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a b s t r a c t 

Swarm intelligence (SI)-based optimization methods have been extensively used to tackle feature selec- 

tion problems. A feature selection method extracts the most significant features and removes irrelevant 

ones from the data set, in order to reduce feature dimensionality and improve the classification accuracy. 

This paper combines the incremental learning Fuzzy Min–Max (FMM) neural network and Brain Storm 

Optimization (BSO) to undertake feature selection and classification problems. Firstly, FMM is used to cre- 

ate a number of hyperboxes incrementally. BSO, which is inspired by the human brainstorming process, 

is then employed to search for an optimal feature subset. Ten benchmark problems and a real-world case 

study are conducted to evaluate the effectiveness of the proposed FMM-BSO. In addition, the bootstrap 

method with the 95% confidence intervals is used to quantify the results statistically. The experimental 

results indicate that FMM-BSO is able to produce promising results as compared with those from the 

original FMM network and other state-of-the-art feature selection methods such as particle swarm opti- 

mization, genetic algorithm, and ant lion optimization. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Feature selection is an important pre-processing step in data

mining, especially for solving classification problems. The perfor-

mance of classification algorithms is affected by redundant and

noisy features, in addition to a long execution time to process all

features [1] . Feature selection is a process of removing redundant

and irrelevant features from a data set so that the classification

algorithm can achieve better accuracy and/or reduce model com-

plexity (by using fewer numbers of features). Nevertheless, it

is a difficult task to select a relevant and useful feature subset,

particularly with high-dimensional features due to a large search

space [2] . 

A feature selection method employs a search technique to

identify a feature subset and uses an algorithm to evaluate the

selected feature subset. In general, feature selection methods can
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e categorized into three: filter, wrapper, and embedded methods

3] . Filter-based methods mainly use the characteristics of the

raining samples such as distance, similarity and dependency, to

valuate the selected feature subset [4] . Embedded-based methods

ntegrate a search mechanism during the learning process, in order

o increase the search speed [5] . Wrapper-based methods employ

 classifier to operate as a feedback mechanism to evaluate the

ffectiveness of the various selected feature subsets. Wrapper-

ased methods are more effective, but they are more complex and

equire a longer execution time [6] . 

Over the years, many traditional wrapper-based feature selec-

ion methods, such as sequential forward selection (SFS) [7] and

equential backward selection (SBS) [8] , have been used to produce

romising results in tacking feature selection problems. However,

hey suffer from several limitations, including computational

omplexity [2] and nesting effects [9] . In addition, these methods

equentially add or remove features to improve the performance of

he wrapped algorithm. When the features are added or removed,

hey are not updated in further steps. To overcome this problem,

 floating strategy was used with SFS and SBS to devise sequen-

ial forward floating selection (SFFS) and sequential backward
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oating selection (SBFS) methods [10] . These methods evaluate

ll possible solutions, and then select the best feature subset.

hey are computationally expensive methods, especially when

he feature dimension is high. To alleviate these problems, many

opulation-based optimization algorithms, such as genetic algo-

ithm (GA) [11] , particle swarm optimization (PSO) [12] , ant colony

ptimization (ACO) [13] , and ant lion optimization (ALO) [14] , have

een utilized. These methods generate new solutions randomly

nd evaluate them based on their fitness values. New solutions are

enerated in subsequent iterations based on the individuals that

ield better results in the current iteration. Therefore, these meth-

ds avoid generating solutions similar to inferior ones, leading to

educed computational time in obtaining the best feature subsets. 

Among population based optimization algorithms, PSO-based

eature selection methods have shown promising results due to

heir less complexity, simple structure, and fast convergence [15] .

rain storm optimization (BSO) [16] is a type of swarm intelli-

ence (SI)-based optimization algorithm that imitates the human

rainstorming process. Since its introduction, BSO has produced

romising results in solving various optimization problems, e.g.

pproximating complex functions [17] . The focus of this research

s to adopt BSO as a feature selection method to solve data

lassification problems. 

On the other hand, the fuzzy min–max (FMM) neural network

18,19] is an incremental learning model that can be used to solve

oth classification and clustering problems. FMM combines the ca-

ability of fuzzy set theory with artificial neural network to form a

nified framework. FMM is able to overcome the problem of catas-

rophic forgetting (which is also known as the stability-plasticity

ilemma) [20] , that means FMM is able to learn new samples

ithout forgetting previously learned samples. The catastrophic

orgetting phenomenon is the main challenge of many batch-

ased learning methods. During learning, FMM creates hyperboxs

ncrementally to store information in its network structure. Each

yperbox defines two points, i.e., minimum (min) and maximum

max), for each dimensional of an n- dimensional input space.

he hyperbox size i.e., θ , is set between zero and one. Larger

yperboxs reduce the network complexity, but may compromise

he performance. FMM uses the fuzzy set to determine the degree

f membership function among its existing hyperboxs and the

urrent input sample, in an attempt to identify which class/cluster

he input sample belongs to. FMM has also been used with the GA

o tackle rule extraction and classification problems [21,22] . 

In this paper, we present a hybrid model of FMM and BSO, i.e.,

MM-BSO, to undertake feature selection and classification prob-

ems. Firstly, FMM is used as an incremental learning model to

reate a number of hyperboxes to encode knowledge from the data

amples. Then, BSO is employed to remove redundant and irrele-

ant features and select an optimal feature subset. In order to iden-

ify the most significant features and remove irrelevant features,

he concept of an “open” hyperbox in FMM is employed. FMM-BSO

s evaluated using ten benchmark data problems and a real-world

ase study, i.e., motor fault detection. In addition, to quantify the

esults statistically, the bootstrap method [23] with its 95% con-

dence intervals is used. The main contributions of this research

nclude: 

• a hybrid FMM-BSO model to increase predictive accuracy and

reduce the computational complexity by selecting a feature

subset with few important features; 
• a comprehensive evaluation of FMM-BSO for feature selection

and data classification using benchmark and real-world prob-

lems, with the results analyzed and compared with those from

other state-of the art methods. 

