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a b s t r a c t 

Most of the existing Zero-Shot Learning(ZSL) algorithms adopt pre-trained neural networks as their fea- 

ture extractors. Since these pre-trained models are not specially designed for ZSL tasks, it is difficult 

to guarantee the stability and generalization ability of the ZSL algorithms due to the feature mismatch. 

To alleviate this problem, we propose a novel dataset-specific feature extractor for ZSL according to an 

attribute-based label tree. Specifically, an attribute-based label tree is firstly built via K-means cluster- 

ing and then the information extracted from the label tree is used to fine-tune the parameters of the 

pre-trained models in order to make the extracted features more suitable for the current ZSL task. 

The experimental results on three typical ZSL datasets show that our approach can effectively im prove 

the predictive accuracy of the existing ZSL algorithms and significantly accelerate their convergence rate. 

Additionally we explain the experimental phenomena from the perspective of feature visualization, which 

experimentally show that the features extracted by our method are much more separable than those of 

the original pre-trained models. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Deep learning has achieved many breakthroughs in various

fields in recent years, such as image classification [9] , speech

recognition [10] , natural language processing [16] , and image

segemantation [30,32] . Most of the deep learning algorithms use

the supervised learning mechanism, which requires not only a

large number of training samples but also the accurately an-

notated labels. In addition, the label types in training set and

testing set should be consistent in traditional deep learning. These

premises are difficult to be satisfied in many practical scenarios.

In real-life applications, the cost of collecting enough correctly

labeled training data is often very high, and sometimes it is not

feasible because the testing samples may contain labels that have

never appeared in the training samples. Zero-Shot Learning (ZSL)

is an advanced technique that aims to solve this problem, which

was proposed by Lampert et al. in 2009 [13] . In ZSL, each class

belongs to one type, i.e. the seen class or the unseen class. In ZSL,

we consider the class that can collect enough training samples as

the seen class, and the class that cannot collect enough training
∗ Corresponding author. 
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amples (or even no samples) as the unseen class. The research of

SL is to use the information of the samples of the seen classes to

ssist the prediction of the samples of the unseen classes. In recent

ears, many achievements in ZSL have been acquired [14,24] . 

However, there are still many fundamental problems in ZSL

hat have not been solved. One of them is that there is no unified

nd effective way to build the connection between the seen

nd the unseen classes, which is the major obstacle of the wide

pplication of ZSL algorithms. To alleviate this problem, three

ypical methods have been proposed in recent years, that is,

raditional ZSL [13,14,20,24] and Generalized ZSL [13,20,28] . The

trategies they used are a.) from attributes to features; b.) from

eatures to attributes; and c.) from features and attributes to a

hird space. Here the attributes refer to the vector descriptions of

he classes and the features refer to the vectors extracted from

he raw images. Besides, there are some methods that use the

uxiliary information (e.g., word2vec, label names, etc.) to help

he model to learn the association or knowledge transfer between

he seen and the unseen classes. Many advanced techniques such

s GAN-based [28,29] and VAE-based [11,20] algorithms have been

roposed to overcome the difficulty of transferring knowledge

rom the seen classes to the unseen classes. 

Although the above mentioned methods can use the seen

lass information to help predict the labels of the unseen classes

n some specific scenarios, their performance is subject to a
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ommon constraint, that is, the quality of the extracted data fea-

ures must be very high. In other words, the performance of these

lgorithms depends heavily on the performance of their feature

xtractors. 

In general, there are two ways to get the feature extractor. The

rst way is to train directly on the dataset using common feature

xtraction techniques. But this method is less feasible in ZSL be-

ause there are only a few samples in each class of the dataset.

nother way is to use pre-trained models (e.g., the pre-trained

esidual networks) as their feature extractors, which is adopted by

ost current ZSL algorithms. Compared with the former method,

he latter method can effectively improve the performance of the

SL classifier with the help of the rich features of the pre-trained

odel. Up to now, most of the pre-trained models for ZSL are

rained based on the Residual Network (ResNet), which has been

onfirmed to be a very effective feature extractor. 

However, since these pre-trained models are not trained specif-

cally for the current ZSL task, the stability and the generaliza-

ion ability of the ZSL algorithms are difficult to be guaranteed.

ometimes the accuracy of the ZSL model can be improved and

ometimes it can be decreased. In other words, the ZSL algo-

ithms using the pre-training models as their feature extractors ig-

ore the intrinsic connections between the datasets used for the

re-training models and the training dataset used for the current

ask. 

