This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2893863, IEEE

Transactions on Fuzzy Systems

IEEE..., VOL. 7?, NO. ??, AUGUST ??

Intuitionistic Fuzzy Twin Support Vector Machines

Salim Rezvani, Xizhao Wang, Fellow, IEEE, Farhad Pourpanah, Member, IEEE

Abstract—Fuzzy twin support vector machine (FTSVM) is an
effective machine learning technique which is able to overcome
the negative impact of noise and outliers in tackling data classifi-
cation problems. In FTSVM, the degree of membership function
in the sample space just described the space between input data
and class center, whilst ignored the position of input data in
the feature space and simply miscalculated the ledge support
vectors as noises. This paper presents an intuitionistic fuzzy twin
support vector machine (IFTSVM) which combines the idea of
intuitionistic fuzzy number with twin SVM (TSVM). An adequate
fuzzy membership is employed to reduce the noise brought by
the pollutant inputs. Two functions, i.e., linear and nonlinear,
are used to formulate two non-parallel hyperplanes. IFTSVM
not only reduces the influence of noises, it also distinguishes
the noises from the support vectors. Further, this modification
can minimize a newly formulated structural risk and improve
the classification accuracy. Two artificial and eleven benchmark
problems are employed to evaluate the effectiveness of the
proposed IFTSVM model. To quantify the results statistically,
the bootstrap technique with the 95% confidence intervals is
used. The outcome shows that IFTSVM is able to produce
promising results as compared with those from the original SVM,
Fuzzy SVM (FSVM), FTSVM and other models reported in the
literature.

Index Terms—Intuitionistic Fuzzy Number, Kernel function,
Quadratic Programming Problem, Twin support vector ma-
chines.

I. INTRODUCTION

HE support vector machine (SVM) and its variants [1]-
[5] are popular machine learning techniques which have
shown astonishing results in various application domains such
as regression [6]—[8], economy [9] [10], power system [11]
and medical [12], just to name a few. In fact, SVM attempts
to explore an optimal hyper-plane with the maximum margin,
while, the generalization error of SVM mainly depends on the
ratio of the radius and margin, i.e. radius-margin error bound
[13]. For a given feature space, which radius is fixed, the
SVM can minimize generalization error by only maximizing
margin. Nonetheless, radius information becomes an important
parameter for joint learning of feature transformation and
classification algorithm which can not be ignored.
Traditional SVM builds two parallel support hyper-planes
between which the area is first split into the two classes (i.e.,
+ and —), and then the margin is maximized. Therefore,
the regularization term is achieved and the structural risk is
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minimized. Several research have been considered the radius-
margin error [14]-[17]. However, most of these methods suffer
from computational burden [18].

Apart from SVM with two parallel hyper-planes, several
classifiers with non-parallel hyper-planes such as the gener-
alized eigenvalue proximal SVM (GEPSVM) [19] and twin
SVM (TSVM) [20]-[26] have been proposed. Both methods
find two non-parallel proximal hyper-planes which locate
hyper-plane as far as possible to one of the two classes
and near to the other one. Unlike SVM which finds only
one large quadratic programming problem (QPP), TSVM
defines two small QPPs. As shown in [20], TSVM is four
times faster than SVM. It also has shown promising results
as compared those of the SVM and GEPSVM [27]. One
important characteristic of SVM is the implementation of
the structural risk minimization principle [28] [29], but, only
the empirical risk is considered in TSVM. Although, the
technique of organizing non-parallel hyper-planes has shown
promising results [30], yet it is not always good enough from
the theoretical viewpoint, and it needs further adjustments.
On the other hand, it is known that the inverse matrices
(GTG)~! and (HT H)~! appear in the dual problems, where
H =[A e] and G = [B e3]. A and B represent training
samples belonging to classes +1 and -1, respectively, e; and es
correspond to the unit vectors. To achieve dual problems, one
of the following conditions must be satisfied: either the inverse
matrices (GTG)~! and (HT H)~! occur or the matrices GT G
and H™ H are non-singular. Satisfying one of these conditions
can improve the dual problems theoretically.

If the support vectors are mixed by noises, the SVM cannot
find an optimal hyper-plane, which leads to produce inferior
results. To alleviate this problem, fuzzy SVM (FSVM) has
been proposed in [31]-[34], which uses a degree of member-
ship function for each training sample. Even though, FSVM
is able to reduce the effects of outliers and noises, but the
degree of membership function only considers the distance
between the training sample and the class center, which several
outlier support vectors may be confused as noises. To solve
this problem, an FSVM with dual memberships is suggested
in [35]. However, this method improved the performance of
FSVM, it also suffers from several problems. For example,
those training samples which are located far away from
the class center may produce better membership function as
compared with those nearby the class center [35].

Coordinate descent methods have received increasing atten-
tion in the last years due to recent results in support vector
machine [36] [37]. A new coordinate descent FTSVM for
solving classification problems is introduced in [38], which
is faster than TSVM. Later, a new FTSVM incorporated
TSVM and fuzzy neural network to tackle binary classification
problems in [39]. In [40], an SVM with an intuitionistic fuzzy
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number (IFN) and kernel function is proposed to consider the
situation of training samples in the feature space.

Building upon our newly proposed ranking method of
trapezoidal intuitionistic fuzzy numbers and type-2 intuition-
istic exponential triangular fuzzy number [41] [42], which
is able to find the degrees of membership, non-membership,
and hesitation, in this paper we propose a new classification
model, called intuitionistic fuzzy twin support vector machine
(IFTSVM), to solve binary classification problems. IFTSVM
uses IFN to assign a pair of membership and non-membership
functions to every training sample. The degree of membership
function measures the distance between the training sample
and class center, while the degree of non-membership function
measures the relation among the number of inharmonic sam-
ples and the number of samples in its neighborhood. These two
measurements help IFTSVM to reduce the effect of noise and
identify support vectors from noises. In addition, it minimizes
the structural risk and improves classification accuracy. Two
artificial and eleven benchmark problems are employed to
evaluate the effectiveness of IFTSVM. In summary, this paper
proposes a new learning model which is called IFTSVM with
the following contributions:

1) IFTSVM significantly alleviates the negative impact of
noise and outliers on classification accuracy since it uses a
pair of membership and non-membership functions for every
training sample.