The rest of the paper is organized as follows: Section 2 presents

 review on population-based feature selection methods.
ection 3 explains the structures of both BSO and FMM.

ection 4 presents the details of the proposed FMM-BSO model.

he experimental results and discussion are provided in Section 5 .

inally, conclusions and suggestions for future study are presented

n Section 6 . 

. Related work 

This section presents a review on population-based features se-

ection methods. The GA is a useful first population-based method

or feature selection [24] . Single and two-objective feature selec-

ion and rule extraction methods based on GA were proposed in

11] . FMM-GA [21] , i.e., a hybrid model of GA and FMM, was pro-

osed for feature selection and pattern classification. FMM-GA op-

rated in two stages. Firstly, FMM was used to create a number of

yperboxs. Then, the GA selected the best feature subset from the

reated hyperboxes. Similar to [21] , a two-stage hybrid model of

-learning Fuzzy ARTMAP (QFAM) [25] and the GA was proposed

or feature selection and rule extraction [26,27] . 

A feature selection method based on artificial bee colony (ABC)

as proposed to tackle data classification problems [28] . The

esults showed that ABC was able to reduce classification error

ith fewer features, as compared with those from PSO, GA and

CO. A hybrid model of ABC and support vector machine (SVM) for

olving medical classification problems with comparable results

as reported in [29] . In [2] , a multi-objective feature selection

ethod using ABC optimization based on non-dominated sorting

nd genetically inspired search was proposed. Both binary and

ontinuous versions of the proposed model were implemented,

.e., Bin-MOABC and Num-MOABC. Bin-MOABC outperformed other

ethods such as single-objective ABC and linear forward selection.

In [30] , a hybrid model of ACO and neural network for solving

edical classification problems was developed. A novel hybrid

eature selection method combining ACO and GA (ACO-GA) to

olve high dimensional classification problems was presented in

31] . ACO-GA showed a superior performance as compared with

hose of ACO and GA. In [1] , a hybrid feature selection algorithm

ombining ACO and ABC, known as AC-AB, was designed to tackle

lassification problems. AC-AB was able to overcome the stagna-

ion problem of ants and reduce the global search time of bees.

C-AB produced better results as compared with those from other

eature selection methods such as PSO and ACO. 

In [32] , a binary ant lion optimization (ALO) based feature

election method was proposed for classification. The experimen-

al results indicated the capability of the proposed technique in

olving classification problems as compared with those from PSO,

A and binary bat algorithm (BBA). In [33] , BBA was combined

ith the forest classifier to select an optimal feature subset for

olving classification problems. In [34] , the firefly algorithm (FA)

as employed as a discriminative feature selection method to

olve classification and regression problems. In [35] , a binary grey

olf optimization (GWO) method was used to tackle feature se-

ection and data classification. All these bio-inspired evolutionary

omputation (EC)-based feature selection methods have shown

romising results as reported in the corresponding papers. 

A binary PSO was demonstrated as an effective f eature selec-

ion method to tackle classification problems in [36] . Indeed, PSO

nd its variants have been successfully employed to tackle feature

election and data classification problems, due to their simple

tructure and fast convergence. As an example, a hybrid model of

odified multi-swarm PSO (MSPO) with SVM for solving feature

election was proposed in [37] . MSPO-SVM was able to produce

uperior results as compared with those from the original PSO,

A and grid search based methods. In [15] , HPSO-LS, namely a

ybrid model of PSO and local search (LS) strategy, was introduced

or feature selection. The LS used the correlation information of
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features which helped PSO to select district features. Two Bacterial

Foraging Optimization (BFO)-based feature selection methods,

denoted as adaptive chemotaxis BFO (ACBFO) and improved

swarming and elimination dispersal BFO (ISEDBFO) were proposed

to solve classification problems in [38] . 

HBBEPSO [39] , i.e., a hybrid model consisting of binary bat and

enhanced PSO, was proposed for feature selection and classifica-

tion. HBBEPSO used the capability of the bat algorithm to help

search the feature space, and the capability of PSO to converge

the best global solution in the feature space. In [40] , two fea-

ture selection methods using slap swarm algorithm (SSA) were

presented to tackle classification problems. In the first method,

eight transfer functions were used to convert continuous version

of SSA to binary, while in the second method, the crossover was

used in addition to transfer functions to improve the technique.

The proposed method outperformed state-of-the-art feature selec-

tion methods such as GA, binary GWO, BBA and binary PSO. In

[41] , a hybrid model of improved PSO and shuffled frog leaping

was developed for feature selection. Three classification algorithms

i.e., naïve Bayes (NB), K -nearest neighbor and SVM, were used as

the classification algorithms to evaluate the effectiveness of the se-

lected feature subsets. 

A new switching delayed PSO (SDPSO) was developed to un-

dertake parameter identification problem of the lateral flow im-

munoassay (LFIA) [42] . In addition, a hybrid model of Extreme

Learning Machine (ELM) and SDPSO was proposed to solve the

short-term load forecasting problem [43] . The SDPSO was used to

optimize the input weights and biases of ELM. Similar to [43] , the

SDPSO model was employed to optimize the SVM parameters [44] .

All the above mentioned population-based feature selection

methods are inspired from swarm and natural evolution. This pa-

per employs the advantageous of BSO, which is a new SI method

inspired by the human brainstorming process, as a feature selec-

tion method for solving classification problems. 

3. The brain storm optimization and fuzzy min–max models 

In this section, the BSO is firstly explained. Then, the structure

of the supervised FMM is described in detail. 

3.1. Brain storm optimization 

BSO [16] has three main steps: clustering individuals, disrupt-

ing cluster centers, and creating new solutions. Firstly, BSO gen-

erates n random solutions, and evaluates them based on a fitness

function. Then, BSO clusters n solutions into m groups using the

k- mean clustering method. After that, a new solution is generated

to replace a randomly selected cluster center. This step is accom-

plished through disrupting a cluster center. Finally, an individual is

randomly selected based on one or a combination of two cluster

center(s), as follows: 

X selected = 

{
X i , one cluster 

rand × X 1 i + ( 1 − rand ) × X 2 i , two clusters 
(1)

where rand is a random value between 0 and 1, X 1 i and X 2 i are

the i -th dimension of the selected clusters. The selected idea is up-

dated as follows: 

X new 

= X selected + ξ ∗ random ( 0 , 1 ) (2)

where random(0,1) is a Gaussian random value with 0 and 1 as

the mean and variance, respectively; and ξ is the adjusting factor,

which is defined as follows: 

ξ = logsin 

(
0 . 5 ∗ m i − c i 

k 

)
× rand (3)

where logsin() is the logarithmic sigmoid function, k is a changing

rate for the slope of the logsin() function, rand() is a random value
etween 0 and 1, m i and c i are the maximum and current number

f iterations, respectively. Fig. 1 shows the flowchart of the BSO

lgorithm. 

