
IEEE TRANSACTIONS ON FUZZY SYSTEM 1

Fusion of Multi-RSMOTE with Fuzzy Integral to
Classify Bug Reports with an Imbalanced

Distribution
Rong Chen, Member, IEEE, Shi-Kai Guo, Xi-Zhao Wang*, Fellow, IEEE, and Tian-Lun Zhang

Abstract—With the help of automated classification, severe
bugs can be rapidly identified so that the latent damage to
software projects can be minimized. However, bug report datasets
commonly suffer from disproportionate number of category
samples. When presented with the situation of class imbalance,
most standard classification learning approaches fail to properly
learn the distributive characteristics of the samples and tend
to result in unfavorable performance to predict class label.
In this case, imbalanced learning becomes critical to advance
classification algorithms. In this paper, we propose an improved
synthetic minority oversampling technique to avoid the degraded
performance caused by class imbalance in bug report datasets.
Moreover, to lessen the chance of occasionalities in random
sampling process, we propose an repeated sampling technique to
train different but related classifiers. Finally, an ensemble algo-
rithm based on Choquet fuzzy integral is employed to combine
the wisdom of crowds and make better decisions. We conduct
comprehensive experiments on several bug report datasets from
real-world bug repositories. The results demonstrate that the
proposed method boosts the classification performance across the
classes of the data. Specifically, compared with various ensemble
learning techniques, the Choquet fuzzy integral achieves out-
standing results on integrating multiple random over-sampling
techniques.

Index Terms—class imbalance, fuzzy integral, bug report
identification, software quality.

I. INTRODUCTION

IN recent years, because of the rapid increment of software
development, software systems have become larger and

more complex, which directly causes numerous bugs to appear
during software development [1, 2]. To insure the reliability
of software systems, accurate recognition of bug reports has
become increasingly prominent. In bug triaging systems (e.g.,
Bugzilla [3], JIRA [4], and Mantis [5]), the information of
bug reports could help developers reproduce and repair the

This work is supported by the National Natural Science Foundation of
China under Grant 61672122, Grant 61602077, Grant 61772344 and Grant
61732011, the Public Welfare Funds for Scientific Research of Liaoning
Province of China under Grant 20170005, the Natural Science Foundation of
Liaoning Province of China under Grant 20170540097, and the Fundamental
Research Funds for the Central Universities under Grant 3132016348. (*
Corresponding author: Xi-Zhao Wang.)

R. Chen, S.-K. Guo, T.-L. Zhang are with the College of Information Sci-
ence and Technology, Dalian Maritime University, Dalian, 116206, China (e-
mail: shikai.guo@dlmu.edu.cn; rchen@dlmu.edu.cn; tlzhang@dlmu.edu.cn).

X.-Z. Wang is with the College of Computer Science and Soft-
ware Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
xizhaowang@ieee.org).

bugs, and effectively solve problems of software reliability.
The bug report with severe label tends to indicate that the
corresponding bug should be fixed as soon as possible, in this
case, the damage caused by severe bugs could be reduced and
mitigated, greatly. With the increasing amount of information
about bugs encountered in triaging system, some forms of
automation in identifying the severity of bug reports become
an overwhelming research [6].

In fact, bug report datasets are always characterized by im-
balanced distributions, whereas most classification approaches
expect equal misclassifying costs or balanced class distribu-
tion. As a result, such imbalanced bug report data tend to cause
degradation of performance in classification learning [6, 7, 8,
9]. To solve this problem, A. Lamkanfi et al.[7] manually se-
lected a small dataset with a balanced distribution from origi-
nal bug reports to insure that the classification approaches were
not hindered by the class imbalance. However, the bug reports
selected manually from imbalanced datasets could tend to
result in missing some critical information. To achieve robust
methods, Yang et al.[6] employed four imbalanced learning
strategies (ILS) (i.e., random under-sampling (RUS), random
over-sampling (ROS), synthetic minority over-sampling tech-
nique (SMOTE) and cost-matrix adjuster (CMA)) to recognize
the high-impact bug reports with class imbalance. Although
some promising benefits have shown in [6], there exist inherent
drawbacks in these imbalanced learnings. CMA is sensitive
to noise data [10]; RUS tends to miss some potentially
crucial data and lead to under-fitting issues; ROS often causes
over-fitting because some redundant data may be selected to
augment original dataset [11, 12, 13, 14]; in addition, SMOTE
suffers from a poor generalization ability due to its simple
linear sampling space [15]. Moreover, random sampling can
produce uncertainty, and some sampling results will not be in
agreement with real dataset distributions.

To solve these problems, an approach to fuse multiple
improved SMOTE with the Choquet fuzzy integral is pro-
posed to recognize the severity of bug reports characterized
by imbalanced distribution. First, the improved SMOTE, i.e.
rectangle SMOTE (RSMOTE) approach, is used to weaken the
imbalance ratio by generating minority-class samples, which
are randomly synthesized in a multi-dimensional rectangle
sample space. In addition, with two proposed constraints,
the synthetic minority-class bug reports can be generated
in a robust way. Secondly, to avoid the uncertainty caused
by random over-sampling, an repeated sampling technique

IEEE TRANSACTIONS ON FUZZY SYSTEM 2

is proposed to obtain multiple balanced datasets by using
RSMOTE. Then, several different classifiers are built on these
balanced datasets. At last, an ensemble method based on
Choquet fuzzy integral is employed to integrate these trained
classifiers to recognize the severity of bug reports [16]. Com-
prehensive experiments are conducted on three bug reposito-
ries, i.e., Eclipse [17], Mozilla [18], and GNOME [19]. These
experimental results indicate that RSMOTE could effectively
weaken the imbalanced distribution of datasets and improve
the generalization capabilities of classifiers. In addition, fusion
of multiple RSMOTE could effectively weaken the uncertainty
caused by random over-sampling, and boost the performance
of predicting the class label of bug reports.

Our contributions can be summarized as follows:
(1) We consider the imbalance phenomenon of bug reports

and propose an improved random oversampling approach,
named RSMOTE. RSMOTE is an random over-sampling
mechanism used to generate minority-class points from
high-dimensional sampling space, which is the main
omission in SMOTE [15]. The generalization abilities
of several different classification learning approaches are
significantly improved by the proposed method. In ad-
dition, two constraints are applied to provide a robust
way to generate new synthetic samples, i.e. scaling the
random over-sampling scope to a reasonable area and
distinguishing the majority-class points in a critical region.

(2) An approach to fuse multi-RSMOTE with Choquet fuzzy
integral is used to solve the uncertainty caused by random
oversampling. Several different but related datasets are
produced by an repeated sampling process. An ensem-
ble method based on Choquet fuzzy integral is used to
integrate the multi-classifiers trained over these balanced
datasets. To the best of our knowledge, this is the first
endeavor of such technique for exploring the fusion of
multiple RSMOTE with Choquet fuzzy integral to classify
bug reports.

(3) Two evaluation criteria are used in experimental part
to evaluate the proposed approach. The results on 16
components show that Choquet fuzzy integral ensemble
learning outperforms other popular ensemble methods,
such as majority voting, bagging, and Adaboost.

II. BACKGROUND KNOWLEDGE AND MOTIVATION

In Sections II.A and II.B, we introduce the automatic
bug report classification in software engineering and the
propaedeutic of the fuzzy integral, respectively. The motivation
of proposing the fusion of classifiers with a fuzzy integral
method to recognize the severity of bug reports characterized
by an imbalanced distribution is introduced in Section II.C.

A. Automatic Bug Report Classification in Software Engineer-
ing

Automatic bug reports classification technique can reduce
the latent damage to software projects.

Antoniol et al.[20] used three classifiers (Naive Bayes
classifier (NB), decision trees (J48), and logistic regression
(LR)) to classify the bug report. And they analyzed the

important features that have a greater impact on the classifica-
tion. Menzies et al.[21] used standard text mining methods
to classify the severity of NASA bug reports. In order to
improve the performance identifying high-impact bug reports,
Yang et al.[6] combined four widely used ILS with four
classification approaches. In order to recognize the severity
of Android bug reports with limited class label, Guo et al.[22]
proposed a knowledge transferring approach, the knowledge
acquired from different software projects (Eclipse, Mozilla,
and GNOME) is used to classify the severity of Android bug
reports. Xia et al.[23] proposed a method, named ELBlocker,
to identify the blocking bug reports with imbalanced distri-
bution. ELBlocker firstly trains the classifiers over multiple
disjoint datasets. Then, ELBlocker uses Estimate Threshold
approach to estimate the weight of each classifier. Finally,
all classification results are integrated to identify the blocking
bugs.

Xuan et al.[24] proposed a ranking approach to recommend
appropriate commenters to repair the bugs. This method is
based on analyzing the relationship between commenters and
bug comments. Anvik and Murphy [25] proposed an auto-
mated method to simplify the development process, which
could assist the triagers to recommend the component of
bug reports and developers. Tian et al.[26] performed feature
extraction on bug reports, and employed multi-factors (”tem-
poral”, ”related report”, ”severity”, ”textual”, ”author”, and
”product”) to identify the priority of bug reports. Zhang et
al.[2] proposed a more accurate approach to perform automatic
severity prediction and fixer recommendation. The top k his-
torical bug reports which are similar to a new one are searched
by using K-Nearest Neighbor and REP. The features of these
reports then are extracted for prediction and recommendation
algorithms.