Some latest researches have shown that the degree of corre-

ation between the ancillary dataset and the training dataset has

 significant impact on the performance of the final model [33] .

he pre-trained models used in ZSL can also be regarded as the

pecial ancillary datasets. Therefore, one can infer that, if we use

he dataset-specific feature extractor to extract features for ZSL, the

odel may be able to have better performance than that using the

eneral pre-trained models. 

Inspired by this idea, we propose a novel dataset-specific fea-

ure extractor for ZSL according to an attribute-based label tree in

his paper, which is built upon the pre-trained ResNet and uses

he information of the seen classes and attributes to fine-tune

ts parameters to better serve the current task. The advantages

f Dataset-Specific Feature Extractor according to Attribute-based

abel Tree(ALT-DSFE) include that (1) the pre-trained ResNet can

ring rich auxiliary features to the current task; (2) the dataset-

pecific design can make the model extract the most favorable fea-

ures from the pre-trained ResNet and make the classification eas-

er. Specifically, ALT-DSFE builds an attribute-based label tree via

-means clustering and uses the label tree to fine-tune the param-

ters of pre-trained ResNet. ALT-DSFE fully exploits the intrinsic

onnection between the pre-trained model and the current task

nd provides specific features for the ZSL model. The experimen-

al results on the three benchmark datasets show that the our ap-

roach proposed in this paper can not only effectively im prove the

rediction accuracy of the existing ZSL models such as CADA-VAE

20] and can significantly improve their convergence speed. Addi-

ionally, we explained the experimental phenomena from the per-

pective of the feature visualization. 

The contributions of this paper are as follows. 

(1) The concept of Attribute-based Label Tree (ALT) is defined

and a novel ALT based Dataset-Specific Feature Extractor

(ALT-DSFE) is proposed for ZSL in this paper. In ALT-DSFE,

in addition to introducing the pre-trained ResNet to improve

the diversity and richness of the features used for ZSL, we

also use the information of the seen classes and attributes

to guide the fine-tuning process of the pre-trained model. In

this way, the pre-trained model is transformed into a fea-

ture extractor related to the current task, which can better

extract effective features for ZSL. Extensive experimental re-
sults show that the proposed ALT-DSFE can effectively im-

prove the accuracy of the existing ZSL algorithms. 

(2) ALT-DSFE provides a unified framework to extract specific

features for different ZSL tasks, and this framework can be

easily embedded into most of the existing ZSL algorithms.

For example, one can use ALT-DSFE to initialize the train-

able feature extractors of the GAN-based and VAE-based ZSL

algorithms to accelerate their convergence rate. 

(3) We provide a visual way to explain the experimental phe-

nomena in this paper, which show that the features ex-

tracted by our proposed method are much more separable

than that of the original pre-trained ResNets. This is very

helpful for the ZSL classifier to make the correct decision. 

The remaining of this paper is organized as follows. We intro-

uce the related works in Section 2 . The details of the proposed

LT-DSFE are given in Section 3 . Section 4 describes the experi-

ental settings, the experimental results, and the corresponding

nalysis. In Section 5 , we conclude this study. 

. Preliminaries 

In this section, we introduce the related works include Zero-

hot Learning (ZSL), Convolutional Neural Network (CNN), and

ADA-VAE model. 

.1. Zero-shot learning (ZSL). 

Many ZSL methods imitate the human reasoning process in the

eal world, that is, humans need the description of the unseen

lasses and use the knowledge they have known so that humans

an recognize when they first see the new classes. Each class in

SL has an attribute to describe this class. The attribute, which is

uilt from the whole dataset (including both the seen and unseen

lasses), is a numeric vector. Each component of the vector, which

anges from 0 to 1, corresponding to the class description repre-

ents the degree of the class has this trait or not. 

The basic hypothesis of the traditional ZSL is that all testing

ata come from unseen classes and the goal of the ZSL model is

o classify the testing data (i.e. the unseen classes) as correctly

s possible. The carrier of knowledge transfer between the seen

lasses and the unseen classes has many forms in ZSL, such as se-

antic attributes and word vectors. Using the same carrier to build

he connection between the seen classes and the unseen classes

ould provide a way to transfer the information of the seen classes

o the unseen classes. 