.2. Fuzzy min–max 

As shown in Fig. 2 , FMM consists of three layers, namely the

nput layer (F A ), hyperbox layer (F b ) and output layer (F C ). The

umber of nodes in F A and F C are the same as the dimension of

he input samples and number of output classes, respectively. Each

ode in the hyperbox layer (F B ) indicates a hyperbox fuzzy set.

ach hyperbox is indicated by a set of minimum and maximum

oints; therefore the feature space is in an n- dimensional unit

ube ( I n ). The F A and F B are connected through the minimum and

aximum points of the hyperboxes. The hyperbox membership

unction is used as the transfer function, F B . Each hyperbox fuzzy

et can be defined as follows: 

 j = 

{
A h , V j , W j , f 

(
A h , V j , W j 

)}∀ X εI n (4)

here A h = ( a h 1 , a h 2 , . . . , a hn ) is the input samples, V j =
( v j1 , v j2 , . . . , v jn ) and W j = ( w j1 , w j2 , . . . , w jn ) are the mini-

um and maximum points of B j , respectively; and f ( A h , V j , W j )

s the membership function. Fig. 3 shows an example of a three

imensional hyperbox with its minimum ( V j ) and maximum ( W j )

oints. The hyperboxes belong to the same class are allowed to

verlap with each other, while FMM eliminates overlap hyperboxes

elonging to those from different classes (shown in Fig. 4 ). 

Each node in F C represents a class. The F B and F C nodes are con-

ected using binary values, which are stored in a matrix U , as fol-

ows: 

 jk = 

{
1 i f b j is a hyperbox f or class c k 
0 otherwise 

(5)

here b j and c k are the j th and k th F b and F c node, respectively. 

In order to find the closest hyperbox to the h th input sam-

le ( A h ), FMM uses a membership function, i.e., B j (A h ), where

 ≤ B j ( A h ) ≤ 1. The membership function can be written as follows:

 j ( A h ) = 

1 

2 n 

n ∑ 

i =1 

[
max 

(
0 , 1 − max 

(
0 , γ min 

(
1 , a hi − w ji 

)))
+ max 

(
0 , 1 − max 

(
0 , γ min 

(
1 , v ji − a hi 

)))
]

(6)

here A h = ( a h 1 , a h 2 , . . . , a hn ) ∈ I n represents the h th input sample,

nd γ is the sensitivity parameter that formulates how fast the

embership function decreases when the distance between A h and

 j increases. 

The FMM training procedure consists of three steps, including

yperbox expansion, hyperbox overlap test, and hyperbox contrac-

ion test. The details of these steps are as follows: 

Expansion: During the learning process, FMM performs the

yperbox expansion process to include the learning sample in

he respective hyperbox. To expand hyperbox B j for absorbing the

earning sample, A h , the following condition must be satisfied: 

θ ≥
n ∑ 

i =1 

(
max 

(
w ji , a hi 

)
− min 

(
v ji , a hi 

))
(7)

here 0 ≤ θ ≤ 1 indicates the maximum hyperbox size. 

If the condition in Eq. (7 ) is satisfied, the maximum and mini-

um points of the hyperbox are updated as follows: 

 

new 

ji = min 

(
v old 

ji , a hi 

)∀ i , i = 1 , 2 , . . . , n (8)

 

new 

ji = max 
(
w 

old 
ji , a hi 

)∀ i , i = 1 , 2 , . . . , n (9)

However, if the expansion criterion, i.e., Eq. (7 ), fails for all ex-

sting hyperboxes, a new hyperbox is added to encode the learning
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Fig. 1. Flowchart of BSO. 
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ample. This incremental learning process allows the network to

dd new hyperboxes without retraining. 

Overlapping test: This test checks whether there is any over-

ap among hyperboxes that belong to different classes. For each

imension of the learning sample, if at least one of the following

ases is met, there exists an overlap between two hyperboxes. The

our test cases for the i th dimension are as follows: 
Case 1: 

 ji < v ki < w ji < w ki , δ
new = min 

(
w ji − v ki , δ

old 
)

(10)
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Fig. 2. The structure of FMM. 

Fig. 3. An example of three dimensional hyperbox. 

Fig. 4. An example of hyperboxes placed along the boundary of two classes. 
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Case 2: 

 ki < v ji < w ki < w ji , δ
new = min 

(
w ki − v ji , δold 

)
(11)

Case 3: 

 ji < v ki < w ki < w ji , δ
new = min 

(
min 

(
w ki − v ji , w ji − v ki 

)
, δold 

)
(12)

Case 4: 

 ki < v ji < w ji < w ki , δ
new = min 

(
min 

(
w ji − v ki , w ki − v ji 

)
, δold 

)
(13)

here j is the index of hyperbox B j that is expanded in the pre-

ious step, and k is the index of the hyperbox B k that belongs

o another class currently being evaluated for possible overlap. If
old − δnew > 0 , δold = δnew and � = i , the overlap test continues for

he next dimension. When no overlap is found, � is set to a value,

.g., less than 0, to show that the contraction process is not re-

uired. 