2) IFTSVM constructs a new structural risk function with
regularization terms different from existing SVM models.

3) IFTSVM statistically shows a better performance on
artificial and benchmark classification problems in comparison
with other similar SVM models.

The rest of this paper is arranged as follows: Section II
explains the details of Intuitionistic Fuzzy Set, SVM, FSVM,
and TSVM. Section III describes the structure of the proposed
IFTSVM model. The experimental results are reported in
Section IV. Section V concludes and suggests the future
research.

II. PRELIMINARIES

In this Section, we firstly describe the intuitinistic fuzzy set.
Then, the structure of SVM, FSVM and TSVM are explained
in details. Suppose S = {(x1,v1), (T2, Y2), ..., (x5, ¥;) } is a set
of training samples where z; € R? and y; = {—1,+1}, re-
spectively, represent the i-th training sample and corresponding
target class. The training samples can be separated into two
matrices, i.e, Xf_ and X%, where X_f (X®) contains those

samples which are belonging to positive (negative) class.

A. Intuitionistic Fuzzy Set

For a non-empty set X, a fuzzy set A in a universe X can
be defined as:

A={(z,pa(x))]r € X} Q)

where 14 : X — [0,1] and p4 () is the degree of membership
of z € X. An intuitionistic fuzzy set is defined as:

A= {(z,nz(2),vz(2))lz € X} 2

2

where 1 3(x) and vz(x) define the degrees of membership
and non-membership functions of z € X, respectively, p7 :
X = [0,1,v;: X —[0,1] and 0 < pz(z) +vz(z) < 1,
and the hesitation degree of x € X can be presented as:

mi(x) =1—-pz(x) —vi(x) 3)

An IFN can be defined as a = (ga,Vs), Where p, €
[0,1], ¥4 € [0,1], and 0 < po + v < 1. The largest IFN
is ™ = (1,0), and the smallest IFN is o~ = (0, 1). The IFN
for a given o = (4, Vo) can be calculated as follows:

s(@) = po, — Va- “)

where s(a) represents the score value of the IFN a =
(la, Vo). However, it is impossible to determine the score
value for some IFNs. To alleviate this problem, following
function can be replaced:

@) = o + V. 5)
According to Egs. 3 and 5, we have
h(a) +7(a) =1 (6)

If s(ag) = s(a2) and h(aq) < h(az), then oy < as.
Based on Eq. 4, other score function can be determined as
follows:
B 1—v(a)
2~ (@) - v(a)

Therefore, the relationships between membership and nun-
membership functions can be defined as follows:

H(o) )

(1) s(a1) < s(ae) = H(ay) < H(aw);

(2) s(a1) = s(az2), h(aq) < h(az) = H(a1) < H(az).

B. Support vector machines

Traditional SVM is able to solve binary classification prob-
lems. It attempts to find an optimal hyper-plane w’'z +b = 0,
where w € R" is the weight, and b € R is the bias term. This
hyper-plane can be used to define the label of input sample z;
as follows:

(w.z; +b) >0, if wy; is positive,
)]

(w.x; +b) <0, if v is negative.

In a linear SVM an optimal hyper-plane can be achieved by
solving the following primal quadratic programming problem
(QPP):
min %wTw —+ 022:1 &,
©))

where & (i =1,2,...,1), C and [ are slack variables, penalty
parameter and the number of training samples, respectively.
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C. Fuzzy support vector machines

Suppose {(z1,y1, 81), (T2, Y2, 82), .., (4, Yi, $;) } is a set of
training data containing i samples with their corresponding
fuzzy memberships (s;), where 0 < s; < 1and ¢ > 0 is a
small positive value. Let z = ¢(x) denote a mapping ¢ from
RY to a feature space Z. The optimal hyper-plane cab be
achieved by solving:

l
1
min §wT.w +C Z si&i

i=1

stoyi(wz +b)>1-&, &>0,i=1,..,1 (10)

where &; is the measured error in the SVM and term s;&; is
measured error with different weighting, and C' is a constant.
A small C' minimizes the efficacy of the &; in Eq. 10.

The Lagrangian can be constructed to solve this problem as
follows:

l
L(w,b7§, Ck,ﬁ) = %wT'w + Czslgl
i=1

l

_Zaz yz ’lUZZ—‘rb _1"’_51
i=1

Z Biti

and the following conditions must be satisfied to find the
saddle point of L(w,b,§, «, 8):

Y

aL(wab7£aaaﬂ) l =
— g w- ;:1 iyizi = 0 (12)
OL(w,b, &, «, B) Zl
T —_ P aiy’i O (13)
OL(w,b,§, 0, 8) T~
— = $;iC —ao; — p; = 0. (14)

Applying Eqs. 12-14 into the Eqgs. 11 and 10 can be written
as:

mazimize W(«a

Zaz -3 ZZ azajyly]

zljl

(i, 25)

1
s.t. Zyiai =0, 0<; <s;C, i=1,..,1
i=1
and the Karush-Kuhn-Tucker (K.K.T) conditions [43] are
described as:

15)

a;(yi(w.z; +b) —1+&)=0, i=1,...,1  (16)

(5iC — ;)6 =0, i=1,..,1 (17)

The point z; with the corresponding &; > 0 is known as
a support vector. The FSVM can have two kinds of support
vectors. The first one with 0 < &; < s;C lies on the margin
of the hyper-plane, and the second one with @; = s;C is
misclassified. In contrast with SVM, TSVM may recognize
a point with same &; into different kind of support vectors
owing to the s;.