The main indicator for evaluating a traditional ZSL algorithm

s the performance of the trained classifier on the unseen classes.

owever, in many real-life applications, the coming samples may

elong to both the unseen classes and the seen classes. Inspired by

his observation, Changpinyo et al. [4] extended the traditional ZSL

o a more general ZSL algorithm named Generalized-ZSL, which

oes not restrict the testing data must be the unseen classes. Be-

ides, they proposed a new metric H (as follows), the harmonic

eans of the accuracy of the model on the seen and unseen

lasses, to measure the performance of the model. 

 = 

2 ∗ acc seen ∗ acc unseen 

acc seen + acc unseen 
(1) 

.2. Convolutional Neural Network (CNN). 

The unique sparse-connectivity structure and parameter-sharing

trategy adopted by Convolutional Neural Network (CNN) make it

ery good at extracting local features from data. Therefore, CNN

nd its variant algorithms have been widely utilized in the com-

uter vision field in recent years [9,22,23] . Usually, in a typical
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CNN based deep learning algorithm, CNN units are used as the fea-

ture extractor and the fully-connected layer is used as the classi-

fier. The quality of the extracted feature has a direct impact on the

performance of the classifier. Specifically, if the feature extractor

is able to extract sufficiently good features from the training data,

then even with a simple classifier for decision making, the final

model performance is often acceptable. In other words, it is dif-

ficult to make accurate predictions based on low-quality features

no matter how complex the classifier is. Up to now, many CNN

based feature extractors have been proposed such as VGG [22] , In-

ception [23] , and ResNet [9] . These feature extractors can help the

deep neural network extract the effective f eatures from the orig-

inal data, and then complete the classification or regression tasks

more efficiently. 

Take the ResNet [9] as an example, the unique residual struc-

ture allows it can be extended to a neural network having much

more hidden layers than before (e.g., sometimes the number of the

hidden layers is more than one thousand [8] ). Such a deep archi-

tecture provides the ability to learn the rich patterns effectively

from large-scale datasets. In recent years, it has become fashion-

able to train pre-trained models based on the dataset ImageNet

and ResNet, and thus there are many pre-trained models available

[15,21] . These pre-trained ResNet models can be used as the fea-

ture extractors in many image processing tasks. 

2.3. CADA-VAE Model. 

CADA-VAE is the latest ZSL algorithm, which was proposed by

Schonfeld et al. [20] in 2019. In CADA-VAE, the authors built two

VAE models to reconstruct the features and attributes respectively.

Through making a cross-connection within the two VAE models,

the model could learn the shared cross-modal latent representa-

tions of attributes and images features to enhance the representa-

tion of both attributes and features in the latent space. Then the

authors aligned the distribution of features and attributes in the

third space (i.e., the latent space). In this way, they could gener-

ate the most similar features to the raw images by only using the

class attributes. The cross alignment and cross-modal representa-

tion make this algorithm achieve state-of-the-art performance on

many ZSL datasets. This model also provides a way to minimize

the semantic gap between the features and the attributes. 

Like most of the ZSL algroithms, the input of the CADA-VAE

is the features extracted by ResNet-101 and the class attributes.

Therefore, one can infer that the qualities of the features and the

class attributes have a significant impact on the performance of the

CADA-VAE model. 

As we mentioned in Section 1 , although the pre-trained mod-

els trained with ResNet on large-scale datasets have rich infor-

mation, they may ignore the intrinsic connection between the

datasets used for training the pre-trained models and the current

ZSL dataset. Therefore, the qualities of the features and the class

attributes are hard to be guaranteed. To solve this problem, we de-

sign a novel dataset-specific feature extractor named ALT-DSFE for

ZSL, which is extention of the pre-trained ResNet with the infor-

mation of the seen classes and attributes. ALT-DSFE can exploit the

inner relationship between the datasets used for training the pre-

trained models and the current ZSL dataset to some extent. And

then ALT-DSFE provides specific features for different ZSL tasks.

Next, we present the details of ALT-DSFE. 