Contraction: If there exists an overlap between hyperboxes

rom different classes, the contraction process eliminates the over-

ap as follows: If �> 0, the �th dimension of the two overlap hep-

rboxes are required to be adjusted. In order to adjust the hyper-

oxes properly, four cases are examined, as follows: 

Case 1: 

 j� < v k � < w j� < w k �, w 

new 

j� = v new 

k � = 

w 

old 
j�

+ v old 
k �

2 

(14)

Case 2: 

 k � < v j� < w k � < w j�, w 

new 

k � = v new 

j� = 

w 

old 
k �

+ v old 
j�

2 

(15)

Case 3a: 

 j� < v k � < w k � < w j� ∧ 

(
w k � − v j�

)
< 

(
w j� < v k �

)
, v new 

j� = w 

old 
k �

(16)

Case 3b: 

 j� < v k � < w k �

〈
w j� ∧ 

(
w k � − v j�

)〉(
w j� < v k �

)
, w 

new 

j� = v old 
k �

(17)

Case 4a: 

 k � < v j� < w j� < w k � ∧ 

(
w k �−v j�

)
< 

(
w j� < v k �

)
, w 

new 

k � = w 

old 
j�

(18)

Case 4b: 

 k � < v j� < w j�

〈
w k � ∧ 

(
w k � − v j�

)〉(
w j� < v k �

)
, v new 

k � = w 

old 
j�

(19)

. The proposed FMM-BSO model 

The proposed FMM-BSO model consists of two stages: (i) learn-

ng stage, (ii) feature selection stage. FMM is used in the first stage

o learn the training samples. BSO is adopted in the second stage

o select the best feature subset. The goal is to achieve a high

lassification rate and reduce the model complexity by selecting

ewer numbers of features. The details are described in the follow-

ng subsections. 

.1. Open hyperboxes 

Once the FMM learning stage is completed (as explained in

ection 3.2 ), all created hyperboxes are used to generate “open ” hy-

erboxes [21] , in order to enable FMM to include the “don’t care ”
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Fig. 5. An example of the generated solution, original hyperbox and “Open ” hyperbox. where S is the generated solution, W j and V j are the maximum and minimum points 

of the original hyperbox, respectively. The “Open ” hyperbox based on generated solution is shown in the right. 

Algorithm 1 The procedure for measuring the fitness value of a single solution. 

Input: Parameters of trained FMM and BSO, validation samples and a solution S 

Output: Fitness value 

1. Create the “open” hyperboxes by setting minimum and maximum point with 

0 and 1, respectively. 

2. Initialize “don’t care ” antecedents (i.e., Eqs. (20) and (21) ). 

3. For each validation sample do 

3.1. Calculate the membership value (i.e., Eq. (6)) 

3.2. Select the hyperbox with the highest score as the winning hyperbox 

3.3. Update performance indicator 

4. End for 

5. Compute the fitness value (classification error) 

a  

c  

c  

s  

(  

p  

 

a  

a  

t  

4

S

w  

h

D

w  

fi  
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A
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Algorithm 2 The proposed FMM-BSO model. 

Input: Parameters of trained FMM and BSO, data samples (training, validation 

and test samples) 

Output: Performance indicators 

1. Train FMM using training samples. 

2. Generate n random solutions. 

3. Calculate the fitness function of all solutions. 

4. While termination condition is not satisfied do 

4.1. Cluster solutions into m groups using k- mean clustering. 

4.2. Disrupt cluster center. 

4.3. Update individual solutions. 

4.4. Determine fitness value. 

5. Use test samples to evaluate the performance of the selected feature 

subset. 
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ntecedent [11,45] . A “don’t care ” dimension fully covers the spe-

ific “don’t care ” feature of the input space. To satisfy the “don’t

are ” feature, the minimum and maximum points of the corre-

ponding dimension can be set to 0 and 1, respectively. A total of

2 d −2) number of possible “open ” hyperboxes (except the one hy-

erbox with all “don’t care ” antecedents) can be generated from a

D -dimensional input sample. Fig. 5 shows an example of the gener-

ted solution, original hyperbox with its corresponding maximum

nd minimum points, and the “Open ” hyperbox based on the solu-

ion. In this example, δ = 0 . 6 (as explained in the next Subsection).

.2. Adaptation of BSO for feature selection 

In BSO, a solution, S, is formulated as follows: 

 = 

{
D 

1 
1 , D 

1 
2 , . . . , D 

1 
d , D 

2 
1 , . . . , D 

2 
d , . . . , D 

p 
1 
, . . . , D 

P 
D 

}
(20) 

here D is the dimension of each hyperbox, P is the number of

yperboxes created by FMM, and D 

p 

d 
is defined as follows: 

 

p 

d 
= 

{
don 

′ t care feat ure, i f D 

p 

d 
< δ

other features, i f D 

p 

d 
> δ

(21) 

here 0 < δ < 1 is a user-defined threshold (see Fig. 5 ). The classi-

cation error is used as the fitness function to evaluate the per-

ormance of each feature subset. The step-by-step measurement

f the fitness function pertaining to a single solution is given in

lgorithm 1 . 

.3. Summary of the proposed FMM-BSO model 

Fig. 6 shows the flowchart of the proposed FMM-BSO model.

irstly, the parameters of FMM and BSO are initialized, and the

ata set is split into three subsets, i.e., learning, validation, and test

amples. Before generating n random solutions (i.e., Eq. (20) ), FMM
s trained using the learning samples. After that, the “open” hyper-

oxs are created for each solution using Eq. (21) , and the fitness

alue is measured using Algorithm 1 . Next, k -mean clustering is

sed to group the solutions into m clusters. After disrupting the

luster center, the individual solution is updated using Eqs. (1 )–

 3 ). Then, the “open” hyperboxes for each updated solution is cre-

ted, and its fitness value is measured. Replacement takes place if

he new solution is performed better than the existing one. These

teps are continued until the termination condition is satisfied. Fi-

ally, the test samples are used to evaluate the effectiveness of the

elected feature subset. The procedure of FMM-BSO is shown in

lgorithm 2 . 

