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This paper provides new insight into the analysis on the relationship between uncertainty
and misclassification of a classifier. We formulate the relationship explicitly by taking
entropy as a measurement of uncertainty and by analyzing the misclassification rate based
on the membership degree difference. Focusing on binary classification problems, this
study theoretically and experimentally validates that the misclassification rate will defi-
nitely be upgrading with the increase of uncertainty if two conditions are satisfied: (1)
the distributions of two classes based on membership degree difference are unimodal,
and (2) these two distributions attain peaks when the membership degree difference is less
and larger than zero, respectively. This work aims to provide some practical guidelines for
improving classifier performance through clearly expressing and understanding the rela-
tionship between uncertainty and misclassification of a classifier.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Classification algorithms have been widely used in pattern recognition, machine learning and many other popular areas
of computer science. A classifier trained by a group of labeled objects aims to map each unlabeled object to the correct cat-
egory. Specifically, the training process of a classification model is to get an approximate function (the classifier) by mini-
mizing the error between the true and the estimated labels of training data. A well-trained classifier performs well in
testing data. Misclassification rate is an important index for the evaluation of classification algorithms since the ultimate
goal of classification is to reduce the misclassification rate of testing data and produce accurate predictions. To categorize
testing objects in a low misclassification rate, it is essential to figure out factors affecting the misclassification rate.

Usually, the misclassification rate mainly depends on the impacts of data and model. (1) Some characteristics of the data
have a great impact on the training of the classifier, such as the amount of training data, the noise ratio, the distribution of
samples and the balanced ratio of categories; (2) Model selection and parameters of the training algorithm are also sensitive
to the prediction results. There are many kinds of classification algorithms, which differ the misclassification rate for the
same data set. According to the output value of classifiers, classification algorithms can be categorized into two classes,
crisp-output and uncertain-output algorithms. The output of crisp-output algorithms is 0 or 1, such as decision tree (DT)
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[22,32] and support vector machine (SVM) [10,29], while it is real values within the interval 0;1½ � in uncertain-output algo-
rithms, such as feed-forward neural networks [9], Fuzzy SVM [14,23], Fuzzy DT [12,35], and fuzzy classification systems
[18,21]. In this paper, we will intensively investigate the uncertain-output algorithms, focusing on the classifier with fuzzy
output.

There are several types of methods to study the misclassification or generalization abilities of classifiers. Part of the
researchers put their efforts on generating training and testing samples so that directly affect the evaluation of generaliza-
tion performance, such as resampling methods [28,4,45], leave-one-out cross-validation [13,17,31], and generalization error
formulation [5,19,20], etc. A number of theoretical focus on the estimation of error bounds. This type of studies includes the
discussion on the performance bounds to overcome overfitting problems [3], the theoretical analysis for classifier ensemble
bounds [15,26], the biased regularization approach to computing the generalization bound [6], and the bounds on the false
and truth positive rates based on a VC-style analysis [16]. There are also a large amount of research [1,25,40] relating diver-
sity to generalization. However, most of these studies focus on some specific types of classifiers, rather than get a more gen-
eral conclusion regarding classification performance.

In the literatures [34,35], Wang et al. consider the classification performance from the perspective of the fuzziness of clas-
sifier outputs, but do not analyze the relationship between them, and their methods are limited only to rule-based systems.
In 2015, Wang et al. [33] analyses a series of classifiers with fuzzy output, rather than focus on a specific type of classifier.
They prove that the uncertainty of the classifier’s output has a close relationship with the classification performance, but it is
difficult to express explicitly for general cases. Some literatures [24,39] show the analysis on uncertainty is also beneficial to
the improvement of performance for clustering algorithms. In 2017, R. W. et al. [36] makes the first attempt to investigate
the relationship by incorporating the complexity of classification. However, the conclusion is more rely on empirical results
rather than explained exactly with theorems.