3. Dataset-specific feature extractor according to ALT 

(ALT-DSFE) 

As we mentioned above, most of the existing ZSL models use

the pre-trained CNNs as their feature extractors. These pre-trained
NNs are generally obtained by using CNN based deep learning al-

orithms to train on the large-scale data sets such as ImageNet

6] . These training datasets almost have no direct connection to

he datasets used in ZSL. What’s worse, there is no other strat-

gy adopted in the ZSL algorithms to fine-tune the parameters of

hese pre-trained models in the training process of ZSL to adapt

o the current task. As a consequence, the feature mismatch prob-

em always makes it difficult for these feature extractors (i.e., the

re-trained models) to be used sufficiently, and the low quality of

xtracted features makes it difficult for ZSL algorithms to train a

odel with good generalization ability. 

To alleviate this problem, we propose a novel dataset-specific

eature extractor according to an attribute-based label tree (ALT-

SFE) in this section, which can utilize the information of the

een classes and attributes to fine-tune the parameters of the pre-

rained models. In this way, the extracted features could be much

ore suitable for the current ZSL task and help to improve the

raining efficiency of the ZSL algorithm and the accuracy of the

odel. Next, we present the details of the proposed ALT-DSFE. 

To make a better introduction to the proposed ALT-DSFE, we

rst make a review of the concept of the Label Tree (LT) and de-

cribe a new concept named Attribute-based Label Tree(ALT). 

Label Tree (LT) and Attribute-based Label Tree(ALT). Label Tree

LT) is a tree structure constructed by a hierarchical class la-

el where a high-level class label contains multiple low-level

lass labels. For example, ImageNet [6] dataset has a hierarchi-

al label tree, which is built according to the WordNet database

17] . However, the WordNet database is organized by humans,

hich means that the structure of the WordNet database is built

ubjectively. 

In ZSL, benchmark datasets have specifical attributes to de-

cribe each class with the same criterion. All these attributes are

umeric vectors, and intuitively one can use the K-means tech-

ique to group them and generate newly high-level labels. The

enter of the super-classes can be chosen as the clustering center

f basic classes. In this way, a hierarchical label tree can be orga-

ized in a relatively objective way. We call it Attribute-based Label

ree(ALT). 

To satisfy the setting requirement of ZSL algorithms, we input

he seen classes’ attributes into a revised K-means model to gen-

rate the high-level labels. If the number of the generated label’s

evel is more than two, the centroid of the higher level label would

e chosen as the means of the base-level vectors. In transductive

SL, we can use the seen and unseen classes’ attributes to build the

ierarchical label tree. In this way, we can transfer more knowl-

dge from the seen classes to the unseen classes. 

Next, we introduce the details of the proposed ALT-DSFE. 

Dataset-Specific Feature Extractor According to ALT (ALT-DSFE). In

ur method, we use the pre-trained ResNet as the base feature ex-

ractor. Different from existing methods that only use one classi-

er to predict the label, our method uses multiple classifiers to

redict a label tree. It is worth noting that if the label tree has

ore than one-level, the number of classifiers in our method will

e set as the same number of level. For example, given a dataset

ith N level labels, we use N classifiers to do the prediction. In this

ay, we can use the information of the seen classes and attributes

o fine-tune the parameters of the pre-trained model. We call this

ethod ATL based Datasets-Specific Feature Extractor (ALT-DSFE).

he structure of the proposed ALT-DSFE is shown as Fig. 1 . 

As shown in Fig. 1 , the most obvious feature of ALT-DSFE is that

here are multiple fully-connected layers connected to the output

ayer of the feature extractor. 

It is noted that the conventional models usually only have one

lassifier and their fine-tuning process is very slow. In our method,

e use mutiple classifiers to speed up the fine-tuning process by

ptimizing their joint loss at the same time. For example, suppose
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Fig. 1. The structure of ALT-DSFE. 

Table 1 

Datasets introduction. 

Seen Unseen Total Attributes 

CUB 150 50 200 312 

SUN 645 72 717 102 

AWA2 40 10 50 85 

Note: The values in the column Seen, Unseen, and Total refer to the number of 

the seen classes, unseen classes, and total classes, respectively. The values in the 

column Attributes refers to the dimension of the vector that describes each class. 
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Algorithm 1 ALT-DSFE ALGORITHM. 

Input: Learning rate α, influence controller λ, training seen 

classes 
{
(x h | (x h ) ∈ (X seen ) 

}
, unseen classes X unseen ; the class at- 

tributes A = a 1 , a 2 , ..., a n ; the number of the clusters in each level 

label K; the number of the levels N. 