3

D. Twin support vector machine

Unlike traditional SVM which uses only one hyper-plane
to separate the positive samples from the negative samples,
TSVM [20] obtains two non-parallel hyper-planes (as shown
in Fig. 1). It finds a hyper-plane around which the data samples
of the corresponding class get grouped [44]-[46] as follows:

wey-ri +bay =0,  weyri+bo =0 (18)
where w(;) and b(;) are the weight and bias term of the i-th
hyper-plane, respectively. The two hyper-planes are achieved
by solving the following QPPs:

min

Aw )y +e1ba
w(1),b(1),§2 ( @ !

) (Aw(y + e1b(1)) + pres 76

s.t. — (Bw(l) + egb(l)) +&>e3, £ >0 (19)

and

. 1
man *(Bw(g) + egb(g))T(Bw(g) + egb(g)) + pgegfl
w1),by.€1 2

s.t. (A’LU(Q) + €1b(2)) + 61 2 €1, 51 2 0 (20)

where A and B represent the data samples belonging to

Proximal Planes

W2 x+b2=0

Class -1

Fig. 1. The Geometric explanation of Twin SVM

classes +1 and —1, respectively, & and &; are the slack
variables, e; and ey are the vector of ones with adequate
length, and p; and po are penalty parameters. Once optimal
parameters, i.e., (w7, b7) and (w3, b}), are achieved, new input
sample = can be labeled as follows:

| (wi) T2+ b} |

f(x) =arg min ; ¢ 12 " (21)
(| wy |l

III. INTUITIONISTIC FUZZY TWIN SUPPORT VECTOR
MACHINE

In this section, we first explain the proposed IFTSVM
model. Then, the structures of two kernel functions, i.e., linear
and non-linear, are discussed in detail.
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A. Intuitionistic fuzzy membership Assignment

IFTSVM employs the degree of membership function which
is proposed in [40]. To reduce the effect of noise and outliers,
it is critical to select an appropriate membership function. For
example, as shown in Fig. 2, those training samples which are
located in the boundary areas of the two classes have the same
membership degrees for both classes. This may lead to the
wrong prediction. To alleviate this problem, IFTSVM assigns
an IFN, i.e., (u,v), to each training sample, where u defines
the degree of membership function related to one class, and
v explains the degree of non-membership function related to
other class. Obviously, the degrees of non-membership related
to positive (negative) classes are not the same.

A
— B
L ] L]
| Ly L] L1
| ® C1 [ ] O =3
\ -
L ] L]
L J [

Fig. 2. Similar degree of membership for two training samples

The designed degrees of membership and non-membership
functions for every training sample in the high-dimensional
feature space are explained in the following subsections.

1) The membership function: the distance between training
sample and the class center is used as membership function in
the high dimensional feature space. For each training sample,
the degree of membership can be described as:

N_Ct
1- H¢(a;z+)+§1 Ly = 41,
w(z;) = ) (22)
1 lele=oTl g

where § > 0 is an adjustable parameter, 7+ (r~) and C*
(C™) are the radius and class center of the positive (negative)
class, and ||.|| is the distance between input sample and the
corresponding class center:

D(¢(w:), d(x5)) = l|¢(xi) — b))l (23)

where ¢ represents input sample in the high-dimensional
feature space.
The class center of each class can be measured by:

c* = i > b(w)

yi==%1

(24)

where [ (I_) is the total number of positive (negative)
samples.
The radius of each class can be calculated by:

rt = max lp(x;) — C’i|| (25)
yi==%1

2) The non-membership function: the relationship between
all inharmonious points and the total number of training
samples in its neighborhood (i.e., p(z;)) is used as non-
membership function, as follows:

v(wi) = (1= p(z))p(zi). (26)
where 0 < p(x;) + v(z;) <1, and p(z;) is defined as:
oy = Haillo@) =@ <0 £l

{zillle(z:) — oz <a}l 7
where @ > 0 is an adjustable parameter and |.| denotes the
cardinality.

The degrees of membership and non-membership functions
of IFN are built based on the inner product distance in the
feature space. Therefore, the kernel functions are used to make
IFNs.

Theorem 1. [40] Suppose K (x,z’) be a kernel function.
Hence, the inner product distance is presented by:

l¢(x) = d(2")|| = VK (z,2) + K(«/,2") — 2K (z, 2')
Proof:
lé(x) = d(z")| = V(¢(x) = d(z")-(¢(x) — d(z"))
=V (9(x).0(x)) + (¢(a").0(2")) — 2(d().4(a"))
= VK(z,z)+ K(z/,2') — 2K (x, 2').

Theorem 2. With respect to theorem 1, the radiuses of both
classes are respectively:

2
YT Kemew - o ¥ Kewe.

1
i)y rt = maz | K(eg, ;) + o
vi=t T ym=+lypn=1+1 + =41

i=

2
K(zm,on) — — >
I Yi=—1

i) r = > >

2 ym=—lyn=-—1

K(x;,25).

1
maz  |K(z;, ;) + —
yi:ilJ v 12

Proof:
i)

+ _ Sy _cti = maz. 2:) — (b(zs) —
= mag I9(e0) - €T = ma: vimt1V(#(m) — CT).(p(zy) — € F)

= ygrﬁl\/w(wn.ww)) +(ct.ct) —2(¢(zy).ct) =

1 1 1
mail\JK(miwi)Jr(f >o @) DD b)) = 2(b(@))(—
L L Iy

s > b))
vi= + yi=+1 + yi=+1 yi=+1

2
> K@@m.on) - — > Kz, ;).
=S Yi=+1

= v_naﬂJK(zi,zl)+% >
‘ S ym=+lyn=1+1
1) Is similar to that of part (4).
Therefore, training samples can be converted into IFN as
follows:

T= {xlaylvuhyl}a {3327?42’#2,1/2}, ceey {xlayh//['lvl/l}-

where p; and v;, respectively, indicate the degrees of mem-
bership function and non-membership functions of z;. For a
given IFN, the score function can be defined as:

i v; =0,
si=< 0 i < vy, (28)
2_1% others.
i — Vi
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The score value can easily separate the support vector
from outliers and noises [40]. For example, assume three
training samples, i.e., A, B and C, in Fig. 3. When v; = 0
(positive sample A in Fig.3), which has not negative samples
as neighborhoods, the degree of membership function can
correctly classify it. While p; < v; (negative sample B in
Fig.3), the degree of membership value is less than degree of
non-membership value, it will be considered as noise. When
wi > v; and v; # 0 (positive sample C in Fig.3), it is far
away from the class center, there are few positive samples
in its neighborhood. Thus, it may be considered as a support
vector, instead of an outlier.