Feng et al.[27] proposed three strategies to find bugs as
early as possible. The three strategies are diversity strategy,
risk strategy and compound strategy (DivRisk). For mobile
crowdsourcing testing, bug reports are often composed of
screenshots and text descriptions. Feng et al.[28] used multi-
objective to prioritize bug reports. One is to use Spatial
Pyramid Matching (SPM) approach to analyze similar screen-
shots; and the other one is to use natural language processing
techniques (NLP) to measure the distance between bug reports.
To overcome the local bias of bug reports, Wang et al.[30]
proposed a cluster-based method to cluster the similar bug re-
ports and trained the classifiers with most similar bug reports,
respectively. Then, they used ensemble approach to predict the
true fault bug reports. In their follow-up work, Wang et al.[29]
proposed an approach called Local-based Active Classification
(LOAF) to predict the true fault bug reports, which solves the
local bias problem and lacking of labeled bug reports problem.

B. Propaedeutic of Fuzzy Integral

Bug report processing in our paper is transferred to a
fusion problem of multiple classifiers. The training set for
each classifier is generated by a synthetic mechanism of
over-sampling with respect to minority class, i.e., for each
time, adding a number of new synthetic samples as minority

IEEE TRANSACTIONS ON FUZZY SYSTEM 3

and keeping the majority unchanged. This synthetic process
obviously indicates an interaction existing among the multiple
classifiers. As a fusion tool, fuzzy integral has the advan-
tages of modeling and handling interactions (such as the
sub-additivity and super-additivity) among the classifiers in
comparison with other fusion schemes [31, 32, 33, 34, 35].
Therefore, we select the fuzzy integral as a fusion tool, which
is confirmed experimentally to be successful in following
sections.

Definition 1. Given a nonempty set X, let Ω be the
σ−algebra consisting of a group of subset of X, the fuzzy
measure on Ω is a set function g : Ω → [0, 1], such that:

(1) g(∅) = 0, g(X) = 1.
(2) ∀A,B ⊆ Ω, if A ⊂ B, then g(A) ≤ g(B).
(3) If {An} ⊂ Ω, A1 ⊂ A2 ⊂ · · ·An, and

∪∞
n=1 An ∈ Ω,

then lim
n→∞

g (An) = g (
∪∞

n=1 An).
(4) If {An} ⊂ Ω, A1 ⊃ A2 ⊃ · · · ⊃ An, g (A1) < ∞, and∩∞

n=1 An ∈ Ω, then lim
n→∞

g (An) = g (
∩∞

n=1 An).

According to Definition 1, fuzzy measure does not re-
quire additivity, when g(A ∪B) < g(A) + g(B), A ∩B = ∅
holds well, the fuzzy measure is called sub-additivity, while
g(A ∪B) > g(A) + g(B), A ∩B = ∅ holds well, the fuzzy
measure is called super-additivity. For a finite state space X,
the power set of X is usually used as the σ−algebra Ω in
Definition 1, in this case, a set function satisfying the first
two conditions of Definition 1 is defined as fuzzy measure.
In ensemble learning, the set of classifiers is finite, therefore,
the fuzzy measure and fuzzy integral in our study are defined
over finite set. For a generalization of probability measure, the
monotonicity could replace the additivity of probability mea-
sures, as shown in equation (1). Regarding a non-additivitive
g, the sum of all individual classifier contribution may be more
or less than the contribution of integrated classifiers, as shown
in equations (2) and (3).

g (A ∪B) = g (A) + g (B) ,∀A,B ⊂ p (X) , A ∩B = ∅ (1)
g (A ∪B) ≥ g (A) + g (B) ,∀A,B ⊂ p (X) , A ∩B = ∅ (2)
g (A ∪B) ≤ g (A) + g (B) ,∀A,B ⊂ p (X) , A ∩B = ∅ (3)

Moreover, we always suppose in this paper let the fuzzy
measure be normal, i.e., g(∅) = 0, g(X) = 1. We will focus
on the special type of fuzzy measures, i.e., λ-fuzzy measure
which has been widely used in ensemble learnings [31, 34,
35, 36, 37, 38].

Definition 2. For arbitrary A,B ⊂ Ω, and A ∩B = ∅, g is
called a λ-fuzzy measure, if g satisfies

g (A ∪B) = g (A) + g (B) + λ× g (A)× g (B) (4)

where λ > −1 and λ ̸= 0. The value of λ can be computed
by the following equation:

Property 1. Suppose that g is a fuzzy measure,
Ai ∩Aj = ∅, (i ̸= j, 1 ≤ i, j ≤ m). Then

g

(
m∪
i=1

Ai

)
=

1
λ

(
m∏
i=1

(1 + λ× g (Ai))− 1

)
, λ ̸= 0

m∑
i=1

g (Ai) , λ = 0
(5)

Property 2. Let X = {x1, x2, · · · , xn}, if a λ-fuzzy mea-
sure g is greater than zero at least two individual point,
i.e., there exist {x∗

1} , {x∗
2} ⊂ X , such that g ({x∗

1}) > 0,
g ({x∗

2}) > 0.
Then λ can be solved by the following equation:

λ+ 1 =

n∏
i=1

(1 + λ× g ({xi})) (6)

It is easy to see

(1) If
n∑

i=1

g ({xi}) < 1, then λ > 0.

(2) If
n∑

i=1

g ({xi}) = 1, then λ = 0.

(3) If
n∑

i=1

g ({xi}) > 1, then −1 < λ < 0.

Definition 3. Suppose that f is a function X → [0,∞), and
g is the λ-fuzzy measure. Then Choquet fuzzy integral with
respects to g is defined as

(C)

∫
fdg =

∫ ∞

0

g (Ωα)dα (7)

where Ωα = {x |f (x) > α, x ∈ X }. and α ∈ [0,∞).

C. Motivation
With the continuous expansion of bugs in software devel-

opment, bug reports play a very important role to insure the
reliability of software [2, 39]. Bug reports can not only contain
the necessary information to reproduce and fix the problem,
but also contain statistical information to evaluate software
quality during software development. The severity label of a
bug report is used to determine how soon the bug needs to be
fixed, which can help to greatly reduce or mitigate the damage
caused by severe bugs.

Due to the huge amount of information about bugs reported
by bug tracking systems, there is an increasing need to
introduce some form of automation in identifying the severity
of bug reports [6, 40, 41, 42]. However, original bug report
datasets are often characterized by imbalanced distributions,
which hinder traditional classification learning. Moreover, the
abilities of most imbalanced learning are limited by their
inherent drawbacks, e.g. missing crucial data and replicated
redundant data. In this case, we propose an imporved over-
sampling approach to address these issues in a robust manner
[7, 8, 43, 44]. In addition, to integrate several different but
related classifiers trained by a multiple sampling technique,
an ensemble approach based on Choquet fuzzy integral is
introduced in our method.

III. METHODOLOGY
In this section, we present the proposed model to predict

the severity label of bug reports.

IEEE TRANSACTIONS ON FUZZY SYSTEM 4

Classifier N

Classifier 2

Classifier 1

F
u

zz
y

 I
n

te
g

ra
l

Non-Severe Severe

The Severity of bug

reports

Majority

class samples

M
in

o
ri

y
 c

la
ss

sa
m

p
le

s
U

si
n

g
 R

S
M

O
T

E

to
 g

en
er

a
te

 N

g
ro

u
p

s

New bug

report

Dataset after preprocessing

Samples in minority-class

Samples in majority-class

New synthetic samples of

minority-class

Fig. 1. The entire framework of our approach to address imbalanced issues in bug reports recognition.

A. Model Description

Based on the motivation described in section II.C, we
propose an approach to fuse multi-RSMOTE with the Choquet
fuzzy integral to recognize bug reports with class imbalance.
As Figure 1 shows, the framework is composed of two phases:
the balance-sample phase and the identification phase. In the
balance-sample phase, we firstly convert bug reports into a
uniform textual features by using text preprocessing [22].
Then, RSMOTE is used to weaken the imbalanced ratio of
bug reports (cf. Subsection IV.B). To lessen the uncertainty
caused by random over-sampling, in identification phase, we
use the RSMOTE approach to generate multiple balanced
datasets. Then, Choquet fuzzy integral is used to fuse multi-
classifiers trained by multiple balanced datasets, respectively
(cf. Subsection IV.D). Our approach can not only enhance
the generalization ability of oversampling method but also
improve the performance of predicting the class label of bug
reports.

B. RSMOTE Approach

We detailly introduce the improved random over-sampling
approach (RSMOTE) to balance the bug report datasets in
this section. As can be seen in Figure 2.(a), the new synthetic
minority-class sample is randomly generated by linear inter-
polation between two minority-class samples via the SMOTE
approach. Instead of a simple linear sampling space, the new
synthetic minority-class samples are randomly generated in
a multi-dimensional rectangle area in RSMOTE approach.
Finally, two constrains in RSMOTE determine whether the
new synthetic minority-class samples to be used to augment
the original datasets. The first constraint is scaling the random
over-sampling scope to a reasonable area. The other constraint

Algorithm 1 RSMOTE Algorithm
Input:

Input the original bug reports (DT), the non-severe bug
reports (T), the equilibrium number (N), the number of
features (n), and the number of nearest neighbors (k).