Formulating the relationship between uncertainty and misclassification of a classifier would provide a strong support to
the improvement and enhancement of machine learning algorithm performance. Moreover, the importance of finding this
relationship can be verified from the view of increasing confidence degree and decreasing recognition error in patter clas-
sification [7]. Unfortunately, from the existing references, very few investigations to this relationship are found. In this paper,
we formulate an explicit and clear expression between the uncertainty and misclassification rate of a classifier, considering
from a comprehensive perspective. The formulated relationship can guild improving the performance of classifiers and pro-
viding a theoretical background for designing new algorithms. For example, giving guidelines for dynamic classifier selec-
tion, or generating new meta-features in the meta-learning system.

As usual, the entropy is used to represent the uncertainty of classifiers. The misclassification rate is analyzed based on
value of M-discriminant function which are obtained from the classifier’s output. By analyzing the monotonic relationship
between the entropy and the misclassification rate, it is concluded that under certain conditions, the probability of misclas-
sification upgrades inevitably with the increase of uncertainty.

There are two examples to illustrate the importance of analyzing the relationship. One example is that, when we suppose
trained 2 classifiers based on the same dataset, the 2 classifiers have the same training accuracy but have difference uncer-
tainty. Which classifier do you prefer? The problem can be easily solved if we make clear the relationship between the mis-
classification rate and the uncertainty of classifiers. Another example is that suppose there is a binary classification task with
a testing sample x. A well-trained fuzzy classifier categorizes x as class A. Generally, whether the result is reliable is deter-
mined by the misclassification rate of the sample. However, it is difficult to calculate the exact misclassification rate of a
specific sample. But the uncertainty of sample classification can be calculated by some means. If the relationship between
uncertainty and misclassification is known, we can infer the misclassification rate through the uncertainty to decide whether
to accept or reject the classification result.

It is fundamentally crucial to find a relationship between uncertainty and misclassification of a classifier for building a
high-performance learning system. In this paper, (1) we confirmed the relationship between uncertainty and misclassifica-
tion of a classifier from a new viewpoint of probability, (2) we expressed and formulated this relationship explicitly for the
first time; (3) we experimentally proved that this relationship is not sensitive to different types of classifiers. This is the pri-
mary contribution of this work. In the remainder of this paper, Section 2 describes several fundamental conceptions of this
work; Section 3 formulates and discusses the relationship between misclassification rate and uncertainty in detail; Section 4
provides experimental verifications on real data sets, and Section 5 concludes this paper.
2. Definition of related concepts

Generally, there are two processes in supervised learning, modeling(or training) and prediction. As a kind of typical super-
vised learning method, the key point of classification algorithms is to figure out a discrete-valued function that maps each
given object to a class label. Given a training set X that contains N arbitrarily distinct samples with c categories, i.e.,
X ¼ xi; yið Þf gNi¼1 � Rn � 0;1f gc , where xi ¼ xi1; xi2; . . . ; xin½ � is the ith training samples, yi ¼ yi1; yi2; . . . ; yic½ � is the label vector
of xi;n is the number of features, and c is the number of classes. Testing set T is formatted as

T ¼ ti; yið Þf gN0i¼1 � Rn � 0;1f gc . The training and testing process of a classifier that takes the RWNN(Random Weight Neuronal
Network) [2] as an example is shown as Algorithm1.
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Algorithm1 Train RWNN classifier and compute testing accuracy

Input:

Training set X ¼ xi; yið Þf gNi¼1 � Rn � 0;1f gc; Testing set T ¼ ti; yið Þf gN0i¼1 � Rn � 0;1f gc; Activation function f xð Þ; Number

of hidden nodes N
�

Output:
Testing accuracy of the trained classifier.
1: Randomly assign input weight and bias.
2: Calculate the output weight by inputting training set X into the network.
3: Obtain the membership degrees, Mij where i ¼ 1;2; . . . ;N; j ¼ 1;2; . . . ; c, of testing sample ti by putting into the well-

trained model.
4: Sign each testing data with the label that has the biggest value in membership degrees.
5: Calculate testing accuracy by comparing the true labels with predicted labels of testing set T.