3
1 4+ " P 11
osi1ive
- - ® - - e Negative
-
-
= " e
08 4 - . - -
- - - -
. - -
[ ] m = - - .
- L] L]
06 1 L =-® e .
™ - -
A - - o o
T =
[ = - - e Co -
- e B
04 4+ - = o ((m ) @ ©®
/,3,, = L ™ -
= (e o -
o2 4+ N =) -
- -
' " L ' ' -
o 02 0.4 06 0.8 1

Fig. 3. Recognize samples

B. Linear IFTSVM

The linear kernel for IFTSVM can be considered as follows:

1 1
3 | Awy + e1by ||? +§Cl | wy [|* +Cas3 &

mn
wi,b1,€2
subject to — (Bwy + eab1) + &3 > €2, &2 >0 (29)
and
o1 1
min — || ng +62b2 ||2 +*03 H Wo ||2 +C4S?€1
wa,b2,61 2 2
subject to (Aws + e1be) + & > €1, & >0 (30)

where C7, C3, C3 and C} are positive penalty parameters, &;
and &» are slack variables, e; and ey are column vectors of
ones with desirable length, and s; € R and sy € RI- are
the score values of class + and —, respectively.

IFTSVM minimizes the structural risk by summing the
regularization term with the opinion of maximizing margin.
It will be shown that the structural risk is minimized in Egs.
29 and 30. This pair of QPPs can be achieved by constructing
the Lagrangian as follows:

1 1
L(wi,b1,62,0a,8) = 5 | Awy + erby ||? 501 | wy |2

+ Cys53 €9 + af(Bwy + egby) — & + ea] — Ba 1)

5

where « and § are Lagrangian multipliers. With K.K.T con-
ditions, Eq. 31 can be obtained as follows:

oL
—_— = AT(Aw1 + €1b1) + Clwl + aB = 0, (32)
8’11)1
oL
— = eT(Awl +e1b1) + aes =0, (33)
0b,
oL
—— =Cosy —a—fB=0. 34
9Es 285 —a—f3 (34)
By combining Eqgs. 32 and 33, can achieve:
AT w1 B
(G)ae()e(l)emo o
Let Hy = (A 61), Gy = (B 62) and uy = ( 1;))1 ) The,
1
Eq. 35 can be reformulated as
HIHyuy +Gla=0=u = —(H{ H)"'GTa  (36)

It is hard to calculate the inverse of H{ H;. This can be
managed by attaching regularization unit C1 in the Eq. 37,
where [ is an identity matrices with the appropriate dimension.
Thus:

u = —(HIH, + ¢ 1) Gl a (37)
In a similar way, weight vector and bias for other class can
be achieved by solving the following equation:

uy = (GYGy + C3I) " HYL B (38)

Using Eq. 29 and K.K.T conditions, the Wolfe dual Eq. 29
can be written as:

1
mazx es o — EaTGg(HlTHl + 1) 'GEa
«

subject to 0 < a < Caso (39)
In the above equation, C; is a weighting factor which
distinguishes the tradeoff between the regularization term and
the empirical risk. Hence, choosing an appropriate C'1, whether
small or large, reflects structure risk minimization principle.
Likewise, the Wolfe dual for Eq. 30 can be written as:

1
maz el'p— iﬁTGl(GgGg +CsI)rHT B

subject to 0 < 8 < Cysy (40)

Once optimal u] and u3 are achieved, the two non-parallel
hyper-planes (Eq. 18) are admitted. A new input data x can
be categorized as a positive or negative class, as follows:

Totbr | |wlz + by |

x € Wy, k:argmz'n{|w

}o@n
i=1,2 | wy || | ws ||
where | . | is the absolute value.
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C. Nonlinear IFTSVM

In order to solve non-linear classification problems, the
following kernel function is considered.

E(z, XT)wy +by =0, k(z, XT)wy +by =0,  (42)

where k(x1,z2) = (¢(x1),¢(z2)) is a kernel function. The
primal problem of nonlinear IFTSVM is defined as:
1

min -
w1,b1,&2 2

subject to — (k(B, X1 )wy + eab1) + & > ea, & >0 (43)

1
I k(A7XT)w1 + e1by ||2 +§C1 I wy ||2 +C’282Tf2

and

min
wa,b2,§1

subject to (k(A, XT)ws + e1b) + € > €1, £ >0 (44)

1 1
3 I k(B,XT)wz + e2bsy H2 +§Cg | w2 H2 +C481T§1

Lagrangian of Eq. 44 is given as:

1 1
L(wi,b1,&, 0, B) = = || k(A, XT)wy + exby |2 +5C1 | wy |2
2 2

+ CosT o+ a[(k(B, XT)wi + eabr) — & + e2] — & (45)

The K.K.T conditions are obtained as follows:

oL _ k(A XT)T (k(A, XT)w; + e1br)
8w1
+ Ciwy + ak(B,XT) =0, (46)
L
27 =ef (k(A, XT)w; +e1by) + aeg =0, (47)
1
oL
= = —a—f= 48
06, Cosy —a—p=0 (48)
Combining Eqs. 46-48, can archive:
kA, XTT T w1 k(B,XT) B
( o7 (k(A, X7) er) b )T o a=0
(49)