Output:
S = DT ∪ P ′ (virtual non-severe samples).

1: Initialize the virtual samples P ′;
2: For each Xi in T, generate the virtual non-severe samples

to P ′;
(a) Calculate the Euclidean distances (R) between Xi and

all other non-severe samples;
(b) Randomly select Y SN = {Y1, · · · , Yj , · · · , YN} from

the k nearest neighbor samples based on the R values;
(c) For each Yj ∈ Y SN , randomly generate a new non-

severe sample X ′
j from an n-dimensional rectangle

area with Xi and Yj as the diagonal;
3: Judge whether X ′

j satisfies constraints C1 and C2 specified
below;
(a) If the constraints are satisfied, add X ′

j to P ′;
(b) If not, GOTO Step 2 (c) to regenerate X ′

j ;
4: return S = DT ∪ P ′.

is distinguishing the majority-class points in a critical region.
Thus, the new synthetic samples can be generated in a robust
way. Compared with SMOTE, the generalization ability of
oversampling is significantly improved by using RSMOTE due
to reasonable constraints. In addition, one can easily note that
ROS and SMOTE are the special cases of RSMOTE.

We will introduce the RSMOTE approach and the approach
fusing multi-RSMOTE with Choquet fuzzy integral in sections

IEEE TRANSACTIONS ON FUZZY SYSTEM 5

(a) SMOTE (b) RSMOTE

Original minority-

class samples

Original majority-

class samples

New synthetic

minority-class samples

Fig. 2. Diagrams of (a) SMOTE and (b) RSMOTE. Blue triangle represents
original major-class samples, green dots represents original minority-class
samples, red dots represents new synthetic minority-class samples. Lines
and rectangles represent the sampling space of the SMOTE and RSMOTE
approaches, respectively.

III.B and III.D respectively.
In Step 1, the set P ′ is initialized. In Step 2, we gen-

erate the new synthetic bug reports to P ′. The number
of remaining samples is m, and the attributes of each Xi

can be represented as (xi1, · · ·xit, · · ·xin), where i ∈ [1,m]
and t ∈ [1, n]. Similarly, the attributes of each Yj can be
represented as {yj1, · · · yjt, · · · , yjn}, where j ∈ [1, N] and
t ∈ [1, n]. After sufficient iterations, the RSMOTE approach
generates a new virtual sample set, which can be represented as{
X ′

1, · · · , X ′
j , · · ·X ′

N

}
, where the attributes of each X ′

j can be
represented as

{
x′
j1, · · · , x′

jt, · · ·x′
jn

}
, where j ∈ [1, N] and

t ∈ [1, n].
In the RSMOTE approach, the interval in which each x′

jt

is generated between
(
z1jt, z

2
jt

)
, which can be calculated as

follows:

z1jt = xjt −
1

2
× |yjt − xjt| (8)

z2jt = xjt +
1

2
× |yjt − xjt| (9)

where j ∈ [1, N], t ∈ [1, n], and |yjt − xjt| represents the
absolute value of the difference in attribute values between
yjt and the sample xjt.

The attributes of the newly generated X ′
j can be calculated

as follows:

x′
jt = xjt + random(0, 1)×

(
z2jt − z1jt

)
(10)

where j ∈ [1, N], t ∈ [1, n], random(0, 1) represents the gen-
eration of an arbitrary number between 0 and 1.

In Step 3, we judge whether X ′
j satisfies the two constraints

specified below. When both of these constraints are satisfied,
X ′

j is added to P ′. Otherwise, X ′
j is regenerated.

Constraint C1: Let Dis
(
X ′

jXi

)
denote the Euclidean

distance between X ′
j and Xi, and let Dis (YjXi) denote the

Euclidean distance between Yj and Xi. When Dis (YjXi) is
greater than Dis

(
X ′

jXi

)
, this constraint is satisfied.

Dis
(
X ′

jXi

)
=
∥∥X ′

j −Xi

∥∥ (11)
Dis (YjXi) = ∥Yj −Xi∥ (12)

Constraint C2: We calculate the Euclidean distances (R)
between X ′ and all other original bug reports (DT). Then,

we find the nearest-neighbor bug report sample M. When the
severity of M is non-severe, this constraint is satisfied.

In Step 4, the RSMOTE approach returns the balanced set
of bug reports, S = DT ∪ P ′.

C. Case Study of RSMOTE
From Figure 2, we can see that the RSMOTE approach for

generating new synthetic samples can be more flexible and
have a wider range. It can make the distribution of the new
synthetic minority-class samples be more uniform and reason-
able in sample space, thereby improving the generalization
capability of the classifiers.

To more intuitively represent the improvement of the
RSMOTE approach over other ILS (RUS, ROS, and SMOTE),
we take the dataset (Core-XPConnect (Mozilla)) in Table I as
an example. We use the Truncated singular value decompo-
sition (TSVD) approach to reduce the dimensionality to give
visual comparison. TSVD is a matrix factorization technique,
which is a variant of singular value decomposition (SVD) [46,
47, 59]. Unlike traditional SVD, TSVD only calculates the first
k largest singular values, and other singular values are set to
0.

First, we use the RSMOTE, SMOTE, RUS and ROS ap-
proaches to remedy the imbalanced distributions character-
izing Core-XPConnect (Mozilla). Then, we use the TSVD
approach to reduce the multi-dimensional samples into three-
dimensional samples. As shown in Figure 3, Original repre-
sents the original distribution of bug reports, and RSMOTE,
RUS, ROS, and SMOTE represent the distributions of bug
reports balanced by ILS. Green dots indicate minority-class
samples, and yellow dots indicate majority-class samples.
From Figure 3, we can see that the dataset balanced by
the RSMOTE approach achieves better distribution in sample
space, comparing with Original, SMOTE, RUS, and ROS.
RUS removes some majority-class samples from original
dataset, in this way, RUS tends to result in shrinking size of
training dataset and missing crucial samples. In addition, ROS
adds the duplicate of some minority-class samples into the
original dataset, however some noise and redundant samples
may be augmented to hinder the classification learning.

SMOTE tends to lead the occurrence of overlapping be-
tween categories because SMOTE generates new instances
for each original minority sample without consideration to
neighboring samples. Moreover, in SMOTE algorithm, the
synthetic instance is created along a linear space, which causes
the problem of under generalization for high-dimensional
instance space. To generate samples in robust manner, the
proposed RSMOTE conducts two improvements. One is that
RSMOTE breaks the ties introduced by simple linear sampling
space and therefore the new synthetic samples generated by
our proposed method have a reasonable distribution in feature
space of minority class instances, as shown in Figure 3. The
other is that synthetic majority class instances are eliminated
in RSMOTE, in this way, a classifier could properly learn the
distributive characteristics of minority class instances from the
dataset balanced by RSOMTE.

From the above description, it can be observed that the
RSMOTE algorithm has the following advantages:

IEEE TRANSACTIONS ON FUZZY SYSTEM 6

Fig. 3. The three-dimensional distribution of Core-XPConnect by using different ILS.

(1) After over-sampling by the RSMOTE algorithm, new syn-
thetic examples are randomly generated in the minority-
class space of the original dataset. Compared with
SMOTE, RSMOTE eliminates the limitation imposed by
the linear interpolation between the minority-class sam-
ples, which makes the RSMOTE be more scientific and
practical. In addition, the process of RSMOTE consists of
two constraints that can provide a robust way to generate
new synthetic samples.

(2) Compared with RUS, the RSMOTE approach is applicable
for data-driven classification learning, due to the oversam-
pling technique keeping the size of majority-class and
increasing minority-class samples. Moreover, RSMOTE
gets rid of the overfitting risk which often leads ROS to
correspond too closely to a particular set of data.

D. Fusion of Multi-RSMOTE with Fuzzy Integral (FMR-FI)

Analogously to most of data level approaches in imbal-
anced learning [11, 13, 45, 48, 49], some occasionalities
encountered in the proposed RSMOTE algorithm tend to
hinder the classification learning, e.g., the replicated data
from noise or redundant instances. To lessen the chance of
occasionalities in synthetic sampling process of RSMOTE, a
multiple sampling technique will be proposed in this section.
Concretely, multiple sampling processes of RSMOTE are run
on an imbalanced dataset, then different balanced datasets
are generated and employed to train classifiers. Finally, an
ensemble-based algorithm combines the wisdom of crowds
(i.e., the trained classifiers) to make better decisions. Due to
a strong interaction existing among the individual classifiers,

we choose the Choquet fuzzy integral to integrate these trained
classifiers.