.4. Complexity analysis of FMM-BSO 

The big-O notation [46] is used to analyze the computational

omplexity of FMM-BSO. The analysis can be split into two parts,

amely, FMM and BSO, since both methods operate sequentially.

n FMM, let D be the number of training samples, L be the dimen-

ion of the input sample in the F A layer, M be the total number

f hyperboxes in the F B layer, and K (K < M) be the number hyper-

oxes belonging to other classes (with respect to the current input

ample). The procedure of FMM is shown in Algorithm 3 . Given

 new input sample A h , FMM measures the membership values,

.e., B j ( A h ), of those hyperboxes in F B which are belonging to same

lass of the input sample. It selects the hyperbox with the highest

embership value. If the selected hyperbox satisfies the condition

n Eq. (7 ), it expands the hyperbox, and checks for any overlap be-

ween the selected hyperbox and those hyperboxes from the other

lasses. If there exists an overlap, the contraction operation occurs.

n the case, if the condition in Eq. (7 ) is not satisfied, FMM adds

 new hyperbox to encode the current input (A ). In the worst-
h 
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Fig. 6. The proposed FMM-BSO model. 

Algorithm 3 The procedure of the FMM. 

For training sample d = 1: D do 

For hyperbox m = 1: M do 

Compute membership value of those hyperboxes belonging to the class 

of current sample using Eq. (6). 

Select the hyperbox with highest membership value as wining hyperbox. 

If the wining hyperbox satisfied the condition in Eq. (7) then 

Expand the hyperbox 

For hyperbox of other classes k = 1: K do 

Check overlap between the winning hyperbox and those hyperboxes 

from the other classes 

If there exist overlap then 

For hyperbox dimension l = 1: L do 

Contract hyperboxes 

else 

Add new hyperbox to encode current input sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Details of UCI data set. 

Data set Number of 

input features 

Number of data 

samples 

Number of 

classes 

Australian 14 690 2 

Bupa liver 6 345 2 

Cleveland Heart 13 303 2 

Diabetes 8 768 2 

German 24 10 0 0 2 

Ionosphere 34 351 2 

Sonar 60 208 2 

Vowel 13 990 10 

Thyroid 5 215 3 

Yeast 8 1848 10 
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case scenario when all variables extend to infinity, the computa-

tional complexity of FMM is of O(M 

∗K 

∗L) , as can be deduced from

Algorithm 3 . According to [47,48] , FMM requires (19 ∗L + 36) K steps

for the key “overlap-contraction” operations for each input sample.

With M hyperboxes, the computational complexity of O(M 

∗K 

∗L) is

in line with that in [47,48] . Given D training samples, and when

K ≈ M , the computational complexity of FMM becomes O(M 

2 LD),

when all variable extend to infinity. 

In BSO, as shown in Algorithm 2 (lines 4.1–4.4), after generat-

ing n random solutions with P dimensions, there are a few further

steps, namely (1) clustering solutions using the k -mean algorithm,

(2) disrupting the cluster center, (3) generating new solutions,

and (4) determining fitness value. According to Patel and Mehta

[49] , the computational complexity of the k -mean algorithm for n

samples (solutions) is O(n 2 ) . The maximum step for disrupting the

cluster center is O(P). To update a solution, BSO adds a random

value to each dimension of the selected solution. Therefore, the
aximum step to update the solution is O(P). The maximum step

o determine a fitness value is measuring the membership value

or all hyperboxes, which is O(M). In the worst-case, the time

omplexity of BSO is O(n 2 ) for the k-mean clustering algorithm,

(P) for the disrupting the cluster center sub-procedure, O(P) for

he updating solutions sub-procedure, and O(M) for determining

he fitness value sub-procedure, which is of O(n 2 ) when all vari-

bles extend to infinity . To sum up, the computational complexity

f FMM-BSO, which runs sequentially, is of O(M 

2 LD) for FMM and

f O(n 2 ) for BSO , when all variables extend to infinity. 

. Experimental studies 

Ten benchmark data sets from the UCI machine learning repos-

tory [50] and a real-world case study, i.e., motor fault detec-

ion, were used to evaluate the effectiveness of FMM-BSO. Table 1

hows the details of the UCI data sets. These data sets were se-

ected to compare the performance of FMM-BSO with those of

ther EC-based feature selection methods in the literature. Each



F. Pourpanah, C.P. Lim and X. Wang et al. / Neurocomputing 333 (2019) 440–451 447 

Table 2 

Parameters of BSO (adopted from [16] ). 

N m P 5 a P 6 b P 6 biii P 6C K Max-iteration σ μ

100 5 0.2 0.8 0.4 0.5 20 10 0 0 1 0 

Fig. 7. Accuracy rates of FMM-BSO with different θ setting for German data set. 
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Fig. 8. Number of created hypeboxes by FMM with different θ setting for German 

data set. 

Table 3 

The accuracy rates (%) of FMM and FMM-BSO for UCI data sets (“Upper”, “Mean”

and “Lower” indicate the upper, mean and lower bounds of the 95% confidence in- 

tervals, respectively). 

Data sets FMM FMM-BSO 

Lower Mean Upper Lower Mean Upper Best 

Australian 79.44 80.44 81.34 72.56 73.46 75.37 89.85 

Bupa liver 68.30 70.60 72.80 69.30 70.90 71.70 77.10 

Cleveland heart 76.70 78.96 80.71 83.40 85.17 87.38 92.32 

Diabetes 80.38 81.31 82.35 80.74 82.24 85.65 90.78 

German 86.37 88.73 91.20 88.78 89.83 90.53 98.67 

Ionosphere 87.76 88.25 88.74 88.84 89.59 90.98 97.22 

Sonar 90.41 91.18 92.21 88.90 89.93 91.19 100 

Vowel 92.21 92.72 93.28 91.84 92.52 93.09 98.98 

Thyroid 92.01 94.59 95.91 94.06 94.72 95.76 100 

Yeast 67.64 69.13 71.17 67.43 69.46 72.34 79.05 

Table 4 

Numbers of selected features and computational time of FMM-BSO. 

Data sets All features Selected Time (s) 

Australian 14 3.71 409 

Bupa liver 6 3.56 194.70 

Cleveland heart 13 6.17 59.03 

Diabetes 8 5.07 198 

German 24 14.35 543 

Ionosphere 34 11.88 358 

Sonar 60 17.94 149 

Vowel 13 9.53 394 

Thyroid 5 3.68 40.16 

Yeast 8 4.63 564.70 
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ata set contains different characteristic in terms of difficulty and

umbers of features and samples. Australian, Bupa liver and Di-

betes data samples overlap each other, which is a challenging

ask for classification. Ionosphere has fewer numbers of overlapped

amples. Sonar, Thyroid and Cleveland heart data samples have

ewer numbers of samples. Sonar and German contain moderate

mbalance data samples. Yeast and Vowel are multi-class data sets.