Output: The parameters of all level classifiers θR , noval features 

F (F seen , F unseen ∈ F ) . 

Step 1: K-means clustering 

1: Randomly initialize k sample a k (1 ≤ k ≤ n ) as the clusters cen- 

troids c 1 , c 2 , ..., c K 
2: Initialize Flag=True. 

3: if N == 1 then break 

4: else 

5: for le v el = 2 , ..., N do 

6: while Flag == True do 

7: Initialize the clustering sets S (i ) as empty sets. (1 ≤ i ≤
K le v el ) 

8: for l = 1 , 2 , ..., n do 

9: Calculate L 2 distance between the classes attribute 

vector a l and the clusters centroid vector c j (1 ≤ j ≤ K le v el ) 

10: d l j = 

√ 

(a l − c j) 2 ( 1 ≤ l ≤ n, 1 ≤ j ≤ K le v el ) 

11: Put the nearest a l to the sets Z j 
12: Z j = argmin k ∈ { 1 , 2 ,...,K } d ji 
13: for k = 1 , 2 , ..., K do 

14: Calculate the new centroid c ′ 
k 

15: c ′ 
k 

= 

1 

| S ( k ) | 
∑ 

a ∈ S ( i ) a 

16: if c ′ 
i 
� = c i then 

17: Update the centroid with c ′ 
i 

18: c i = c ′ 
i 

19: else 

20: F l ag = F al se 

21: Initialize the centroid set c i as the input of next level la- 

bel. 

22: Return all level labels 

Step 2: Constructing ALT 

1: Generate label tree data S = { (x h , y h 
1 
, y h 

2 
, ..., y h 

N 
) | (x h , y 

h 
1 
, y h 

2 
, ..., y h 

N 
) 

∈ (X seen , Y 1 , Y 2 , ..., Y N ) } 
2: Initialize θR , θC 1 

, θC 2 
, ..., θC N 

3: while not done do 

4: for 1 ≤ m ≤ N do 

5: L m 

= −(y h m 

lg 
(
θC m (θR (x h ) 

)
+ (1 − y h m 

) lg 
(
1 − θC m (θR (x h ) 

)
) 

6: L = L 1 + 

∑ 

m ∈ { 2 ,N } λm 

∗ L m 

7: (θR , θC 1 
, θC 2 

, ..., θC N 
) = (θR , θC 1 

, θC 2 
, ..., θC N 

) − α ∗ ∇L 

8: Input X seen , X unseen to θR generating the noval features F . 

9: F = θR (X seen , X unseen ) 

10: Return θR , F 
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here are N classifiers, the loss function can be expressed as 

 = λ1 ∗ L 1 + λ2 ∗ L 2 + ... + λn ∗ L N (2)

 i = 

∑ 

−(y m 

i log target m 

i + (1 − y m 

i ) log 
(
1 − target m 

i 

)
) (1 ≤ i ≤ N)

(3) 

here L i is the loss function of different level classifiers, λ are used

o control the influence of different higher-level labels, m is the

umber of samples in each seen class, and i is the level value of

he label. 

The learning process of the proposed algorithm is shown in

lgorithm 1 . Once the training process is done, we can obtain the

ataset-specific feature extractor. 

. Experimental results and analysis 

In this section, we give the details of our experimental settings

nd results. 

.1. Experimental datasets 

In our experiments, the training datasets should have both the

aw images and the attributes information of the classes. Thus we

hose three typical ZSL datasets that satisfy this requirement, that

s, CUB-200-2011 (CUB) [25] , SUN attribute (SUN) [19] , and Animal

ith attribute 2 (AwA2) [27] , as our experimental datasets. The de-

ails of the three datasets are shown in Table 1 . 

.2. Experimental settings and results 

In our study, we used the pre-trained ResNet-101 excluding

he last pooling layer as the base feature extractor of the pro-

osed ALT-DSFE. To demonstrate the scalability of our algorithm,

e chose a state-of-the-art model CADA-VAE [20] as the base clas-

ifier and the learning rate of the classifiers is ten times to the

earning rate of the ResNet-50 network. The parameter λ used in

ur method is set to 1. The total losses of all classifiers are opti-

ized together to get the final feature extractor. 