Let H = (k(A,XT) e1), G3 =

w1 . Then, Eq. 49 can be reformulated as:

by

(k(B,XT) e3) and uj =
ul = —(H{*Hf +Ci 1)~ 'GT*a (50)

With the K.K.T conditions and Lagrangian method, the corre-
sponding Wolfe dual can be written as:

1
maz el a — §aTG§(H1T*H1* + 1) G a
«

subject to 0 < a < Caso (28
and
max e 8 367 GI(GE"Gs + Cal) M HT*S
subject to 0 < 8 < Cys1 (52)

According to Eqgs. 42-52, the augmented vectors u; =
[wl b1]7 and ug = [wl by]T can be obtained by:

ul = —(H{*Hf + C1I)"'GT*a,
uy = (GE*Gy + CsI) ' HI ™,

(53)
(54)

6

Once the vectors u] and u3 are achieved, the two non-
parallel hyper-planes (Eq. 42) are obtained. A new input data
x can be labeled as either positive or negative class, as follows:
wik(z, XT)+ b1 | | wlk(z, XT) + by |

wlk(A, XT)w,

}.

k=arg mm{|
wlk(B, XT)w,
(55

i=1,2

D. Complexity analysis of IFTSVM

In this section, the big-O notation [47] is employed for the
analysis on time complexity of IFTSVM. Let n be the total
number of training samples and m = n/2 be the number of
samples in each class. IFTSVM measures the degrees of mem-
bership (Eq. 22) and non-membership (Eq. 26) functions to
compute the score value (Eq. 28) of each sample. To measure
the degree of membership function, it first computes the class
center (Eq. 24) and radius of class (Eq. 25). Then computes the
distance between each class center and sample (Eq.23), and
measures the degree of membership function for each sample
using Eq. 22, which requires O(1) + O(1) + O(m) + O(m).
On the other hand, to measure the degree of non-membership
function (Eq. 26), IFTSVM requires to compute p(x;) (Eq.
27), which needs O(m)+O(m) operations. Therefore, IFTSVM
involves O(1)+O(1) +O(m)+O(m)+O(m)+O(m) opera-
tions to measure the score function of samples, which is O(m)
when m extends to infinity. Then, similar to TSVM, IFTSVM
requires to solve two QPPs for both linear and non-linear
functions. According to [48], the computational complexity
of conventional SVM is O(n?), and the computational com-
plexity of TSVM by considering m = n/2 is O(2 x (n/2)?).
The time complexity of IFTSVM is O(2 x (n/2)?) 4+ O(n/2),
which is O(2 x (n/2)3). Therefore, the time complexity of
IFTSVM is almost same as TSVM which is four times faster
than conventional SVM.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness and generalization capability
of IFTSVM, eleven benchmark data sets from UCI machine
learning repository [49] and two artificial, i.e., Ripleys [50]
and circle-in-the-square [51], are conducted. Table I shows
the details of the UCI data sets.

For each data set, the 10-fold cross-validation is repeated
10 times. For all data sets, 90% of data samples are used for
training and the the remaining 10% for the test. The bootstrap
method [52] with the 95% confidence intervals is employed
to quantify the results statistically. All samples are normalized
between 0 and 1. The IFTSVM parameters are set as follows:
ci(i = 1,2,3,4) are correctly explored in the grids {2']i =
-10,-9,...,9,10} by setting C; = C3, Cy = Cjy. Plus,
Gaussian-kernel is applied to trade with the non-linear cases,
ie. K(r1,22) = exp(—||z1—22|*/0?) and o € {20miniTmaz}
with 0,5, = —10, e = 10. The entire experiments are
performed using MATLAB 2018a under a desktop PC with
Intel(R) Core i5 processor (3.30 GHz) and 12GB RAM.

Five performance indicators including accuracy, computa-
tional time, sensitivity/true positive rate, specificity/negative
positive rate [53] and area under ROC (AUC) [54], are used to
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TABLE I
DETAILS OF THE UCI DATE SETS

Data set # of samples | # of Negative samples | # of Positive samples | # of features | # of classes
Ionosphere 351 126 225 34 2
Australian 690 383 307 14 2
WDBC 569 212 357 30 2
WPBC 198 151 98 33 2
Bupa 345 145 200 6 2
Sonar 208 97 111 60 2
Heart 270 150 120 14 2
Pima 768 268 500 8 2
Adult 48842 37155 11687 14 2
Advert 3279 459 2820 1558 2
Spam 4601 1813 2788 57 2
compare IFTSVM with those from the conventional SVM [35], o Best C=-1

FSVM [29], TSVM [12], CDFTSVM [38], gradient boosting
(GB) [55], accelerated GB (AGB) [56], Lasso [57] and random
forest (RF) [58] . The sensitivity or true positive rate (TPR) is
the ratio of classified positive sample over all positive samples,
while the specificity or true negative rate (TNR) is the ratio of
correctly classified negative samples over all negative samples.

A. UCI data sets

In this Section, the performance of IFTSVM is evalu-
ated with the UCI data sets. The results are compared with
those of the original SVM [53], FSVM [31], TSVM [20]
and CDFTSVM [38]. Note that all results related to SVM,
FSVM, and TSVM are taken from [38]. Three experiments
are conducted as follows:

In the first experiment, the effects of different setting of the
kernel parameter o and trade-off C' are analyzed using the
Ionosphere data set. The aim is to find optimal parameter(s),
i.e., C for linear function, and C' and o for non-linear function,
which yields high accuracy rate. Firstly, C' is optimized for the
linear function, it varied from -10 to 10. As shown in Fig. 4,
IFTSVM produces better results for C' < 0, specifically; when
C is set to -1. Then, both C' and ¢ are optimized for non-linear
kernel function. C' and o can be varied from -10 to 10 and -10
to 10, respectively. From Fig. 5, it can be found that IFTSVM
with C' =1 and ¢ = 0.1 outperforms other settings.