The experimental parameters were set as follows. The parame-

ers of BSO are listed in Table 2 . These parameters were adopted

rom [16] . According to other SI-based feature selection methods

e.g., PSO [51] ), δ is usually set to 0.5 or slightly larger. Since the

volutionary-based algorithms automatically update the solutions,

etting δ within [0.5, 0.7] would not significantly influence the fea-

ure selection process [51] . In this research, after several trials, δ
as set to 0.6. All experiments were conducted using Matlab 2018a

ith 4 GHz CPU and 8GB memory. 

.1. UCI data sets 

In this section, the performance of FMM-BSO was compared

ith those from the original FMM model and other state-of-the-

rt methods reported in the literature. For each data set, the 10-

old cross validation was used. To quantify the results statistically,

ach fold was repeated 10 times. Each experiment was repeated 5

imes, giving a total of 500 runs for each data set. The bootstrap

ethod [23] was employed to measure the 95% confidence inter-

als. A total of 90% and 10% of data samples were used for training

80% for learning and 10% for validation) and test, respectively. The

alidation samples were used to extract the optimal feature sub-

et. Note that the test samples were not used to find the optimal

eature subset. All data samples were normalized between 0 and 1.

The German data set was employed to find an optimal θ set-

ing for producing the best performance. Fig. 7 shows the accuracy

ates of FMM-BSO with different θ settings. As can be seen, the ac-

uracy rates of FMM-BSO decrease when the hyperbox size (i.e., θ )

s increased from 0.1 to 0.9. Note that setting θ= 0.1 increases the

odel complexity, but reduces the classification error, as shown in

ig. 8 . This setting was adopted throughout the experiments in this

esearch. 

Table 3 shows the accuracy rates with 95% confidence inter-

als of FMM and FMM-BSO. As indicated by the overlap of the 95%

onfidence intervals, FMM-BSO performed better or similar to the

riginal FMM for nine out of ten data sets (except the Australian

ata set, which FMM outperformed FMM-BSO). Nonetheless, FMM-

SO managed to select fewer numbers of features, as compared
ith those from the original FMM model. Note that FMM used all

eatures. The average numbers of selected features for each hyper-

ox by the original FMM model and FMM-BSO, and the execution

ime of FMM-BSO are presented in Table 4 . 

FMM-BSO was compared with particle swarm optimization

PSO) [52] , Genetic algorithm (GA) [53] , Simulated annealing (SA)

54] , binary bat algorithm (BBA) [33] , ant lion optimization (ALO)

14] , Cuckoo search (CS) [55] , adaptive chemotaxis bacterial forag-

ng optimization algorithm (ACBFO) [38] and improved swarming

nd elimination dispersal bacterial foraging optimization (ISEDBFO)

38] . Note that all results related to PSO, GA , SA , BBA , ALO, CS,

CBFO and ISEDBFO were obtained from [38] . To have a fair com-

ression the same experimental procedure in [38] was followed.

able 5 shows the accuracy rates of FMM-BSO, PSO, GA , SA , ALO,

BA, CS, ACBFO and ISEDBFO. Based on Table 5 , FMM-BSO outper-

ormed four out of ten benchmark data sets, i.e., Diabetes, Ger-

an, Vowel and Yeast. For the Cleveland heart data set, FMM-BSO

erformed statistically similar to ISEDBFO, which ISEDBFO outper-

ormed other methods, as indicated by the overlap between the

5% confidence intervals of FMM-BSO and accuracy of ISEDBFO.
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Table 5 

The accuracy rates (%) for UCI data sets (“Upper”, “Mean” and “Lower” indicate the upper, mean and lower bounds of the 95% confidence intervals, respectively). 

Data sets PSO GA SA ALO BBA CS ACBFO ISEDBFO FMM-BSO 

Lower Mean Upper 

Australian 85.5 86.1 86.2 86.1 86.5 85.4 86.9 87.3 72.56 73.46 75.37 

Bupa liver 71.1 70.1 72.3 71.2 69.2 68.9 74.2 74.8 69.30 70.90 71.70 

Cleveland heart 84.1 82.4 84.2 82.5 82.5 84.1 85.8 86.1 83.40 85.17 87.38 

Diabetes 76.2 77.1 77.3 76.5 77.5 77.3 77.9 77.6 80.74 82.24 85.65 

German 74.4 75.7 76.7 75.5 76.2 76.7 76.8 77.4 88.78 89.83 90.53 

Ionosphere 94.8 95.3 93.7 94.1 95.9 92.8 96.2 96.6 88.84 89.59 90.98 

Sonar 85.2 87.1 85.8 88.8 90.2 89.7 93.5 92.8 88.90 89.93 91.19 

Vowel 57.2 59.6 58.3 61.6 64.8 63.9 64.9 66.6 91.84 92.52 93.09 

Thyroid 95.1 95.1 95.2 95.5 94.2 95.9 96.3 97.2 94.06 94.72 95.76 

Yeast 56.5 57.3 57.4 61.4 60.3 62.7 63.3 65.3 67.43 69.46 72.34 

Mean 78.0 78.6 78.7 79.3 79.7 79.7 81.6 82.2 82.6 83.8 85.4 

Table 6 

Average number of selected features. 