There are many different ways to represent classifiers. One of the most useful is in terms of a set of discriminant functions
gj xið Þ; i ¼ 1; . . . ;n; j ¼ 1; . . . ; c [7]. The classifier is said to assign a sample xi to class xj if
gj xið Þ > gk xið Þ for all j: ¼ k: ð1Þ

The membership matrix M ¼ mij

� �
can be obtained as the output of classifier, where mij is the membership degree of the ith

sample belonging to the jth category.
For binary classification problem, which contains class x1 and x2. Given a sample xi, the membership degrees of xi

belonging to classes x1 and x2 are m1 and m2, respectively. Instead of using two discriminant functions g1 and g2, it is more
common to define a single discriminant function
g xið Þ ¼ g1 xið Þ � g2 xið Þ: ð2Þ

In this paper, g1 xið Þ and g2 xið Þ is defined as
g1 xið Þ ¼ mi1
mi1þmi2

g2 xið Þ ¼ mi2
mi1þmi2

ð3Þ
which are based on membership degrees m. In the rest of this paper, we call the discriminant function g xið Þ as M-
discriminant function. The decision rule is
Decide x1 if g xið Þ > 0; otherwise decide x2: ð4Þ

Sign the value of M-discriminant function g xið Þ with m. Given a sample of a two categories set which contains classes x1 and
x2. Accroding to Eq. (4), the discriminant rule of binary classification problems can be written as
x 2 x1; m > 0
x 2 x2; m < 0
x 2 rand x1;x2ð Þ; m ¼ 0

8><
>: : ð5Þ
Primary concepts discussed in this paper are uncertainty and misclassification rate. Explanations of these two concepts are
given below in detail.

2.1. Uncertainty of classifier output

In this paper, information entropy [27] is used to depict the uncertainty of classifier’s output. Information entropy, solving
the problem of quantification and measurement of information, was introduced in 1984 by Claude Elwood Shannon, the
father of information theory. Information entropy is defined on a probability distribution, evaluating the impurity of classes
in a set.

Suppose there are n events in a probability system S ¼ p1; p2 . . . ; pnð Þ, where
Pn

i¼1pi ¼ 1. pi is the probability of the ith
event, xi. Information entropy is defined as
H Sð Þ ¼ �
Xn
i¼1

pilog2pi: ð6Þ
Specifically, as mentioned in [30], there are some properties of information entropy, summarized as follows

1. If the probability of an event is 1, then the uncertain degree of the whole system is 0, and the information entropy is determinist



X. Zhou et al. / Information Sciences 535 (2020) 16–27 19
H ¼ H 1;0;0; . . . ;0ð Þ ¼ H 0; . . . ;0;1;0; . . . ; 0ð Þ ¼ H 0;0; . . . ;1ð Þ ¼ 0: ð7Þ
2. The calculation of information entropy is independent of the order that events occur in the probability system.

Suppose the probability distribution of n events system is p1; p2; . . . ; pnð Þ and the order of events change, the new prob-
ability distribution is p01; p02; . . . ; p0nð Þ. The following relationship can be established

H p1;p2; . . . ;pnð Þ ¼ H p01;p02; . . . ;p0nð Þ: ð8Þ
3. The expression of information entropy is unimodality and reaches a maximum when p1 ¼ p2 ¼ . . . ¼ pn ¼ 1

n,

max Hð Þ ¼ �
Xn
i¼1

1
n
log2

1
n
¼ �log2

1
n
: ð9Þ

Given a sample x with output (p;1� p) where p and 1� p represent the probability of x belonging A and B respectively.
The uncertainty(U) of classifier’s output can be formulated as
U ¼ �plog2p� 1� pð Þlog2 1� pð Þ: ð10Þ

By solving
dU
dp

¼ log2
1� pð Þ
p

¼ 0;
we get that U attains its maximum at p ¼ 1
2. The second derivative of U is calculated as
d2U

d2p
¼ � 1

p 1� pð Þln2 :
Obviously, d2U
d2p

< 0 when 0 6 p 6 1. Thus, we can conclude
U monotonically increasing; 0 6 p < 1
2