Finally, the performance of IFTSVM is compared with
CDFTSVM for linear and non-linear functions. For both
functions C varied from -10 to 10, and for non-linear function
o was set to 0.1. Figs. 6 and 7, respectively, show the accuracy
rates of CDFTSVM and IFTSVM for linear and nonlinear
functions. Except for linear function with C' = 2, which both
methods perform similar performance, IFTSVM outperforms
CDFTSVM.

In the second experiment, the linear kernel with optimized
C is evaluated. Table II shows the average accuracy rates along
with the standard deviations (SD) and computational time (s)
of IFTSVM and those methods reported in [38]. As can be
seen, IFTSVM not only outperforms other methods, it also
produces stable results owing to the small SD. In addition,
IFTSVM and TSVM require shorter execution duration as
compared with FSVM and SVM. However, CDFTSVM is the
fastest method.

Acurracy (%)

-10 -5 0 5 10
C

Fig. 4. The accuracy rates (%) of IFTSVM with linear function for Ionosphere
data set with different C' setting.

Best C=1, 0=0.1

Acurracy (%)

Fig. 5. The accuracy rates (%) of IFTSVM with non-linear kernel on
Ionosphere data set with different C' and o settings.

Tables III and IV show the average sensitivity and speci-
ficity rates of IFTSVM and CDFTSVM for the linear kernel,
respectively. As can be seen, IFTSVM achieves better results
almost for all data sets. In overall, IFTSVM is able to achieve
a balanced sensitivity and specificity rates for WDBC and
Heart data sets, while CDFTSVM is able to achieve a balanced
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TABLE II
ACCURACY RATES (%) WITH STANDARD DEVIATIONS (SD) AND COMPUTATIONAL TIME (S) FOR UCI DATA SETS WITH LINEAR KERNEL
Data set SVM FSVM TSVM CDFTSVM IFTSVM
ACC Time(s) ACC Time(s) ACC Time(s) ACC Time(s) ACC Time(s)
Ionosphere | 83.53+06.48 11.57 | 85.75+£04.06  11.77 | 82.334+05.18 01.55 | 87.194£04.22  0.156 | 89.46+0.61 01.60
Australian | 84.92404.53  27.13 | 85.50+04.59  25.85 | 85.07+£04.77 02.38 | 85.934+04.39 0.062 | 86.70+0.34  02.04
WDBC 95.344+05.17 0.148 | 95.874+03.21  0.147 | 93.84+05.86  0.047 | 96.39+03.52 0.016 | 97.01+0.28  0.055
WPBC 79.934+09.49  0.236 | 74.244+10.35 0.248 | 76.88+07.01 0.144 | 77.96+10.03  0.078 | 80.21+1.00 0.157
Bupa 66.36+06.04 01.08 | 67.51£07.36  01.10 | 61.72405.96  0.087 | 64.38+06.24 0.062 | 68.54+0.62 0.089
Sonar 74.084+08.96  0.159 | 77.464+07.14 0.158 | 72.15+07.48 0.054 | 78.34£08.29 0.058 | 81.68+0.84 0.045
Heart 82.22+05.18  0.200 | 82.594+03.51 0.225 | 84.07+04.95 0.120 | 84.07+£06.06  0.091 | 84.81+0.80 0.133
Pima 77.21£03.75 02.22 | 75.65+£04.22 02.18 | 76.95+03.37 0.440 | 75.13£03.78 0.147 | 79.85+0.43  0.390
TABLE III
95 ' ! ! THE SENSITIVITY RATES OF CDFTDSVM AND IFTSVM ON UCI DATA
SETS WITH LINEAR KERNEL
Data set CDFTSVM | IFTSVM
=9 Ionosphere 0.67 0.76
< Australian 0.80 0.81
g WDBC 0.90 0.91
] WPBC 0.76 0.90
< g5 );‘*_H—-r Bupa 0.65 0.70
‘ Sonar 0.70 0.75
Heart 0.85 0.90
Pima 0.68 0.72
80 -
10 -8 6 -4 -2 0 2 4 6 8 10
c TABLE 1V

Fig. 6. Comparison of linear CDFTSVM and IFTSVM methods on Iono-
sphere data set.

100

= IFTSVM
CDFTSVM

98

96

94

90

Acurracy (%)
o

88’

86

Fig. 7. Comparison of nonlinear CDFTSVM and IFTSVM on Ionosphere
data set.

sensitivity and specificity rates only for Heart data set.

In the third experiment, non-linear kernel function with
optimized parameters, i.e., C' and o, is evaluated. The average
classification accuracy along with the SD and computational
time of the IFTSVM and other methods is shown in Table V.
For all data sets, IFTSVM outperforms other methods. Similar
to the linear function, both IFTSVM and TSVM with non-
linear functions need almost same execution durations.

Tables VI and VII show the average sensitivity and speci-

THE SPECIFICITY RATES OF CDFTSVM AND IFTSVM ON UCI DATA
SETS WITH LINEAR KERNEL

Data set CDFTSVM | IFTSVM
Ionosphere 0.99 0.998
Australian 0.92 0.93
WDBC 1 1
WPBC 0.60 0.70
Bupa 0.75 0.81
Sonar 0.84 0.90
Heart 0.79 0.81
Pima 0.82 0.92

ficity rates for non-linear kernel function. Both IFTSVM
and CDFTSVM are able to achieve balanced sensitivity and
specificity rates for Ionosphere, Australian, WDBC and Heart
data sets. IFTSVM also produces a balanced sensitivity and
specificity rate for Sonar data set.

