in [24] and extended to multiple-

hidden layer feed-forward neural networks (MLFNs) in [25] . We

found for some dataset, the RBM pre-trained hidden matrix could

also be a waning rank perturbation. The experiments are based on

the Letter Recognition dataset from UCI Machine Learning Reposi-

tory [26] , results are shown in Fig. 4 . 
First, we train both models with 800 hidden nodes. Taking a

andom observation, although both hidden layer matrices are full

ank, the ELM hidden values are close to a uniform distribution

ithin [0,1], while the RBM hidden values is nearly a perturba-

ion around constant 0.5, see Fig. 4 upper left. Then the values of

olumn-wise variance have different pattern between two hidden

atrices, see Fig. 4 upper right. That means, the column vectors

f RBM hidden matrix are close to each other. Furthermore, the

eneralized inverses are compared in Table 1 . The large norm and

ariance are noteworthy. Same as other experiments, this pattern

s due to the discontinuity. At last, we compare the test accuracy

ased on 10-fold cross validation. Fig. 4 lower shows when the full

ank matrix is a perturbation from waning rank, the model gener-

lization ability will be reduced. 
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. Conclusion 

This paper presents a study on sensitivity of hidden layer ma-

rix rank in ELM. We first review the training process of ELM from

he matrix transformation standpoint. Then focus on the relation-

hip between rank of matrix and continuity of generalized inverse.

he experiments are carried out to visually analyze this issue. The

onclusion can be listed as follow: 

1. Generalized inverse is continuous with full rank matrix, but dis-

continuous when waning rank matrix perturbs to full rank or

vice versa. 

2. Even if the sigmoid function transform input data to a full rank

hidden matrix with probability 1, it is possible that the full rank

is actually close to a waning rank. 

3. Because of the solution of ELM highly depends on the full

column rank assumption, the rank degeneration will prevent

model from learning the pattern of data. 

4. During training of ELM, initial range, initial method, outliers

and network structure all could cause the rank perturbation

problem. 

5. To ensure the generalization ability of ELM, we suggest that

special attention should be paid to monitor the data pattern

and eigenvalue of hidden matrix. 
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