U monotonically decreasing; 1
2 < p 6 1

max Uð Þ; p ¼ 1
2

8><
>: : ð11Þ
In this case, the expression of M-discriminant function in Eq. (2) can be rewritten as
m ¼ g xð Þ ¼ p� 1� pð Þ ¼ 2p� 1; ð12Þ

we can conclude
m > 0; p > 1
2

m < 0; p < 1
2

(
: ð13Þ
Combine with Eq. (11), the relationship between uncertainty and the value of M-discriminant function (m) can be explained
as
Uncertainty monotonically decreasing; m > 0
Uncertainty monotonically increasing; m < 0

�
; ð14Þ
which means, the value of M-discriminant function can intuitively quantify the magnitude of the uncertainty of the classi-
fier’s output. In addition, the smaller the absolute value of M-discriminant function is, the greater uncertainty is.

2.2. Misclassification rate

Generally speaking, the purpose of training a model is to reduce misclassification rate of unseen samples. Let S be a finite
space of samples, and X be a subset of S. Suppose that F xð Þ is a function defined on S, an estimator function f xð Þ defined on S
can be given by a training algorithm based on values of F xð Þ in X. The function f xð Þ has the range of value as same as F xð Þ has.

As for the classification problem in machine learning field, a classifier f xð Þ is well-trained on a training set X. The expres-
sion f xð Þ is expected to be infinitely close to the function F xð Þ on the whole space S including the training set X. The misclas-
sification rate Pe fð Þ of classifier f xð Þ on testing set T T ¼ xjx 2 S� Xf gð Þ is the most important index of classifier performance
evaluation. Thus, according to the generalization definition in [36], the misclassification rate can be calculated by
Pe fð Þ ¼ j x : x 2 T; F xð Þ – f xð Þf gj
jTj ; ð15Þ
where j j donates the number of elements in a set, F xð Þ – f xð Þ represents the inconsistency between testing results of the
classifier and the original labels.
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To analyze the changing tendency of misclassification rate, we define it based on M-discriminant function which is for-
mulated as Eq. (2), and assign value of M-discriminant function with m. There is more detail about the definition below.

Given a binary classification set X ¼ xi; yið Þf gNi¼1 � Rn � 0;1f g2, where xi is the ith training samples, yi ¼ yi1; yi2½ � is the label
vector of xi. According to the value of yi;X can be divided into two subsets, class A ¼ xjx 2 X; y ¼ 1;0½ �f g and class
B ¼ xjx 2 X; y ¼ 0;1½ �f g. Suppose f xð Þ is the well-trained classifier, from which membership degrees m1;m2½ � of sample x
are acquired. As defined in Eq. (2), value of M-discriminant fucntion is m ¼ g xð Þ.

Suppose classes A and B of set X are normally distributed, respectively. As shown in Fig. 1, peak1 and peak2 are values of
the abscissa where two distributions reach their peaks, respectively. For a new sample x, the value of M-discriminant fuc-
ntion is m peak1 < m < peak2ð Þ, and the probability of sample x belonging to the two classes is denoted as PA mð Þ and PB mð Þ (val-
ues of density function of distribution A and B at m). According to the discriminant rule of classification problems clarified in
Eq. (5), a sample would be categorized as class A if it locates in the range of m > 0, and be taken as class B when m < 0. Once
the true label of sample x is class B but x locates in m > 0; x would be misclassified as class A. Similarly, misclassification hap-
pens when the original label of the sample is class A but falls in m < 0. Therefore, the misclassification rate of sample x with
the value of M-discriminant function m can be defined as
Pe mð Þ ¼
PB mð Þ