To ease the presentation, some of notations
will be established here. Given a training dataset
Tr and a testing dataset Te, we define that
Tr = {x |x ∈ Rm} and Te = {x |x ∈ Rm} , where
x is an example in the m-dimensional feature space,
and La = {La1, · · · , Laj , · · ·LaC} is a set with C-
class labels. Furthermore, we define a set of classifiers
E= {E1, · · · , Ei, · · ·EL} in which each classifier is trained
over a Tri ∈ subTrs = {Tr1, · · · , T ri, · · · , T rL}, L is the
number of training datasets processed by RSMOTE. A class
label from La is assigned to x by Ei whose output can be
considered as a C-dimensional vector of support degree for
each category, i.e.,

Ei (x) = (ei1 (x) , ei2 (x) , · · · , eij (x) , · · · , eiC (x)) (13)

where eij (x) ∈ [0, 1] (1 ≤ i ≤ L, 1 ≤ j ≤ C) denotes the
support degree assigned by classifier Ei that x belongs to
class Laj . In this paper, eij (x) is the posterior proba-
bility p (Laj |x) that has the following properties, for all
j = 1, · · · , C:

eij (x) ≥ 0,

C∑
j=1

eij (x) = 1 (14)

Afterwards, some of related definitions will be presented as
follows.

IEEE TRANSACTIONS ON FUZZY SYSTEM 7

Definition 4. Given E= {E1, · · · , Ei, · · ·EL},
La = {La1, · · · , Laj , · · ·LaC}, and Te = {x |x ∈ Rm} , for
each x ∈ Te, the decision profile matrix is

DP (x) =

e11 (x) · · · e1j (x) · · · e1C (x)

...
...

...
...

...
ei1 (x) · · · eij (x) · · · eiC (x)

...
...

...
...

...
eL1 (x) · · · eLj (x) · · · eLC (x)

 (15)

where the ith row of DP represents the support degree as
mentioned above, and the jth column of DP represents the
support degree estimated by E for class Laj .

Definition 5. Given E= {E1, · · · , Ei, · · · , EL}, the power
set of E is represented as P (E). The fuzzy measure on E can
be represented as a set function g: P (E) → [0, 1], which is
shown as follows:

g (∅) = 0, g (E) = 1,

For ∀A,B ⊆ E, if A ⊂ B, then g (A) ≤ g (B) .
(16)

Definition 6. Given E= {E1, · · · , Ei, · · · , EL}, ∀Ei ∈ E,
i ∈ [1, L], let gi = g ({Ei}). gi represents the fuzzy density
of classifier Ei. We use the equation (17) to compute gi:

gi =
p (Ei)

L∑
k=1

p (Ek)

× dsum (17)

where p (Ei) represents the validation accuracy of Ei and
dsum is the desired sum of fuzzy densities.

Definition 7. Given E= {E1, · · · , Ei, · · · , EL},
Ak = {E1, E2, · · · , Ek} ⊂ E (1 ≤ k ≤ L). λ-fuzzy measure
g defined on Ak could be calculated by the following
formulas:

g (A1) = g ({E1}) = g1,

g ({Ek}) = gk,

g (Ak) = gk+g (Ak−1) + λ× gk × g (Ak−1)

(18)

where λ > −1 and λ ̸= 0. The value of λ can be computed
by equation (19):

λ+ 1 =

L∏
i=1

(
1 + λ× gi

)
(19)

Definition 8. Given E= {E1, · · · , Ei, · · ·EL}, g is the
fuzzy measure on E, the Choquet fuzzy integral of function
f : E → [0, 1] with respect to g is defined as follows [16].

(C)

∫
fdg =

L∑
i=1

(f (Ei)− f (Ei−1))× g (Ai−1) (20)

where 0 ≤ f (E1) ≤ f (E2) ≤ · · · ≤ f (EL) ≤ 1, f (E0) = 0.
The FMR-FI algorithm is composed of two phases: training

phase and integrated phase, which are descirbed in detail as
follows.

Algorithm 2 FMR-FI Algorithm
Input:

Training set Tr, x ∈ Te, The number of balanced datasets
(L)

Output:
The class label of x.

1: Training phase:
(a) Use the RSMOTE algorithm to generate subTr by Tr;
(b) Train the classifiers by subTr, respectively;
(c) Calculate the fuzzy density gi of the classifier Ei;
(d) Calculate the λ value.

2: Integrated phase:
(a) For ∀x ∈ Te, calculate the decision profile DP (x);
(b) Each column of DP is sorted in ascending order to

obtain a new decision profile matrix DP ′;
(c) Calculate the fuzzy measure g (Ai) based on DP ′;
(d) Calculate uj (x) using equation (20).

3: return the class label of x.

In Step 1, we train the classifiers and calculate the fuzzy
densities based on the classification results of each classifier.

(a) We use the RSMOTE to generate L training subsets from
Tr, denoted by subTrs = {Tr1, · · · , T ri, · · ·TrL}.

(b) Then, we train a classifier Ei (i = 1, 2, · · · , L) on each
Tri in subTrs to obtain a set of trained classifiers
Eb = {E1, E2, · · · , EL}.

(c) We calculate the fuzzy density gi of each classifier using
equation (17).

(d) Finally, we calculate the value of λ using equation (19).

In Step 2, we calculate the class label of each x in Te using
fuzzy integrals.

(a) For each x in Te, we can get a decision profile DP (x)
using equation (15).

(b) We sort each column of DP in ascending order to obtain a
new decision profile matrix DP ′. Then, the kth column of
DP ′ is [ez1k, ez2k, · · · , ezLk]

T , where ezLk is the highest
support degree and ez1k is the lowest support degree. The
fuzzy densities of the corresponding classifiers are denoted
by (gz1 , gz2 · · · , gzL)

(c) Then, we let g (A1) = gz1 and iteratively calculate g (Ai)
using equation (18), where i = 1, 2, · · · , L.

(d) By calculating uj (x) using equation (20), we obtain
{u1 (x) , u2 (x) , · · · , uj (x) , · · · , uC (x)}, where
j = 1, 2, · · · , C.

In Step 3, we compute the category label j∗ of each x based
on equation (21):

j∗ = arg max
1≤j≤C

{uj (x)} (21)

IV. EXPERIMENTAL DESIGN

Several experiments are conducted to validate the perfor-
mance of FMR-FI, and the experimental design is described
in this section.

IEEE TRANSACTIONS ON FUZZY SYSTEM 8

Tokenization
Stop-words

removal
Stemming

Keyword

Dictionary

Keyword

Vector

Testers

...

Bug Reports

Summary

Description Words
Remove

Stop-words
Cleaned Words

Keyword

Dictionary

Control Flow Data flow

Keyword

Vector Data

Dataset

Fig. 4. The workflow of bug report processing.

A. Experimental Design

We verify the performance of FMR-FI on Eclipse, Mozilla,
and GNOME, which all use the same bug tracking system
(Bugzilla). In this study, sixteen datasets are selected from
three bug repositories to validate the FMR-FI approach, as
presented in Table I. The datasets are different from each
other in the application domain. According to the results of
[7, 39], the summaries of bug reports contain not only useful
information but also a small amount of noise. Thus, we select
the summaries as the features of bug reports. The average
imbalance degrees of Eclipse, Mozilla, and GNOME are 2.66,
4.32, and 6.00, respectively. Especially for the Terminal-
General of GNOME, the imbalance degree is as high as 12.67.

In the bug repositories (Eclipse, Mozilla and GNOME), the
severity level of bug reports is designated as trivial, minor,
normal, major, critical and blocker. As Lamkanfi et al. argued
in [2], the normal severity status is a default option, thus this
status tends to be ignored in related works. In our experiment,
the setting of the severity-level is as the same as [2, 39, 60],
in which the non-severe class includes trivial and minor, and
the severe class includes major, critical, and blocker.

In our study, the text preprocessing of bug reports can be
summarized as the following five steps, i.e., (1) tokenization;
(2) stop-word removal; (3) stemming; (4) keyword dictionary;
and (5) keyword vector, which is clearly shown in Figure 4.

B. Experimental Setup

In our experiment, we use four well-known ILS (RUS, ROS,
SMOTE and CMA) [6] as baseline algorithms to compare with
RSMOTE. In addition, we use Weka [61] to implement four
popular classification algorithms (NB, KNN, J48, and Random
Tree (RT)).

There are two integration approaches for the FMR-FI.
The one is to integrate the same classifiers, another is to
fuse different classifiers. In the both ways, the winners in
SubTrs are selected as the objects to be integrated. And, we
will present that the proposed method can further improve
the performance of these selected classifiers. Moreover, we
compare the ensemble performance of the FMR-FI approach
with three well-known standard ensemble methods: majority
voting, bagging, and AdaBoost [52-56].

Stratified three-fold cross-validation is applied in our exper-
iment, which could keep the distributive characteristics during
each training iteration [50, 51, 57, 58, 62]. In experimental
part, k represents the number of nearest neighbor minority-
class samples for each sampling center point. Due to lacking
approach to optimize this value, as most related work [6], k is
an empirical value. In our study, k is set to 5. In addition, N
is used to control the number of new synthetic minority-class
samples. N is calculated by the imbalance degree (M), which
can be expressed as N=round(M)-1, where round (M) denotes

TABLE I
THE DATASET OBTAINED FROM THE BUG REPOSITORIES.