In the last experiment, the performance of IFTSVM with
both linear and non-linear functions is compared with GB,
AGB, Lasso, and RF. In this experiment, three data sets, i.e.,
Adult, Advert and Spam, are conducted. Following the same
procedure in [56], 75% and 25% of data samples are used as
a training and test samples, respectively. Table VIII shows
the AUC rates along with the standard deviations (SD) of
GB, AGB, Lasso, RF, and IFTSVM with both linear and non-
linear functions. The performance of IFTSVM with the non-
linear function for Adult is comparable to GB and better than
AGB, LASSO, and RFE. Also, IFTSVM with linear function
performs better than other methods for Advert data set, while
GB outperforms other methods for Adult and Spam data sets.
However, IFTSVM is not able to produce better results for
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TABLE V
ACCURACY RATES (%) WITH STANDARD DEVIATIONS (SD) AND COMPUTATIONAL TIME (S) FOR UCI DATA SETS WITH NON-LINEAR KERNEL
Data set SVM FSVM TSVM CDFTSVM IFTSVM
ACC Time(s) ACC Time(s) ACC Time(s) ACC Time(s) ACC Time(s)
Ionosphere | 94.84+04.01  01.55 | 94.59+04.31  2.269 | 92.614+06.12  0.121 | 95.41+£04.93 0.062 | 96.90+0.43  0.137
Australian | 85.504+04.53  01.31 | 85.50+£04.59  1.787 | 85.50+04.59 0.160 | 86.81+04.84 0.102 | 87.81+£0.30  0.169
WDBC 94.84404.23  0.779 | 95.34+03.80 1.407 | 95.34+03.80 0.116 | 96.39+03.52  0.078 | 98.25+0.24  0.102
WPBC 81.51+07.13 0.593 | 77.88+09.43  1.277 | 75.30+£07.93  0.178 | 82.51+08.05 0.094 | 82.87+0.67 0.198
Bupa 70.68+£08.28  0.391 | 72.71£07.93  0.551 | 71.86£05.71  0.110 | 71.84+05.67 0.047 | 75.98+0.55 0.089
Sonar 89.42+05.41 0.924 | 88.92+06.95 1.604 | 89.42+05.41  0.189 | 89.444+05.31  0.109 | 92.23+0.74  0.193
Heart 84.07+£05.25 0.320 | 82.59+04.29  0.557 | 80.74+07.16  0.118 | 84.81+04.08 0.016 | 86.67+0.55 0.093
Pima 75.65+£03.80  21.35 | 75.26£02.91  26.01 | 77.34+£05.16  0.184 | 76.17+02.68 0.159 | 79.17+0.29  0.178
TABLE VI non-linear separating hyper-planes constructed by IFTSVM,

THE SENSITIVITY RATES OF CDFTDSVM AND IFTSVM ON UCI DATA
SETS WITH NON-LINEAR KERNEL

Data set CDFTSVM | IFTSVM
Ionosphere 0.93 0.91
Australian 0.84 0.89
WDBC 0.95 0.94
WPBC 0.87 0.95
Bupa 0.69 0.69
Sonar 0.93 0.93
Heart 0.85 0.89
Pima 0.67 0.72
TABLE VII

THE SPECIFICITY RATES OF CDFTSVM AND IFTSVM ON UCI DATA
SETS WITH NON-LINEAR KERNEL

Data set CDFTSVM | IFTSVM
Ionosphere 0.94 0.99
Australian 0.87 0.92
WDBC 0.97 0.99
WPBC 0.69 0.74
Bupa 0.75 0.82
Sonar 0.78 0.89
Heart 0.82 0.80
Pima 0.83 0.91

Adult and Spam data sets, but it performs more or less similar
to Lasso, RF, and AGB.

B. Artificial data sets

In this Section, IFTSVM is evaluated with two artificial
data problems i.e., Ripleys synthetic and Circle-in-the-square,
as follows:

1) Ripleys data set: is a binary classification problem which
has been generated by mixing two Gaussian distributions.
Each data sample includes two features. Training and test
sets include 250 and 1000 samples, respectively. In order to
reduce the effect of outlier data on the hyper-plane, u is set
to 0.1. Table IX shows the results of SVM, FSVM, TSVM,
CDFTSVM [38] and IFTSVM. The outcome indicates that
IFTSVM outperform other methods for both linear and the
non-linear functions.

Figs. 8 and 10 shows the linear and non-linear separating
hyper-planes constructed by conventional SVM, TSVM, and
CDFTSVM, respectively [38]. In addition, the linear and

respectively, are shown in Figs. 8 and 10. As can be seen,
SVM (Figs. 8 (a) and 10 (a)) and FSVM (Figs. 8 (b) and
10 (b)) generate only one single hyper-plane, while, TSVM
(Figs. 8(c) and 10(c)), CDFTSVM (Figs. 8(d) and 10(d)) and
IFTSVM (Figs. 9 and 11) produce two proximal hyper-planes.

-12 -1 08 -05 -04 02 0 02 04 0§ 08

(d) Dual hyperplanes by CDFTSVM

(c) Dual hyperplanes by TSVM

Fig. 8. Generated hyperplane(s) by linear SVM, FSVM, TSVM, CDFTSVM
on Ripleys data set (adapted from [38]).

2) Circle-in-the-square: is also a binary classification prob-
lem, which requires a classifier to identify which samples
within a unit square are placed inside or outside a circle. The
location of the circle is center and covers half of the square.
The performance of IFTSVM with non-linear function was
compared with fuzzy ARTMAP (FAM) [59], Q-learning fuzzy
ARTMAP (QFAM) [60] and CDFTSVM [38]. According to
[59], two experiments were conducted. Each experiment is
repeated ten times with different data samples.