PA mð ÞþPB mð Þ ; m > 0
PA mð Þ

PA mð ÞþPB mð Þ ; m < 0

8<
: : ð16Þ
We have three remarks about the definition of misclassification rate: (1) from the view of pattern recognition, PA mð Þ and PB mð Þ
are probabilities of the sample x belonging to classes A and B. The sample xwith the value of M-discriminant fucntion (m) and
a true label class B, will be misclassified as class A when m > 0. It means, under the condition of m > 0, sample x will be mis-
classified with probability PB mð Þ as long as the true label of x is class B. Similarly, when m < 0, the misclassifying probability is
PA mð Þ while sample x is belonging to class A. In Eq. (16), Pe mð Þ is the form of uniformization of PA mð Þ and PB mð Þ; (2) it is unnec-
essary to assume that the distributions of two classes based on value of M-discriminant function are normal. The only
requirement is that the density functions of two categories are unimodal, respectively. This point is very important since
theoretically, we may not know the distribution of data but practically we can check the impinal distribution for given data
sets; (3) The study on extension from one dimensional to multidimensional case, which involves a complex formulation for
multiple dimensional distributions and its marginal distributions, will be conducted in future work. We won’t discuss it fur-
ther in this article.

3. Relationship between uncertainty and misclassification rate

In this section, we give a detailed analysis on the relationship between uncertainty and misclassification rate based on M-
discriminant fucntion.

As mentioned in Section 2.1, we use information entropy to represent the uncertainty in this work. For binary classifica-
tion problem, assuming the probability of the sample x belonging to class A and class B is p and 1� p. The relationship
between uncertainty and the value of M-discriminant fucntion (m) can be explained as Eq. (14), which means the value of
M-discriminant function can intuitively quantify the magnitude of the uncertainty of the classifier’s output. In addition,
the smaller the absolute value of M-discriminant function, the greater uncertainty.

To clarify the relationship between both two concepts, the variable DPe is introduced:
DPe ¼ Pe m0ð Þ � Pe mð Þ; ð17Þ

where m0 ¼ mþ Dm;Dm is a positive real number, and Pe m0ð Þ is defined as:
Fig. 1. Distribution of samples based on M-discriminant function.
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Pe v 0ð Þ ¼
PB mþDmð Þ

PA mþDmð ÞþPB vþDmð Þ ; m > 0
PA vþDmð Þ

PA vþDmð ÞþPB mþDmð Þ ; m < 0

8<
: ; ð18Þ
Thus, DPe can be culculated as
DPe ¼ Pe m0ð Þ � Pe mð Þ
¼ PB mþDmð Þ

PA mþDmð ÞþPB mþDmð Þ � PB mð Þ
PA mð ÞþPB mð Þ

¼ PA mð ÞPB mþDmð Þ�PB mð ÞPA mþDmð Þ
PA mþDmð ÞþPB mþDmð Þð Þ PA mð ÞþPB mð Þð Þ

¼ PA mð ÞPB mþDmð Þ�PA mð ÞPB mð ÞþPA mð ÞPB mð Þ�PB mð ÞPA mþDmð Þ
PA mþDmð ÞþPB mþDmð Þð Þ PA mð ÞþPB mð Þð Þ

;

where denominator is always greater than 0. Thus, on the right side of the equation, only the numerator needs to consider.
Dividing the numerator into two formulations under the condition of m > 0, it is easy to view that the numerator is less than
0, since
PA mð ÞPB mþ Dmð Þ � PA mð ÞPB mð Þ < 0
PA mð ÞPB mð Þ � PB mð ÞPA mþ Dmð Þ < 0

�
: ð19Þ
Thus, DPe < 0; if m > 0. Similarly, under the condition of m < 0, the value of DPe is always over 0. Therefore, we get a conclu-
sion as follows
DPe < 0; m > 0
DPe > 0; m < 0

�
; ð20Þ
which means, the misclassification rate can be evaluated by M-discriminant function, and the monotonic relationship
between them is illustrated as follows
Miscalssification rate monotonically increasing; m > 0
Misclassification rate monotonically decreasing; m < 0

�
: ð21Þ
As for two-category data sets, we can view the relationship between uncertainty and misclassification rate by combining Eq.
(14) with Eq. (21). Both uncertainty and misclassification rate increase monotonically with the shrinking of M-discriminant
fucntion. In other words, the misclassification rate would increase with the growing up of uncertainty under this two
condition:

1. The distributions of categories A and B based on value of M-discriminant function are unimodal. In other words, two dis-
tributions realize maximums when the shared independent variable m reaches peak1 and peak2, respectively.