Project Product-Component Non-severe bugs Severe bugs Number of Words Imbalance Degree (M)

Eclipse

Platform-UI 1173 2982 2822 2.54
JDT-Core 512 1315 1580 2.57

JDT-Debug 291 706 1140 2.43
Platform-Debug 232 404 869 1.74

CDT-Core 114 458 817 4.02
PDE-UI 297 791 1055 2.66

Mozilla

Core-Layout 960 2747 2967 2.86
Core-XPCOM 149 748 1489 5.02

Core-XUL 122 499 1178 4.09
Core-XPConnect 40 212 681 5.3

GNOME

Evolution-Calendar 626 2896 1669 4.63
Terminal-General 264 3346 2082 12.67

Ekiga-General 156 1482 1349 9.5
Evolution-Contacts 644 1788 1380 2.78

Evolution-Shell 495 1210 1203 2.44
Panel-Panel 330 1301 1135 3.94

IEEE TRANSACTIONS ON FUZZY SYSTEM 9

an approximate integer to M. And, the M of each dataset
is shown in Table I. RSMOTE runs oversampling process N
times to balance the class distribution.

C. Evaluation Metrics

In our study, four evaluation metrics (accuracy, precision,
recall and the F-measure) is used to evaluate the performance
of FMR-FI [21]. The four evaluation metrics can be computed
by the confusion matrix, as presented in Table II.

TABLE II
CONFUSION MATRIX, WHICH CAN BE USED TO CALCULATE THE

EVALUATION METRICS.

Confusion Matrix
Actual Severity

non-severe severe

Predicted Severity
non-
severe

TP: true positives FP: false posi-
tives

severe FN: false nega-
tives

TN: true nega-
tives

(1) Accuracy: The accuracy represents the proportion of bug
reports correctly classified to the total number of bug
reports.

Accuracy =
TP + TN

TP + FP + TN + FN
. (22)

(2) Precision: The precision represents the proportion of all
bug reports that are predicted to be either non-severe or
severe and are actually non-severe or severe, respectively.

Pr ecision =
TP

TP + FP
. (23)

(3) Recall: The recall represents the proportion of all bug
reports that are actually non-severe or severe and are
correctly predicted to be non-severe or severe, respectively.

Recall =
TP

TP + FN
. (24)

(4) F-measure: F-measure represents the balance and dis-
crepancy between precision and recall, which can be
computed using the precision and recall. The F-measure
has a property whereby if either the precision or recall is
low, the F-measure also decreases.

F −measure =
2× Pr ecision× Recall

Pr ecision+Recall
. (25)

V. EXPERIMENTAL RESULTS

In this section, we discuss the the specific research questions
based on the experimental results.

RQ1: Which strategy is the best? We compare RSMOTE
with the other ILS in terms of the severity prediction perfor-
mance for bug reports with an imbalanced severity distribution.

In this experiment, we compared the results of RSMOTE
approach with the original bug reports and the results of
RUS, ROS, SMOTE, and CMA, as shown in Tables III-VIII.
Afterward, for original datasets and each dataset balanced by
ILS (RUS, ROS, CMA, SMOTE, and RSMOTE), we used
four classifiers (NB, KNN, FT, and J48) to predict the severity

of bug reports and evaluated their performances. Altogether,
the six ILS and four classification algorithms considered here
yielded a total of 24 variants (i.e., combinations of one of the
ILS and one of the classification algorithms). Therefore, to
address this first research question, we wished to investigate
which variant has the best performance for identifying the
severity of bug reports. We used the accuracy and F-measure
as evaluation metrics to compare all 24 variants. The detailed
results of Eclipse and GNOME (i.e., accuracy and F-measure
values) are shown in ”supplementary.pdf”, where we retain the
original number and name of the tables. From all results in
these tables, we can draw several conclusions in the following.

In Tables III-V, we compare the accuracy of classifying the
severity of bug reports characterized by imbalanced distribu-
tions. With RSMOTE, the classifiers can achieve the highest
maximum accuracy in predicting the severity of bug reports.
As shown in Table IV, the maximum accuracies of RSMOTE
for four Mozilla components are 86.85%, 91.67%, 73.44%
and 84.54%. Besides, the maximum classification accuracy
achieved with RSMOTE for Mozilla is higher than those
achieved with the others, i.e., Original, RUS, ROS, CMA,
and SMOTE, the increments are 5.01%, 13.90%, 3.36%,
2.41%, and 3.57%, respectively. As shown in the AV G ACC
columns in Tables III-V, the RSMOTE approach can also yield
a better average accuracy than the other ILS. In Table IV,
the average accuracy of RSMOTE is also higher than original
dataset and other ILS (RUS, ROS, CMA, and SMOTE), the
increments are 4.51%, 26.72%, 8.14%, 3.10%, and 3.96%,
respectively.

When classifying bug reports characterized by an imbal-
anced distribution, a classification algorithm may be prone to
the majority category. Therefore, its classification performance
cannot be objectively reflected by the classification accuracy
[49]. In this experiment, we compared the classification effect
(F-measure) achieved in bug report severity prediction for each
component from the Eclipse, Mozilla and GNOME projects,
as shown in Tables VI-VIII.

In Tables VI-VIII, we compare the performance of the
RSMOTE approach with the performances of other ILS when
predicting the severity of bug reports following imbalanced
distributions. As shown in the MAX F columns of Tables
VI-VIII, the maximum F-measures produced by RSMOTE
are higher than that of others ILS (RUS, ROS, CMA and
SMOTE). For example, in Table VII, the average F-measure
of RSMOTE is in excess of those of Original, RUS, ROS,
CMA, and SMOTE, and the increments are 5.32%, 20.13%,
6.95%, 3.31%, and 3.92%, respectively.

These experiments suggest that the RSMOTE approach can
effectively balance bug reports datasets, thereby improving the
performance of classifiers for bug report severity prediction.
We also observe that the performance predicting the severity
of Mozilla bug reports is higher than that for Eclipse bug
reports, while the performance on GNOME bug reports is the
best. In regard to the average classification performance for
predicting the severity of bug reports, the NB classifier with
the RSMOTE approach is the most suitable for predicting the
severity of bug reports from Eclipse and Mozilla, whereas
the KNN classifier with the RSMOTE approach is the most

IEEE TRANSACTIONS ON FUZZY SYSTEM 10

TABLE IV
THE ACCURACY OF RSMOTE TO PREDICT THE SEVERITY OF Mozilla.

Moizlla Core XPCOM

NB KNN RT J48 MAX ACC AVG ACC
Original 67.89 82.94 77.93 83.28 83.28 78.01
RUS 69.57 63.55 58.19 52.17 69.57 60.87
ROS 66.89 82.61 77.93 58.19 82.61 71.41
CMA 82.94 73.58 85.62 86.62 86.62 82.19
SMOTE 81.61 77.59 78.26 83.95 83.95 80.35
RSMOTE 84.62 76.59 85.06 86.85 86.85 83.28

Moizlla Core XPConnect

NB KNN RT J48 MAX ACC AVG ACC
Original 75.00 51.19 85.71 84.52 85.71 74.11
RUS 83.33 44.05 61.90 64.29 83.33 63.39
ROS 75.00 50.00 86.90 89.29 89.29 75.30
CMA 89.29 33.33 85.71 89.29 89.29 74.41
SMOTE 85.71 40.48 86.90 88.10 88.10 75.30
RSMOTE 86.90 41.67 86.51 91.67 91.67 76.69

Mozilla Core Layout

NB KNN RT J48 MAX ACC AVG ACC
Original 69.82 71.76 71.76 69.58 71.76 70.73
RUS 69.58 66.50 64.56 59.06 69.58 64.93
ROS 70.06 71.52 70.15 68.28 71.52 70.00
CMA 71.52 55.10 70.71 70.15 71.52 66.87
SMOTE 73.14 65.13 71.36 72.33 73.14 70.49
RSMOTE 72.60 70.16 71.17 73.44 73.44 71.84

Moizlla Core XUL

NB KNN RT J48 MAX ACC AVG ACC
Original 74.40 74.06 76.33 79.71 79.71 76.13
RUS 72.95 43.00 48.31 65.22 72.95 57.37
ROS 73.91 82.13 71.01 61.84 82.13 72.22
CMA 80.68 81.16 77.29 79.23 81.16 79.59
SMOTE 76.81 62.80 78.26 79.71 79.71 74.40
RSMOTE 79.07 84.54 79.71 79.23 84.54 80.64

Moizlla ALL
NB KNN RT J48 MAX ACC AVG ACC

AVG. 76.39 64.39 75.30 75.67 80.48 72.94

TABLE VII
THE F-measure OF RSMOTE TO PREDICT THE SEVERITY OF Mozilla.