In the first experiment, different numbers of training sam-
ples, i.e., 100, 1000 and 10000, are used, while 1000 samples
are used for the test. Table X shows the accuracy rates of FAM,
QFAM, CDFTSVM, and IFTSVM. It can be seen that the
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TABLE VIII
AUC RATES WITH STANDARD DEVIATIONS (SD) AND COMPUTATIONAL TIME (S) FOR UCI DATA SETS
Data set | Gradient Boosting | Accelerated Gradient Lasso Random IFTSVM
(GB) Boosting (AGB) Forest (RF) Linear Non-Linear
Adult 0.920+£0.004 0.913+0.004 0.902+0.004 | 0.8584+0.008 | 0.9054+0.010  0.915%0.055
Advert 0.973+0.012 0.971+0.015 0.973+0.008 | 0.98340.008 | 0.9854+0.002  0.981+0.009
Spam 0.980+0.003 0.977+0.003 0.970+0.004 | 0.979+0.003 | 0.96940.001 0.970+0.001
TABLE IX
THE ACCURACY RATES (%) FOR RIPLEYS DATA SET
Data set SVM | FSVM | TSVM | CDFTSVM | IFTSVM B
linear 89.70 | 88.80 89.20 89.10 90.00 08|
Nonlinear | 90.40 | 91.10 90.50 91.30 91.50 ’
0.6
x
0.4t
0.2
o L
0.2 ‘ ‘ 9y L
-1 -0.5 0 0.5
;?; = + Class + X Class- O Support Vectors [ Outliers =
x -
0.2 x§ ’:‘,:é ’l‘x;‘.x .................. "”O,:g O s Fig. 11. Generated hyperplanes by nonlinear IFTSVM on Ripleys data set.
| % o e e
x x
o2l < * classification error of all methods except CDFTSVM reduce
| 4 o5 p o5 when the numbers of training samples increase from 100 to

10000. The CDFTSVM produces the inferior result for 1000
cases as compared with 100 and 10000 cases. In general,
IFTSVM outperforms other methods for 1000 and 10000
statistically, as there is no overlap between the 95% confidence
intervals of IFTSVM and other methods, while CDFTSVM
and IFTSVM perform at the same level statistically for the
100 cases.

+ Class + x  Class - O Support Vectors ] Outliers —

Fig. 9. Generated hyperplanes by linear IFTSVM on Ripleys data set.

TABLE X
ACCURACY RATES (%) FOR THE CIRCLE-IN-THE-SQUARE PROBLEM WITH
95% CONFIDENCE INTERVALS ("MEAN”, "UPPER” AND "LOWER”
INDICATE THE MEAN ACCURACY, UPPER AND LOWER BOUNDS OF THE
95% CONFIDENCE INTERVALS, RESPECTIVELY)

Training Samples 100 1000 | 10000
Lower | 88.63 | 93.26 | 95.39
FAM Mean | 86.16 | 93.89 | 96.14
Upper | 89.89 | 94.51 | 96.54
Lower | 88.70 | 95.30 | 96.64
QFAM Mean | 90.31 | 96.04 | 97.15
Upper | 93.52 | 97.1 97.46
Lower | 91.48 | 89.58 | 99.02
CDFTSVM Mean | 93.60 | 90.06 | 99.19
Upper | 95.45 | 90.54 | 99.30
Lower | 95.34 | 97.57 | 99.44
IFTSVM Mean | 96.38 | 97.93 | 99.50
Upper | 97.10 | 98.39 | 99.56
-12 -1 -08 -06 -04 02 0 02 04 06 08

(¢) Dual hyperplanes by TSVM

(d) Dual hyperplanes by CDFTSVM In the second experiment, the performance of IFTSVM

further tested by injecting noise into the training samples. The
numbers of training and test samples, respectively, are fixed
to 10000 and 1000, and different level of noise, i.e., 5% and
10%, is injected to the class of training samples. For example,
5% or 10% of the training samples are randomly picked and

Fig. 10. Generated hyperplane(s) by non-linear SVM, FSVM, TSVM,
CDFTSVM on Ripleys data set (adapted from [38]).

1063-6706 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2893863, IEEE

Transactions on Fuzzy Systems

IEEE..., VOL. 7?, NO. ??, AUGUST ??

flipped their class. The accuracy rates are shown in Table
XI. Obviously, the accuracy rates of all methods decrease by
raising the noise level. IFTSVM achieves the highest accuracy
rates for both noise-free and noisy data sets. The accuracy
rates of both QFAM and CDFTSVM dramatically drop from
97.15% (for 0% noise) to 94.71% (for 10% noise) and 99.19%
(for 0% noise) to 97.32% (for 10% noise), respectively.
However, this trend is slow for IFTSVM, which drops from
99.50% (for 0% noise) to 98.54% (for 10% noise). In general,
IFTSVM produces better results as compared with QFAM and
CDFTSVM for both noise-free and noisy data sets. This is
because of the capability of IFTSVM in reducing the effect of
noise and outliers.

TABLE XI
ACCURACY RATES (%) FOR THE CIRCLE-IN-THE-SQUARE PROBLEM WITH
THE 95% CONFIDENCE INTERVALS FOR DIFFERENT LEVEL OF NOISE

Noise(%) 0 5 10
Lower | 96.64 | 94.80 | 94.19
QFAM Mean | 97.15 | 9530 | 94.71
Upper | 97.46 95 94.38
Lower | 99.02 | 97.54 | 96.91
CDFTSVM | Mean | 99.19 | 97.81 | 97.32
Upper | 99.30 | 97.99 | 97.60
Lower | 99.44 | 98.45 | 98.40
IFTSVM Mean | 99.50 | 98.65 | 98.54
Upper | 99.56 | 98.90 | 98.67

V. CONCLUSION

In this paper, a new IFTSVM model, which is inspired by
IFN and FTSVM, for solving binary classification problems
has been proposed. The IFTSVM obtains two non-parallel
hyper-planes by solving two QPPs instead of one as in tradi-
tional SVM. It classifies an input sample based on both degrees
of membership and non-membership functions, which helps
to decrease the effect of noise and outliers. The effectiveness
of IFTSVM has been evaluated by eleven benchmarks and
two artificially generated data sets. The results of IFTSVM
were compared with those from the traditional SVM, FSVM,
TSVM, CDFTSVM, FAM, and QFAM and other state-of-
the-art classification algorithms. Overall, IFTSVM is able to
produce astonishing results. However, it is sensitive to C,
in which, if it is not chosen properly, IFTSVM produces
inferior results. Our future work is focused on enhancing the
structure of IFTSVM in order to solve imbalance classification
problems.
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