2. The inequality holds well, peak1 � peak2 6 0, where the peak1 and peak2 are two values the variable m takes, as explained
in Section 2.1.

4. Empirical study

This section presents the experiments conducted on 16 data sets from UCI machine learning repository. Table 1 lists
details about each data set. In this study, each multiclass data set is transfered into binary one by randomly selecting 50%
Data Sets for Experiments.

Data Set # Samples # Attributes # classes Class/Distribution

Australian 690 14 2 383/307
Autism 702 21 2 513/189
Breast 569 9 2 357/212
ClaveVector 10800 20 2 9015/1785
Credit 653 24 2 296/357
German 1000 24 2 300/700
Ionosphere 351 34 2 225/126
MAGIC 19020 11 2 6688/12332
Mushroom 8124 22 2 4208/3916
Pima 768 8 2 500/268
Sonar 208 60 2 97/111
Spambase 4601 57 2 2788/1813
OptDigits 5620 64 10 2822/2798*
Pen 10992 16 10 5629/5363*
Satellite 6435 36 6 4199/2236*
Yeast 1484 8 10 2788/1813*
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as positive and the rest 50% as negative. Samples with missing value are deleted in data preprocessing phase, and the rest
samples are standardized before passed down as input to the classifier. As mentioned, RWNN is adopted as training algo-
rithm in our experiments. Articles [11,37,42,44,43] give more details about RWNN and mention that the most significant
advantage of RWNN is high processing speed since it assigns wight by the random mechanism.
4.1. Expermental design

To reflect the performance of the model more objectively, we repeat 10 experimental trials and calculate the average of
accuracy, misclassification rate, and uncertainty based on 10 results. The number of hidden nodes in RWNN is set as 20, and
the sigmoid activation function is utilized. We randomly take 30 percent of each data set as the testing set, and the remaining
70 percent data are used for training. Experiments are implemented in Python 3.0 and executed on a computer with the Mac
operation system, an i7-8750H CPU, and 32 GB of RAM.
Fig. 2. Distribution of real data sets based on M-discriminant function (taking RWNN as the classifier).
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4.2. Expermental analysis

As described in Section 3, we formulate the relationship between uncertainty and misclassification rate under certain
conditions. To verify the correctness of our conclusions by experiments, we need to first check whether the selected data
sets meet with above conditions. As shown in Fig. 2, the distribution of samples in class A and class B based on M-
discriminant function are colored with green and orange, respectively. Each data set consists of two unimodal distributions
which attain peaks when the value of M-discriminant function is less and larger than 0, respectively.

For each testing set, 5 uncertainty levels are generated by equally dividing the interval between the maximum and mini-
mum entropy results. According to the division, the averagemisclassification rate for each uncertainty level can be calculated.

Fig. 3 details the relationship between uncertainty and misclassification rate under certain conditions. It is noteworthy, in
all data sets, the misclassification rate is increasing with the climbing of uncertainty, which is well matching the conclusion
acquired in Section 3.
Fig. 3. Relationship between misclassification rate and uncertainty of RWNN classifier on real data sets. The numbers in brackets are testing accuracy of
each data set, which is the mean of repeating ten experimental trials.



Fig. 4. Distribution of real data sets based on M-discriminant function (taking SVM as the classifier).

Table 2
Testing accuracy of RWNN and SVM.