Moizlla Core XPCOM

NB KNN RT J48 MAX F AVG F
Original 0.72 0.78 0.76 0.78 0.78 0.76
RUS 0.73 0.68 0.63 0.57 0.73 0.65
ROS 0.71 0.78 0.75 0.64 0.78 0.72
CMA 0.81 0.77 0.82 0.84 0.84 0.81
SMOTE 0.80 0.80 0.80 0.80 0.80 0.80
RSMOTE 0.84 0.79 0.85 0.85 0.85 0.83

Moizlla Core XPConnect

NB KNN RT J48 MAX F AVG F
Original 0.78 0.56 0.82 0.77 0.82 0.73
RUS 0.85 0.48 0.67 0.69 0.85 0.67
ROS 0.78 0.55 0.84 0.89 0.89 0.77
CMA 0.90 0.34 0.86 0.89 0.90 0.75
SMOTE 0.86 0.44 0.86 0.88 0.88 0.76
RSMOTE 0.88 0.45 0.86 0.91 0.91 0.78

Mozilla Core Layout

NB KNN RT J48 MAX F AVG F
Original 0.71 0.71 0.71 0.71 0.71 0.71
RUS 0.71 0.69 0.67 0.61 0.71 0.67
ROS 0.71 0.70 0.69 0.70 0.71 0.70
CMA 0.72 0.57 0.71 0.70 0.72 0.68
SMOTE 0.72 0.67 0.71 0.72 0.72 0.71
RSMOTE 0.71 0.72 0.72 0.73 0.73 0.72

Moizlla Core XUL

NB KNN RT J48 MAX F AVG F
Original 0.76 0.82 0.73 0.72 0.82 0.76
RUS 0.74 0.45 0.52 0.69 0.74 0.60
ROS 0.75 0.83 0.69 0.65 0.83 0.73
CMA 0.79 0.81 0.78 0.76 0.81 0.79
SMOTE 0.75 0.67 0.77 0.75 0.77 0.74
RSMOTE 0.78 0.83 0.79 0.76 0.83 0.79

Moizlla ALL
NB KNN RT J48 MAX F AVG F

AVG. 0.77 0.66 0.75 0.75 0.80 0.73

IEEE TRANSACTIONS ON FUZZY SYSTEM 11

suitable for predicting the severity of bug reports for the
GNOME bug repository. In general, for individual software
components, different classification variants achieve different
performances in predicting the severity of bug reports. Thus,
in the following experimental part, we use the variant with the
best performance as a baseline to compare the performance of
our proposed approach.

RQ2: Can the fuzzy integral approach improve the stability
of RSMOTE when predicting the severity of bug reports
characterized by an imbalanced distribution?

As discussed in RQ1, RSMOTE can effectively alter the size
of the bug report datasets and provide the same proportion
of balance. In this research, the evaluation metrics (namely,
accuracy and F-measure) are used to verify the stability of the
approach combining fuzzy integral and RSMOTE. As shown
in the experimental results, the fusion method could improve
the stability of RSMOTE in most cases.

As shown in Figures 5-7, the performances achieved by
using the FMR-FI approach in integrating the different clas-
sifiers are better than those achieved by integrating the same
classifiers and are better than the results achieved by using
RSMOTE alone. In Figure 5, the average accuracies achieved
by using the FMR-FI approach for integrating different clas-

sifiers to classify the severity of bug reports for six Eclipse
components are higher than those achieved by using RSMOTE
alone, the increments are 7.71%, 9.03%, 1.18%, 9.82%,
4.51%, and 8.26%. The corresponding improvements of the
average F-measure are 6.94%, 7.41%, 2.56%, 12.33%, 5.63%,
and 9.46%, respectively. In Figure 6, the average accuracies
achieved by using the FMR-FI approach for integrating differ-
ent classifiers to classify the severity of bug reports for four
Mozilla components are higher than those achieved by using
RSMOTE alone, the increments are 1.66%, 0%, 10.06%, and
4.70%. The corresponding increments of average F-measure
are 4.71%, 1.10%, 10.96%, and 3.61%, respectively. In Figure
7, the average accuracies achieved by using the FMR-FI
approach for integrating different classifiers to classify the
severity of bug reports for six GNOME components are higher
than those achieved by using RSMOTE alone, the increments
are 3.26%, 1.43%, 0.06%, 10.90%, 1.48%, and 1.42%. The
corresponding improvements of average F-measure are 2.30%,
1.05%, 0%, 8.24%, 2.41%, and 12.05%, respectively.

Thus, these experiments show that the FMR-FI approach
for integrating different classifiers can provide reliable per-
formance in classifying the severity of bug reports in the
Eclipse, Mozilla and GNOME bug repositories. This improve-

0 10 20 30 40 50 60 70 80 90 100

JDT_Debug

CDT_Core

JDT_Core

PDE_UI

Platform_Debug

Platform_UI

AVG.

(a). Accuracy

RSMOTE FMR-FI (Same Classifiers) FMR-FI (Different Classifiers)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JDT_Debug

CDT_Core

JDT_Core

PDE_UI

Platform_Debug

Platform_UI

AVG.

(b). F-measure

RSMOTE FMR-FI (Same Classifiers) FMR-FI (Different Classifiers)

Fig. 5. The performance of predicting the severity of Eclipse bug reports.

0 10 20 30 40 50 60 70 80 90 100

Core_XPCOM

Core_XPConnect

Core_Layout

Core_XUL

AVG.

(a). Accuracy

RSMOTE FMR-FI (Same Classifiers) FMR-FI (Different Classifiers)

0 0.2 0.4 0.6 0.8 1

Core_XPCOM

Core_XPConnect

Core_Layout

Core_XUL

AVG.

(b). F-measure

RSMOTE FMR-FI (Same Classifiers) FMR-FI (Different Classifiers)

Fig. 6. The performance of predicting the severity of Mozilla bug reports.

IEEE TRANSACTIONS ON FUZZY SYSTEM 12

70 75 80 85 90 95 100

Panel_Panel

Terminal_General

Ekiga_General

Evolution_Calendar

Evolution_Contacts

Evolution_Shell

AVG.

(a). Accuracy

RSMOTE FMR-FI (Same Classifiers) FMR-FI (Different Classifiers)

0.75 0.8 0.85 0.9 0.95 1

Panel_Panel

Terminal_General

Ekiga_General

Evolution_Calendar

Evolution_Contacts

Evolution_Shell

AVG.

(b). F-measure

RSMOTE FMR-FI (Same Classifiers) FMR-FI (Different Classifiers)

Fig. 7. The performance of predicting the severity of GNOME bug reports.

ment in performance can be attributed to two factors. One
factor is that the fusion of multi-RSMOTE with the fuzzy
integral approach weakens the occasionality caused by random
sampling process and improves the generalization ability of
the RSMOTE approach. The other factor is that the FMR-FI
approach for integrating different classifiers can complement
the classification performance of the classifiers, resulting in a
higher overall performance than that of individual classifiers.
In addition, the performance improvement in classifying the
severity of bug reports in the Eclipse bug repository using
FMI-FI is higher than that for Mozilla, and the performance
improvement for Mozilla is higher than that for GNOME.

RQ3: Can the fusion of multi-RSMOTE with fuzzy integral
approach outperform state-of-the-art approaches?

In order to demonstrate the superiority of the FMR-FI
approach, in this experimental part, the proposed FMR-FI
approach is compared with three popular classifier ensemble
approaches (namely, voting, bagging, and AdaBoost). Two
evaluation indexes (i.e. accuracy and F-measure) are used
to evaluate the performance of fusion of multi-classifiers to
predict the class label of bug reports. The accuracy and F-

measure are shown in Figures 8-10, the performance of the
FMR-FI is better than that of voting, bagging, and AdaBoost
approaches on all datasets. Figure 8 shows the performance
in classifying the severity of Eclipse bug reports. The average
accuracies are 8.16%, 10.03%, and 11.04% higher than that of
voting, bagging and AdaBoost, respectively. And the average
F-measure are 7.35%, 10.30%, and 11.57% higher than that
of other ensemble methods, respectively. Figure 9 shows the
performance in classifying the severity of Mozilla bug reports.
The average accuracies are 4.39%, 6.58%, and 6.63% higher
than that of voting, bagging and AdaBoost, respectively. And
the average F-measure are 4.82%, 7.41%, and 8.75% higher
than that of other ensemble methods, respectively. Figure 10
shows the performance in classifying the severity of GNOME
bug reports. The average accuracies are 3.53%, 6.33%, and
6.76% higher than that of voting, bagging and AdaBoost,
respectively. And the average F-measure are 3.65%, 6.29%,
and 6.29% higher than that of other ensemble methods,
respectively.

We also could find that the performance of the FMR-FI
approach in classifying the severity of GNOME bug reports

0 20 40 60 80 100

JDT_Debug

CDT_Core

JDT_Core

PDE_UI

Platform_Debug

Platform_UI

AVG.

(a). Accuracy

Voting bagging Adaboost FMR-FI (Different Classifiers)

0 0.2 0.4 0.6 0.8 1

JDT_Debug

CDT_Core

JDT_Core

PDE_UI

Platform_Debug

Platform_UI

AVG.

(b). F-measure

Voting bagging Adaboost RSMOTE+FI (Different Classifiers)

Fig. 8. The performance of predicting the severity of Eclipse bug reports.

IEEE TRANSACTIONS ON FUZZY SYSTEM 13

0 20 40 60 80 100

Core_XPCOM

Core_XPConnect

Core_Layout

Core_XUL

AVG.

(a). Accuracy

Voting bagging Adaboost FMR-FI (Different Classifiers)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Core_XPCOM

Core_XPConnect

Core_Layout

Core_XUL

AVG.