Data sets PSO GA SA ALO BBA CS ACBFO ISEDBFO FMM-BSO 

Australian 9.8 9.0 9.7 9.3 10.1 9.5 8.6 8.2 3.7 

Bupa liver 5.9 5.8 5.6 5.8 5.7 5.6 5.5 5.4 3.6 

Cleveland heart 8.5 8.7 9.2 8.1 7.9 8.3 7.2 6.9 6.2 

Diabetes 6.3 6.6 5.5 5.1 4.8 5.4 4.2 4.6 5.1 

German 16.8 15.7 14.3 13.9 15.2 14.8 13.1 12.3 14.3 

Ionosphere 19.2 19.5 18.9 17.3 18.2 17.8 16.8 16.1 11.9 

Sonar 29.4 27.7 28.4 28.1 30.0 27.2 26.1 25.4 18.0 

Vowel 9.2 8.8 8.0 7.4 8.1 7.8 6.9 6.5 9.5 

Thyroid 4.1 4.3 3.4 4.0 3.6 3.7 2.8 3.0 3.7 

Yeast 6.6 5.7 6.2 5.0 5.3 5.1 4.8 4.6 4.6 

Mean 11.6 11.2 10.9 10.4 10.9 10.5 9.6 9.3 8.1 

Table 7 

Sensitivity rates for data sets from UCI machine learning repository. 

Data sets PSO GA SA ALO BBA CS ACBFO ISEDBFO FMM-BSO 

Australian 0.79 0.84 0.87 0.83 0.84 0.87 0.87 0.88 0.77 

Bupa liver 0.51 0.44 0.52 0.49 0.48 0.57 0.53 0.58 0.62 

Cleveland heart 0.84 0.83 0.58 0.53 0.81 0.81 0.81 0.85 0.87 

Diabetes 0.51 0.53 0.55 0.56 0.53 0.53 0.59 0.54 0.84 

German 0.86 0.82 0.54 0.54 0.83 0.82 0.85 0.87 0.86 

Ionosphere 0.92 0.92 0.91 0.88 0.93 0.93 0.95 0.96 0.97 

Sonar 0.62 0.66 0.77 0.74 0.73 0.66 0.82 0.79 0.87 

Mean 0.72 0.72 0.68 0.65 0.73 0.74 0.77 0.78 0.83 
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While FMM-BSO could not achieve the highest accuracy rates for

the Australian, Bupa liver, Ionosphere, Sonar and Thyroid data sets,

it selected fewer numbers of features for the Australian, Bupa liver,

Cleveland heart, Ionosphere, Sonar and Yeast data sets. Table 6

shows the average numbers of selected features. Overall, FMM-BSO

outperformed other methods in terms of mean accuracy and se-

lected number of features, i.e., 83.8% and 8.1, respectively, for all

data sets. The detailed results are presented in Tables 5 and 6 . 

In addition to accuracy and numbers of selected features, sensi-

tivity and specificity were computed to compare the performance

of FMM-BSO with those from other state-of-the-art feature selec-

tion methods. Sensitivity is the ratio of correctly classified positive

samples to the total number of positive samples, and specificity is

the ratio of correctly classified negative samples to the total num-

ber of negative samples [56] . Note that sensitivity and specificity

are applicable to two-class classification problems. Tables 7 and 8

show the sensitivity and specificity rates of FMM-BSO, GA , SA , ALO,

CS, ACBFO and ISEDBFO, respectively. According to Table 7 , FMM-

BSO was able to classify high rates of positive samples for the Bupa

liver, Cleveland heart, Diabetes, Ionosphere and Sonar data sets.

However, FMM-BSO could produce high rates for negative samples

only for the German and Sonar data sets (as shown in Table 8 ).

Overall, FMM-BSO was able to produce balanced sensitivity and

specificity rates for the Australian, Cleveland heart, German, and

Sonar data sets. FMM-BSO outperformed other methods in terms

of mean sensitivity and ranked the second best method in terms
 P  
f mean specificity for all data sets, as highlighted in Tables 7 and

 , respectively. 

To have a fair comparison, FMM-GA and FMM-PSO were im-

lemented. For all methods, the hyperbox size ( θ ), δ, popula-

ion/particle size and maximum iteration were set to 0.1, 0.6, 100,

nd 10 0 0, respectively. For PSO, both c 1 and c 2 were set to 1.49. For

he GA, crossover and mutation probabilities were set to 0.9 and

.1, respectively, and in each population, 20 prototypes were re-

laced. Fig. 9 shows the accuracy rates of FMM-GA, FMM-PSO, and

MM-BSO. For all data sets except Sonar, FMM-BSO performed sim-

lar to, if not better than, FMM-GA and FMM-PSO. While FMM-BSO

ould not produce good results as compared with those of other

ethods, it used significantly fewer numbers of features (18.0) in

omparison with those of FMM-GA (29.89) and FMM-PSO (29.82),

s shown in Table 9 . Overall, FMM-BSO selected fewer numbers

f features for five out of ten data sets, i.e., Australian, Cleveland

eart, Ionosphere, Sonar and yeast. 

.2. Real-world case study 

In this section, a real-world case study, i.e., motor fault de-

ection, was used to evaluate the performance FMM-BSO. A

otal of 20 cycles, equivalent to 0.4 seconds of the unfiltered

hree-phase stator currents (i.e., phase A, phase B, and phase C),

ere transformed using fast Fourier transform to the respective

ower Spectral Density for feature extraction. During feature
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Table 8 

Specificity rates for data sets from UCI machine learning repository. 

Data sets PSO GA SA ALO BBA CS ACBFO ISEDBFO FMM-BSO 

Australian 0.83 0.85 0.86 0.86 0.88 0.58 0.83 0.87 0.70 

Bupa liver 0.84 0.84 0.87 0.86 0.81 0.84 0.81 0.88 0.73 

Cleveland heart 0.79 0.81 0.82 0.84 0.75 0.77 0.85 0.77 0.82 

Diabetes 0.88 0.88 0.77 0.77 0.87 0.88 0.88 0.89 0.74 

German 0.45 0.42 0.69 0.69 0.33 0.49 0.34 0.45 0.83 

Ionosphere 0.62 0.87 0.42 0.42 0.89 0.70 0.85 0.87 0.76 

Sonar 0.82 0.65 0.87 0.87 0.70 0.67 0.80 0.89 0.91 

Mean 0.75 0.76 0.76 0.76 0.75 0.70 0.76 0.80 0.78 

50 60 70 80 90 100

Australian
Bupa liver

Cleveland heart
Diabetes
German

Ionosphere
Sonar

Vowel
Thyroid

Yeast

Accuracy (%)

FMM-BSO FMM-PSO FMM-GA

Fig. 9. Accuracy rates for UCI data sets. 