1 2 3 4 5 6

RWNN 0.849 H 0.921 H 0.941 H 0.936 H 0.875 H 0.739 �
SVM 0.865 0.962 0.965 0.999 0.878 0.740

7 8 9 10 11 12
RWNN 0.821 � 0.794 � 0.933 H 0.767 � 0.706 � 0.812 �
SVM 0.943 0.796 1.000 0.766 0.706 0.820

13 14 15 16
RWNN 0.758 � 0.820 � 0.954 H 0.803 �
SVM 0.986 0.997 0.980 0.830

Note: The ‘‘H” and ‘‘�” represent the data set with high and low accuracy respectively, according to the result of RWNN.
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Fig. 5. Relationship between misclassification rate and uncertainty of SVM classifier on real data sets. The numbers in brackets are testing accuracy of each
data set, which is the mean of repeating ten experimental trials.
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Suppose that k is the changing rate of misclassification with respect to uncertainty. The 12 subgraphs in Fig. 3 can be
divided into two groups, according to the changing rule of k. The first group G1, containing subgraphs (a), (b), (c), (d), (e),
(i), and (o), in which k increases slowly in low-level of uncertainty while increases rapidly in high levels. It is noticed that
samples G1 with a low-level of uncertainty will be misclassified in a small chance. Samples with a high level of uncertainty
will be misclassified with bigger probability. It means the classifier is performing well in the aspect of accuracy for all data
sets in this group.

The second group G2 is comprising the rest of the data sets. In each subgraph of G2, the growth of k is large from the very
beginning. It means there is a certain probability of misclassification for samples with a lower uncertainty level. In subgraphs
(j) and (k), the maximummisclassification rate appears at a lower uncertainty level. Thus, the accuracy of each data set in G2

would be lower than the sets in G1.
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Actually, the testing accuracy of each data set is summarized in Table 2, in which high and low accuracy data sets are
denoted with ‘‘H” and ”�”, respectively. It is observed that all the data sets signed with ‘‘H” belong to G1, while the others
belong to G2, marked with ”�”. This observation confirms the reliability of our experiments.

4.3. Analysis with SVM classifiers

To check whether or not our scheme is sensitive to classifier selection, this section selects the SVM to replace the RWNN
used in previous sections. We demonstrate the results of Support Vector Machine(SVM) classifiers by experimenting in the
same computational environment.

As mentioned in [8,38,41], due to the solid mathematical background, high generalization capability and ability to find
globally optimal solutions, SVM has been successfully applied to many real-world classification problems. We choose the
RBF kernel and set the penalty term C as 1. The relationship between the misclassification rate and uncertainty of each data
set in Table 1 is demonstrated in Fig. 5. It is noted that the testing accuracy of data sets ClaveVector and Mushroom are 0.999
and 1 respectively, which means there are nearly no samples that would be misclassified. Thus, subgraphs (d) and (i) contain
a horizontal straight line with a misclassification rate equal to 0, respectively. According to Table 2, the horizontal straight
lines in low uncertainty level of subgraphs (b), (c), (g), (m), (n), and (o) result from the high testing accuracy. The distribu-
tions of data sets are depicted in Fig. 4, it is noteworthy that distributions of class A or B in data sets Australian, Credit, Sonar,
and Yeast are multimodal. As shown in Fig. 5, the misclassification rate increases with the growing up of uncertainty for the
four data sets, although there is a slight drop during the ascent.

It can be viewed that if data sets meet with the requirements mentioned in Section 4.2, our conclusion is basically correct,
i.e., the misclassification rate increases with the growing up of uncertainty, and the scheme is with low sensitivity to clas-
sifier selection. It is interesting to find that, for some datasets which cannot meet the mentioned requirements, partial con-
clusions still look correct.
5. Conclusions and future work

In this paper, the relationship between uncertainty and misclassification rate of a classifier is illustrated explicitly and
precisely. It is theoretically and experimentally validated that the misclassification rate increases definitely with the growing
up of uncertainty in some cases, which requires that the distributions of different categories based on value of M-
discriminant function are unimodal. Without loss of generality, two typical classifiers, RWNN and SVM, are considered in
our experiments. The results illustrate that our scheme is insensitive to the selection of different types of classifiers. The lim-
itation of this study is that only binary classification problems are analyzed at present.

Following this work, one can further discuss the descriptions about generalizing the analysis to a multicategory situation,
drawing more general conclusions. This work provides a theoretical support to the research on dynamic classifier selection.
The conclusion of the relationship is also potentially applicable in meta-learning, i.e., several new meta-features can be gen-
erated by further quantifying the rate of change in uncertainty and misclassification rate.
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