(b). F-measure

Voting bagging Adaboost RSMOTE+FI (Different Classifiers)

Fig. 9. The performance of predicting the severity of Mozilla bug reports.

0 20 40 60 80 100

Panel_Panel

Terminal_General

Ekiga_General

Evolution_Calendar

Evolution_Contacts

Evolution_Shell

AVG.

(a). Accuracy

Voting bagging Adaboost FMR-FI (Different Classifiers)

0 0.2 0.4 0.6 0.8 1

Panel_Panel

Terminal_General

Ekiga_General

Evolution_Calendar

Evolution_Contacts

Evolution_Shell

AVG.

(b). F-measure

Voting bagging Adaboost RSMOTE+FI (Different Classifiers)

Fig. 10. The performance of predicting the severity of GNOME bug reports.

is higher than that for Mozilla bug reports and is higher than
that for Eclipse bug reports. These experiments also show that
for all datasets from the Eclipse, Mozilla and GNOME bug
repositories, the FMR-FI method leads to a better performance
than the three widely used classifier ensemble approaches
(namely, voting, bagging and AdaBoost). In addition, the
classification performance of the voting approach is generally
better than that of the bagging and AdaBoost approaches for
classifying the severity of the Eclipse, Mozilla and GNOME
bug reports.

VI. CONCLUSION AND FUTURE WORK

In this study, we propose a method to fuse the results of
classifiers via a Choquet fuzzy integral to boost the perfor-
mance for predicting the class label of bug reports with class
imbalance. First, we propose an RSMOTE method to alter
the size of the bug report datasets. Then, we build several
classifiers over different but related training datasets generated
via RSMOTE. Finally, the trained classifiers are integrated
by Choquet fuzzy integral to obtain the ultimate prediction
results. Several experiments are conducted on 16 datasets
from Eclipse, Mozilla, and GNOME. The experimental results
statistically demonstrate that FMR-FI can effectively improve
the classification performance for severity prediction.

In the future work, we plan to apply the FMR-FI approach to
cover more software projects, especially the industrial projects,
so as to demonstrate an even broader applicability of this
method. We also plan to research an improved synthetic
sampling approach for imbalanced learning.

REFERENCES

[1] Xin Xia, David Lo, Xinyu Wang, Bo Zhou, ”Accurate developer
recommendation for bug resolution,” In Proceedings of the 20th Working
Conference on Reverse Engineering, WCRE’13, pp. 72-81.

[2] Ahmed Lamkanfi, Serge Demeyer, Quinten David Soetens, Tim Ver-
donck, ”Comparing mining algorithms for predicting the severity of a
reported bug,” Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR 2011, pp.249-258.

[3] Bugzilla, https://www.bugzilla.org/, 2/2/2018 available.
[4] JIRA, https://www.atlassian.com/software/jira/, 11/10/2018 available.
[5] Mantis, https://www.mantisbt.org/, 11/10/2018 available.
[6] Xinli Yang, David Lo, Xin Xia, Qiao Huang, Jian-Ling Sun, ”High-

Impact Bug Report Identification with Imbalanced Learning Strategies,”
J. Comput. Sci. Technol. 32(1): 181-198 (2017).

[7] Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, Bart Goethals, ”Pre-
dicting the severity of a reported bug,” in Mining Software Repositories,
MSR2010, pp.1-10.

[8] Emad Shihab, Audris Mockus, Yasutaka Kamei, Bram Adams, Ahmed
E. Hassan, ”High impact defects: A study of breakage and surprise
defects,” In Proc. the 19th ACM SIGSOFT FSE and the 13th ESEC,
SIGSOFT FSE 2011: 300-310.

IEEE TRANSACTIONS ON FUZZY SYSTEM 14

[9] Ahmed Lamkanfi, Serge Demeyer, Quinten David Soetens, Tim Ver-
donck, ”Comparing Mining Algorithms for Predicting the Severity of a
Reported Bug,” CSMR 2011, pp.249-258.

[10] Satuluri Naganjaneyulu, Mrithyumjaya Rao Kuppa, Ali MIrza Mah-
mood, ”An Efficient Wrapper approach for Class Imbalance Learning
using Intelligent Under-Sampling,” International Journal of Artificial
Intelligence and Applications for Smart Devices, vol.2 , no.1 (2014),
pp.23-40.

[11] David A. Cieslak, Nitesh V. Chawla, ”Learning decision trees for unbal-
anced data,” Machine Learning and Knowledge Discovery in Databases,
2008, pp. 241-256.

[12] Jianping Zhang and Inderjeet Mani, ”KNN approach to unbalanced
data distributions: A case study involving information extraction,” Proc.
Int. Conf. Mach. Learning, Workshop: Learning Imbalanced Data Sets,
2003, pp.42-48.

[13] Haibo He, Edwardo A. Garcia, ”Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-
1284.

[14] He Jiang, Liming Nie, Zeyi Sun, Zhilei Ren, Weiqiang Kong, Tao Zhang,
Xiapu Luo, ”ROSF: Leveraging Information Retrieval and Supervised
Learning for Recommending Code Snippets,” IEEE Transactions on
Services Computing, PrePrints, doi:10.1109/TSC.2016.2592909.

[15] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Philip
Kegelmeyer, ”SMOTE: Synthetic Minority Over-sampling Technique,”
Journal of Artificial Intelligence Research, 2002, pp.321-357.

[16] Zhenyuan Wang, Klir, George, ”Fuzzy Measure Theory,” Plenum, New
York, 1992.

[17] Eclipse, http://bugs.eclipse.org/bugs, 2/2/2018 available.
[18] Mozilla, http://bugzilla.mozilla.org, 2/2/2018 available.
[19] GNOME, http://bugzilla.gnome.org, 2/2/2018 available.
[20] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh,

and Y.-G. Gueheneuc, ”Is it a bug or an enhancement?: a text based
approach to classify change requests,” Proceedings of the conference of
the center for advanced studies on collaborative research, 2008, pp.304-
318.

[21] Tim Menzies, Andrian Marcus, ”Automated severity assessment of soft-
ware defect reports,” in Proceedings of IEEE International Conference
on Software Maintenance, ICSM 2008, pp.346-355.

[22] Shikai Guo, Rong Chen, Hui Li, ”Using Knowledge Transfer and Rough
Set to Predict the Severity of Android Test Reports via Text Mining,”
Symmetry, 2017, 9(8): 161.

[23] Xin Xia, David Lo, Emad Shihab, Xinyu Wang, Xiaohu Yang, ”EL-
Blocker: Predicting blocking bugs with ensemble imbalance learning,”
Information and Software Technology, 61: 93-106 (2015).

[24] Jifeng Xuan, He Jiang, Hongyu Zhang, Zhilei Ren, ”Developer rec-
ommendation on bug commenting: a ranking approach for the devel-
oper crowd,” SCIENCE CHINA Information Sciences, 60(7): 072105:1-
072105:18 (2017).

[25] John Anvik, Gail C. Murphy, ”Reducing the effort of bug report triage:
Recommenders for development oriented decisions,” ACM Transactions
on Software Engineering and Methodology, 2011, 20(3): 10.

[26] Yuan Tian, David Lo, Xin Xia, Chengnian Sun, ”Automated prediction
of bug report priority using multi-factor analysis,” Empirical Software
Engineering 20(5): 1354-1383 (2015).

[27] Yang Feng, Zhenyu Chen, James A. Jones, Chunrong Fang, Baowen Xu,
”Test report prioritization to assist crowdsourced testing,” in Proceed-
ings of the 10th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, FSE 2015, 2015, pp. 225-236.

[28] Yang Feng, James A. Jones, Zhenyu Chen, Chunrong Fang, ”Multi-
objective Test Report Prioritization using Image Understanding,” Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, 2016, pp. 202-213.

[29] Junjie Wang, Song Wang, Qiang Cui, Qing Wang, ”Local-Based Active
Classification of Test Report to Assist Crowdsourced Testing,” Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, 2016, pp.190-201.

[30] Junjie Wang, Qiang Cui, Qing Wang, Song Wang, ”Towards effectively
test report classification to assist crowdsourced testing,” in Proceedings
of ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, ESEM 2016, vol.6, no.1, pp.6-10.

[31] M. Sugeno, ”Fuzzy measures and fuzzy integrals-A survey,” Fuzzy
Automata and Decision Processes, M.M. Gupta, G.N Saridis and B.R.
Gaines, Eds. Amsterdam: North-Holland, pp: 89-102.1977.

[32] Changzhong Wang, Qiang He, Mingwen Shao, Qinghua Hu, ”Feature
selection based on maximal neighborhood discernibility,” International

Journal of Machine Learning and Cybernetics, vol.9(11), pp.1929-1940,
2018.

[33] Wu Deng,Shengjie Zhang, Huimin Zhao, Xinhua Yang, ”A novel fault
diagnosis method based on integrating empirical wavelet transform and
fuzzy entropy for motor bearing,” IEEE Access, 2018,6(1): 35042-35056.

[34] Rana Aamir Raza Ashfaq, Xi-Zhao Wang, ”Impact of fuzziness catego-
rization on divide and conquer strategy for instance selection,” Journal
of Intelligent and Fuzzy Systems, 2017, vol.33(3), pp.1007-1018.