Table 9 

Average number of selected features. 

Data sets FMM-GA FMM-PSO FMM-BSO 

Australian 6.98 7.01 3.7 

Bupa liver 3.03 3.04 3.6 

Cleveland heart 6.54 6.55 6.2 

Diabetes 4.08 4.01 5.1 

German 12.2 12.01 14.3 

Ionosphere 16.95 16.99 11.9 

Sonar 29.89 29.82 18.0 

Vowel 6.61 6.46 9.5 

Thyroid 2.53 2.51 3.7 

Yeast 4.9 4.7 4.6 
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Table 10 

Details of the real-world case study. 

Type of faults Number of samples 

Normal 29 

Broken Rotor Bars 58 

Supply Unbalanced 29 

Stator Winding Faults 28 

Eccentricity 56 

Table 11 

The parameters and levels of center composite design. 

Parameter Level 

Low Medium High 

Number of clusters ( m ) 3 5 7 

Probability P one 0 0.5 1 

Table 12 

Effects of probability ( P one ) and numbers of clusters ( m ) on the FMM-BSO perfor- 

mance (Accuracy). 

Experiment Noise-free Noisy 

Lower Mean Upper Lower Mean Upper 

Exp. 1 ( m = 3, P one = 0 ) 95.00 95.91 97.40 93.86 95.58 96.30 

Exp. 2 ( m = 5, P one = 0.5 ) 93.50 94.51 95.60 90.80 92.30 94.60 

Exp. 3 ( m = 7, P one = 1 ) 91.80 93.89 95.10 90.60 92.80 94.54 

Exp. 4 ( m = 3, P one = 1 ) 93.50 94.20 94.70 91.45 93.24 94.53 

Exp. 5 ( m = 7, P one = 0 ) 96.90 97.49 98.10 94.90 96.67 97.28 

91
92
93
94
95
96
97
98
99

100

FMM FMM-GA FMM-PSO FMM-BSO

Noise free
Noisy

Fig. 10. The accuracy rates for motor fault detection. 
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xtraction, the selected pairs of harmonic magnitudes (i.e., the

rd, 5th, 7th, and 13th harmonics) from the frequency spectrum

ere used as the input features of FMM-BSO. To further evaluate

he robustness of the proposed FMM-BSO model with respect

o tolerance of noise, white Gaussian noise was injected to the

raining samples [57] . While the data samples of real-world motor

urrent contained noise, we added white Gaussian noise into 5%

f the training samples, in order to ensure that the training set

ontained a certain minimum level of noise (5%) for evaluation in

ur experiment. Table 10 shows the data samples for each fault. 

A design-of-experiment method, i.e., center composite design

CCD) [58] , was used to analyze the impact of different settings of

wo parameters, i.e., probability ( P one ) and number of clusters ( m ),

n the FMM-BSO performance. As shown in Table 11 , each param-

ter was set to three levels. Table 12 shows the results of five pos-

ible combinations of parameters. As can be seen, FMM-BSO with

 one = 0 and m = 7 (Exp. 5) outperformed other possible combina-

ions of parameters for both noise-free and noisy data samples. 
The parameters of FMM-BSO, after several trials, were set to

 = 5 and P one = 0.8 . As shown in Fig. 10 , original FMM classified

ll test samples correctly for the noise-free data samples. For noisy

amples FMM-BSO outperformed other methods in terms of mean

ccuracy. In addition, FMM-BSO managed to select fewer numbers

f features in comparison with FMM-GA and FMM-PSO (as shown

n Table 13 ). Both FMM-GA and FMM-BSO selected almost similar
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Table 13 

Number of selected features. 

Method Noise free Noisy 

FMM-GA 10.50 10.53 

FMM-PSO 12.71 14.33 

FMM-BSO 8.48 8.54 
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numbers of features for noise-free and noisy samples, i.e., approx-

imately 10.50 and 8.50, respectively. 

5.3. Discussion 

GA and PSO models use the best solution and global best solu-

tion to generate new individual solutions. Comparatively, BSO uses

all possible solutions to generate new ones. In addition, BSO ran-

domly disrupts a cluster center to generate a new solution, which

is different from the existing ones. This updating mechanism helps

BSO to escape from the local optima and produce better results

as compared with those of GA and PSO. In general, FMM-BSO is

able to produce promising results, in terms of both accuracy and

the number of selected features, as compared with those from the

other feature selection methods. Nonetheless, BSO requires longer

execution durations to find the optimal feature subset. This is

mainly due to the use of distance-based k- mean clustering in each

iteration. This problem can be solved by replacing k- mean clus-

tering with objective space solutions. In addition, feature selection

can be formulated as a binary problem. As such, instead of gener-

ating solutions between 0 and 1, binary values can be employed,

which is more effective in finding an optimal solution. 

6. Summary 

In this paper, we have presented a hybrid model of FMM-BSO

to solve feature selection problems for data classification. Firstly,

FMM is used as a supervised learning algorithm to create hy-

perboxes incrementally. Then, BSO is adopted as the underlying

technique to extract the best feature subset, in order to maximize

classification accuracy and minimize the model complexity. Ten

benchmark classification problems and a real-world case study, i.e.,

motor fault detection, have been used to evaluate the effectiveness

of the proposed FMM-BSO model. The performance of FMM-BSO,

in terms of classification accuracy and number of selected features,

has been compared with those from the original FMM and other

methods reported in the literature. Overall, FMM-BSO is able to

produce promising results, which are similar to, if not better than,

those from other state-of-the-art methods. However, FMM-BSO re-

quires longer execution durations as compared with FMM-PSO and

FMM-GA. It needs further investigation to improve its robustness.

Our future work will focus on enhancing the performance of FMM-

BSO using multi-objective fitness function and formulating a binary

BSO variant to reduce the model complexity. To avoid the over-

fitting problem of FMM, a pruning strategy can be incorporated

to help maintain a parsimonious network structure. In addition to

classification, there are FMM-based variants for tackling regression

problems. As such, FMM-BSO can be modified to solve regression

problems, which is another direction of our further research. 
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