Once the training process is done, we can input the learned

eatures to CADA − VAE [20] and evaluate the performance of

he model. The details of the experimental results are shown in

abel 2 . 
From Table 2 , we can observe that compared with other ZSL al-

orithms, our method can significantly improve the prediction ac-

uracy of the model. For example, on the dataset CUB , our method

mproves the synthetical accuracy (i.e., H ) of the state-of-the-art

ADA-VAE model from 52.4% to 64.2%. Similar observations can

lso be found in the dataset AwA 2. For the dataset SUN , although

ur model does not achieve the highest accuracy, the gap with the

urrent state-of-the-art CADA-VAE model is very small. 

These experimental results imply that our method can provide

SL classifier with higher quality features, which proves that the

eature extractor proposed in this paper is effective. 

Besides, we studied the effect of the proposed algorithm on

he efficiency of model training. In the experiment, we used the

ame input data and the same hyper-parameters for the algorithm
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Table 2 

The details of the experimental results. 

CUB SUN AWA2 

acc seen acc unseen H acc seen acc unseen H acc seen acc unseen H 

LATEM [26] 57.3 15.2 24.0 28.8 14.7 19.5 77.3 11.5 20.0 

CVAE [18] - - 34.5 - - 26.7 - - 51.2 

SP-AEN [5] 34.7 70.6 46.6 24.9 38.6 30.3 23.3 90.9 37.1 

PSRZSL [2] 24.6 54.3 33.9 20.8 37.2 26.7 20.7 73.8 32.3 

DeViSE [7] 53.0 23.8 32.8 27.4 16.9 20.9 74.7 17.1 27.8 

ALE [1] 62.8 23.7 34.4 33.1 21.8 26.3 81.8 14.0 23.9 

SYNC [4] 70.9 11.5 19.8 43.3 7.9 13.4 90.5 10.0 18.0 

SE [12] 53.3 41.5 46.7 30.5 40.9 34.9 68.1 58.3 62.8 

f-CLSWGAN [28] 57.7 43.7 49.7 36.6 42.6 39.4 68.9 52.1 59.4 

CADA-VAE [20] 53.5 51.6 52.4 35.7 47.2 40.6 75.0 55.8 63.9 

Ours 68.0 60.1 64.2 37.7 42.8 40.1 78.5 55.6 65.1 

Fig. 2. The changing curves of the loss value and the accuracy of the model on the three datasets. On the top figures, green lines refer to the accuracy of the model, the 

blue lines refer to the loss change during the learning process of the model with the multi-level label training strategy. The meanings of the curves in the bottom figure are 

shown in the figures. 

Table 3 

The effect of the multi-level label and the one-level label training strategies on the 

performance of the model. 

DATASETS Multi-level One-level 

CUB 74.5 44.9 

SUN 46.3 10.1 

AWA2 91.2 66.2 

Note: Multi-level and One-level refer to that we use the information extracted from 

the multi-level label and the base label to fine-tune the pre-trained ResNet respec- 

tively. 
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but only with different level labels. Then we marked the changing

curve of the loss value and the accuracy of the model with a multi-

level label training strategy and that of the model with a one-

level label training strategy. The experimental results are shown

in Table 3 and Fig. 2 . 

From Table 3 , we can observe that the model with a multi-level

label training strategy has significantly better performance than

the model with a one-level label training strategy on all the three

datasets. For example, the accuracy of the model with a multi-level
abel training strategy is more than 30% than that of the model

ith a one-level label training strategy on the dataset SUN . 

In addition, Fig. 2 shows that the proposed multi-level labels

raining strategy can accelerate the convergence rate of the algo-

ithm and greatly reduce the training time. For example, multi-

evel labels feature extractor only needs about 60 0 0 iterations

o converge, but one-level labels feature extractor needs at least

5,0 0 0 iterations. Moreover, it can be seen from Fig. 2 that the

oss value of the multi-level labels feature extractor decreases sig-

ificantly faster than that of the one-level labels feature extractor,

hich means that our method can effectively accelerate the train-

ng efficiency of the model. 

In conclusion, the experimental results on three benchmark

atasets show that our proposed feature extractor is effective.

ext, we explain the above experimental phenomena from a visual

oint of view. 

.3. Explanation to the experimental results 

The above experimental results reflect the effectiveness of the

roposed method from the perspective of the predictive accuracy
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Fig. 3. The results of feature visualization of three datasets. 

Fig. 4. AWA 2 features visualized on 3D. 
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Fig. 5. Sensitivity of the hyper parameters to the performance of model. 