[35] Xi-zhao Wang, Rana Aamir and Ai-Min Fu, ”Fuzziness based sample
categorization for classifier performance improvement,” Journal of In-
telligent and Fuzzy Systems, 2015, vol.29(3), pp.1185-1196.

[36] Ajoy Kanti Das, ”Weighted fuzzy soft multiset and decision-making,”
International Journal of Machine Learning and Cybernetics, vol.9(5),
pp.787-794, 2018.

[37] Syed Shahnewaz Ali, Tamanna Howlader, S. M. Mahbubur Rahman,
”Pooled shrinkage estimator for quadratic discriminant classifier: an
analysis for small sample sizes in face recognition,” International
Journal of Machine Learning and Cybernetics, vol.9(3), pp.507-522,
2018.

[38] Jagadeesh Gopal, Arun Kumar Sangaiah, Anirban Basu, Xiao Zhi Gao,
”Integration of fuzzy DEMATEL and FMCDM approach for evaluating
knowledge transfer effectiveness with reference to GSD project out-
come,” International Journal of Machine Learning and Cybernetics,
vol.9(2), pp.225-241, 2018.

[39] Tao Zhang, Jiachi Chen, Geunseok Yang, Byungjeong Lee, Xiapu Luo,
”Towards more accurate severity prediction and fixer recommendation of
software bugs,” Journal of Systems and Software, vol(117), pp.166-184,
2016.

[40] Martin F. Porter, ”An algorithm for suffix stripping,” Program, vol.14,
no.3, pp.130-137, 1980.

[41] Chuan Yue, ”Normalized projection approach to group decision-making
with hybrid decision information,” International Journal of Machine
Learning and Cybernetics, vol.9(8), pp.1365-1375, 2018.

[42] Guiwu Wei, Fuad E. Alsaadi, Tasawar Hayat, Ahmed Alsaedi, ”Pro-
jection models for multiple attribute decision making with picture
fuzzy information,” International Journal of Machine Learning and
Cybernetics, vol.9(4), pp.713-719, 2018.

[43] Tim Menzies, Andrian Marcus, ”Automated severity assessment of soft-
ware defect reports,” in Proceedings of IEEE International Conference
on Software Maintenance, ICSM 2008, pp.346-355.

[44] Junhai Zhai, Hongyu Xu, Yan Li, ”fusion of extreme learning machine
with fuzzy integral”, International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 2013, vol.21, Suppl.2, pp.23-34.

[45] Junhai Zhai, Liguang Zang, Zhaoyi Zhou, ”Ensemble Dropout Extreme
Learning Machine via Fuzzy Integral for Data Classification,” Neuro-
computing, 2018, 275:1043-1052.

[46] Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, ”Finding Struc-
ture with Randomness: Probabilistic Algorithms for Constructing Ap-
proximate Matrix Decompositions,” SIAM Review 2011, vol.53(2),
pp.217-288.

[47] Radim Rehurek, ”Fast and Faster: A Comparison of Two Streamed
Matrix Decomposition Algorithms,” CoRR abs/1102.5597, 2011.

[48] Junhai Zhai, Sufang Zhang, Chenxi Wang, ”The Classification of Im-
balanced Large Data Sets Based on MapReduce and Ensemble of ELM
Classifiers,” Int. J. Machine Learning & Cybernetics, 8(3): 1009-1017
(2017).

[49] Cheng G. Weng, Josiah Poon, ”A new evaluation measure for imbal-
anced datasets,” In Proceedings of the Seventh Australasian Data Mining
Conference, 2008, vol.87, pp.27-32.

[50] Chao Zhang, Deyu Li, Jiye Liang, ”Hesitant fuzzy linguistic rough set
over two universes model and its applications,” International Journal of
Machine Learning and Cybernetics, vol.9(4), pp.577-588, 2018.

[51] Lijuan Zheng, Hongwei Wang, Song Gao, ”Sentimental feature selection
for sentiment analysis of Chinese online reviews,” International Journal
of Machine Learning and Cybernetics, vol.9(1), pp.75-84, 2018.

[52] Wu Deng, Huimin Zhao, Xinhua Yang, Juxia Xiong, Meng Sun,Bo
Li, ”Study on an improved adaptive PSO algorithm for solving multi-
objective gate assignment,” Applied Soft Computing, 2017, 59:288-302.

[53] Lior Rokach, ”Ensemble-based classifiers,” Artificial Intelligence Re-
view, vol.33, pp.1-39, 2010.

[54] Gang Wang, Jianshan Sun, Jian Ma, Kaiquan Xu, Jibao Gu, ”Sentiment
classification: The contribution of ensemble learning,” Decision Support
Systems, vol.57, pp.77-93, 2010.

[55] Wu Deng,Rui Yao, Huimin Zhao,Xinhua Yang, Guangyu Li, ”A novel
intelligent diagnosis method using optimal LS-SVM with improved PSO
algorithm,” Soft Computing, 2017,DOI: 10.1007/s00500-017-2940-9.

IEEE TRANSACTIONS ON FUZZY SYSTEM 15

[56] Sotiris B. Kotsiantis, Dimitris Kanellopoulos, ”Combining bagging,
boosting and dagging for classification problems,” Lecture Notes in
Computer Science, 2007, pp.493-500.

[57] Wu Deng, Huimin Zhao, Li Zou, Guangyu Li, Xinhua Yang, Daqing
Wu, ”A novel collaborative optimization algorithm in solving complex
optimization problems,” Soft Computing, 2017, 21(15):4387-4398.

[58] Xin Xia, David Lo, Xinyu Wang, Bo Zhou, ”Tag recommendation in
software information sites,” In Proc. the 10th Working Conference on
Mining Software Repositories, 2013, pp.287-296.

[59] Serena Morigi, Lothar Reichel, Fiorella Sgallari, ”A truncated projected
SVD method for linear discrete ill-posed problems,” Numerical Algo-
rithms, 2006, vol.43(3), pp.197-213.

[60] I. Herraiz, D. German, J. Gonzalez-Barahona, and G. Robles, ”Towards
a Simplification of the Bug Report Form in Eclipse,” in 5th International
Working Conference on Mining Software Repositories, May 2008.

[61] Weka, http://www.cs.waikato.ac.nz/ml/weka/, 2/2/2018 available.
[62] Chengnian Sun, David Lo, Siau-Cheng Khoo, ”Towards more accurate

retrieval of duplicate bug reports,” Proceedings of 26th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2011: 253-262.

Rong Chen He received the M.S. and Ph.D. de-
gree in computer software and theory from the
Jilin University, China, in 1997 and 2000. He is
currently a professor of the College of Information
Science and Technology at the Dalian Maritime
University, and has previously held position at Sun
Yat-sen University, China. His research interests are
in software diagnosis, collective intelligence, activity
recognition, Internet and mobile computing. He is a
member of the IEEE and a member of the ACM.

Shi-Kai Guo received the BSc degree in computer
science in 2012 and currently pursuing the Ph.D.
degree in computer science and technology from
the Information Science and Technology College,
Dalian Maritime University, Dalian, China. His re-
search interests include mining software repositories,
search-based software engineering, fuzzy measures
and integrals, and imbalance learning from big data.

Xi-Zhao Wang (M’03-SM’04-F’12) received the
Doctoral degree in computer science from the Harbin
Institute of Technology, Harbin, China, in 1998.
From 2001 to 2014, he has been a Full Professor
and the Dean of the College of Mathematics and
Computer Science, Hebei University, Hebei, China.
From 1998 to 2001, he was a Research Fellow
with the Department of Computing, Hong Kong
Polytechnic University, Hong Kong. Since 2014, he
has been a Full Professor with the College of Com-
puter Science and Software Engineering, Shenzhen

University, Shenzhen, China. His current research interests include supervised
and unsupervised learning, active learning, reinforcement learning, manifold
learning, transfer learning, unstructured learning, uncertainty, fuzzy sets and
systems, fuzzy measures and integrals, rough set, and learning from big
data. Dr. Wang was a recipient of many awards from the IEEE International
Conference on Systems, Man, and Cybernetics (SMC) Society. He is a
member of the Board of Governors of the IEEE SMC in 2005, from 2007
to 2009, and from 2012 to 2014, the Chair of the Technical Committee on
Computational Intelligence of the IEEE SMC, and a Distinguished Lecturer
of the IEEE SMC. He was the Program Co-Chair of the IEEE SMC 2009
and 2010. He is the Editor-in-Chief of the International Journal of Machine
Learning and Cybernetics. He is also an Associate Editor of the IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B:
CYBERNETICS, Information Sciences Journal, and the International Journal
of Pattern Recognition and Artificial Intelligence. He is a fellow of the IEEE
and a fellow of the CAAI.

Tian-Lun Zhang received the BSc degree in infor-
mation management and information system, and the
M.Sc. degree in software engineering from Hebei
University, Hebei, China, in 2014, and 2016. He
is currently pursuing the Ph.D. degree in com-
puter science and technology from the Information
Science and Technology College, Dalian Maritime
University, Dalian, China. His current research inter-
ests include fuzzy measures and integrals, computer
vision and imbalance learning from big data.