Fig. 6. The weights comparison of our feature extractor and the original one. 
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and convergence rate of the model. In this section, we directly

study the effect of our method on the change of data features in a

visual way to explain the above experimental results. Specifically,

we visualized the original features and the extracted features by

our method through the dimensionality reduction method such as

PCA. The experimental results are shown in Fig. 3 . 

From Fig. 3 , the first line figures are the distribution of the orig-

inal features, the second line figures are the distribution of the fea-

tures extracted by our method. We can observe that the features at

the first line are more separable than that of the second line. For

example, the original features of CUB are mixed, while the features

extracted by our method have an explicit classification boundary.

Similar phenomena can be observed from the experimental results

on the dataset SUN . 

In the case of two-dimensional visualization, the experimental

results on the dataset AwA 2 are not obvious enough. Therefore, we

use a three-dimensional visualization method to optimize it and

the experimental results are shown in Fig. 4 . From Fig. 4 , we can

clearly observe that the feature extracted by our method are more

separable than the original features. 
o  
The parameter value with better performance among several

rials will be given. In this paper, we conducted extra experiments

o test the sensitivity of the influence controller λ and learning

ate on the performance of the proposed method. From our experi-

ents result in Fig. 5 , we found that, when the parameter learning

ate was set to 0.01 and λ was set to 1, the model could get the

ighest accuracy. 

Through the above analysis, we can give a speculative expla-

ation for the experimental results in this paper. That is, the pro-

osed feature extractor can make the data features more separable,

hich helps the classifier to make the decision faster and better. It

alidated that the convergence speed and accuracy of the model

ave been greatly improved. 

.4. Remark 

(1) The validity of the proposed algorithm is verified from

artlett theory. 

Inspired by the Bartlett theory, that is, the smaller the norm

f weights, the better the generalization ability of the model
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or those feed-forward neural networks with the same network

omplexity [3] , we did an extra experiment to test whether the

orm of the learned weights is smaller than that of the original

eights. The experimental results are shown in Fig. 6 from which

e can observe that our features weight have more values close

r equal to zero. These results mean that our model has a greater

bility in generalization than the original one. 

(2) Our method vs transfer learning. 

Our feature extractor is trained by using a pre-trained model

nd the training process of our model indeed uses the idea of

ransfer learning, parameter-transfer. It’s confirmed that using our

eature extractor can greatly reduce training time and computa-

ional cost. 

(3) Our method vs ensemble learning. 

Our method is totally different from ensemble learning. Ensem-

le learning is to use multiple classifiers to make predictions, and

y combining these predictions, to determine a final label. In our

pproach, the multiple classifiers are used to predict multiple level

f class labels rather than obtaining a final label. 

(4) Why ResNet? Many variants of CNN, such as VGG and Incep-

ion, can be the feature extractor in ZSL. A considerable number of

eferences verify algorithmically and experimentally that features

xtracted by ResNets are really more effective than those by other

NN variant models. Mathematically and logically, the essential ex-

lanation to this reason is still unclear so far. 

. Conclusions 

In this work, we proposed a novel feature extraction method

amed ALT-DSFE for ZSL. ALT-DSFE uses the information extracted

rom the Attribute-based Label Tree (ALT) to fine-tune the param-

ters of the pre-trained ResNet model and then provides the ZSL

lassifier with dataset-specific features. Compared with the tradi-

ional feature extraction methods for ZSL (i.e. directly using the

re-trained models as the feature extractor), ALT-DSFE can provide

SL with features that are closely related to the current task, which

elps the classifier to make the prediction better. The experimental

esults on three benchmark datasets show that ALT-DSFE can not

nly effectively improve the predictive accuracy of the ZSL model,

ut also significantly accelerate the convergence rate of the model.

e analyzed the experimental phenomena from the perspective

f visualization, which experimentally show that our method can

ake the features more separable than the pre-trained ResNets. It

mplicitly explains why the proposed feature extractor can improve

he classification ability of the ZSL models. 

Although ALT-DSFE provides an efficient way to extract

atasets-specific features for ZSL, many issues are remained to be

urther studied. For example, we still cannot explain the effec-

iveness of ALT-DSFE theoretically. In the future, we will further

xplore this issue and test the ALT-DSFE’s sensitivity to different

ypes of classifiers such as SVM [31] . 
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