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ABSTRACT

Most of the existing Zero-Shot Learning(ZSL) algorithms adopt pre-trained neural networks as their fea-
ture extractors. Since these pre-trained models are not specially designed for ZSL tasks, it is difficult
to guarantee the stability and generalization ability of the ZSL algorithms due to the feature mismatch.
To alleviate this problem, we propose a novel dataset-specific feature extractor for ZSL according to an
attribute-based label tree. Specifically, an attribute-based label tree is firstly built via K-means cluster-
ing and then the information extracted from the label tree is used to fine-tune the parameters of the
pre-trained models in order to make the extracted features more suitable for the current ZSL task.
The experimental results on three typical ZSL datasets show that our approach can effectively improve
the predictive accuracy of the existing ZSL algorithms and significantly accelerate their convergence rate.
Additionally we explain the experimental phenomena from the perspective of feature visualization, which
experimentally show that the features extracted by our method are much more separable than those of
the original pre-trained models.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Deep learning has achieved many breakthroughs in various
fields in recent years, such as image classification [9], speech
recognition [10], natural language processing [16], and image
segemantation [30,32]. Most of the deep learning algorithms use
the supervised learning mechanism, which requires not only a
large number of training samples but also the accurately an-
notated labels. In addition, the label types in training set and
testing set should be consistent in traditional deep learning. These
premises are difficult to be satisfied in many practical scenarios.
In real-life applications, the cost of collecting enough correctly
labeled training data is often very high, and sometimes it is not
feasible because the testing samples may contain labels that have
never appeared in the training samples. Zero-Shot Learning (ZSL)
is an advanced technique that aims to solve this problem, which
was proposed by Lampert et al. in 2009 [13]. In ZSL, each class
belongs to one type, i.e. the seen class or the unseen class. In ZSL,
we consider the class that can collect enough training samples as
the seen class, and the class that cannot collect enough training
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samples (or even no samples) as the unseen class. The research of
ZSL is to use the information of the samples of the seen classes to
assist the prediction of the samples of the unseen classes. In recent
years, many achievements in ZSL have been acquired [14,24].

However, there are still many fundamental problems in ZSL
that have not been solved. One of them is that there is no unified
and effective way to build the connection between the seen
and the unseen classes, which is the major obstacle of the wide
application of ZSL algorithms. To alleviate this problem, three
typical methods have been proposed in recent years, that is,
traditional ZSL [13,14,20,24] and Generalized ZSL [13,20,28]. The
strategies they used are a.) from attributes to features; b.) from
features to attributes; and c.) from features and attributes to a
third space. Here the attributes refer to the vector descriptions of
the classes and the features refer to the vectors extracted from
the raw images. Besides, there are some methods that use the
auxiliary information (e.g., word2vec, label names, etc.) to help
the model to learn the association or knowledge transfer between
the seen and the unseen classes. Many advanced techniques such
as GAN-based [28,29] and VAE-based [11,20] algorithms have been
proposed to overcome the difficulty of transferring knowledge
from the seen classes to the unseen classes.

Although the above mentioned methods can use the seen
class information to help predict the labels of the unseen classes
in some specific scenarios, their performance is subject to a
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common constraint, that is, the quality of the extracted data fea-
tures must be very high. In other words, the performance of these
algorithms depends heavily on the performance of their feature
extractors.

In general, there are two ways to get the feature extractor. The
first way is to train directly on the dataset using common feature
extraction techniques. But this method is less feasible in ZSL be-
cause there are only a few samples in each class of the dataset.
Another way is to use pre-trained models (e.g., the pre-trained
residual networks) as their feature extractors, which is adopted by
most current ZSL algorithms. Compared with the former method,
the latter method can effectively improve the performance of the
ZSL classifier with the help of the rich features of the pre-trained
model. Up to now, most of the pre-trained models for ZSL are
trained based on the Residual Network (ResNet), which has been
confirmed to be a very effective feature extractor.

However, since these pre-trained models are not trained specif-
ically for the current ZSL task, the stability and the generaliza-
tion ability of the ZSL algorithms are difficult to be guaranteed.
Sometimes the accuracy of the ZSL model can be improved and
sometimes it can be decreased. In other words, the ZSL algo-
rithms using the pre-training models as their feature extractors ig-
nore the intrinsic connections between the datasets used for the
pre-training models and the training dataset used for the current
task.

Some latest researches have shown that the degree of corre-
lation between the ancillary dataset and the training dataset has
a significant impact on the performance of the final model [33].
The pre-trained models used in ZSL can also be regarded as the
special ancillary datasets. Therefore, one can infer that, if we use
the dataset-specific feature extractor to extract features for ZSL, the
model may be able to have better performance than that using the
general pre-trained models.

Inspired by this idea, we propose a novel dataset-specific fea-
ture extractor for ZSL according to an attribute-based label tree in
this paper, which is built upon the pre-trained ResNet and uses
the information of the seen classes and attributes to fine-tune
its parameters to better serve the current task. The advantages
of Dataset-Specific Feature Extractor according to Attribute-based
Label Tree(ALT-DSFE) include that (1) the pre-trained ResNet can
bring rich auxiliary features to the current task; (2) the dataset-
specific design can make the model extract the most favorable fea-
tures from the pre-trained ResNet and make the classification eas-
ier. Specifically, ALT-DSFE builds an attribute-based label tree via
K-means clustering and uses the label tree to fine-tune the param-
eters of pre-trained ResNet. ALT-DSFE fully exploits the intrinsic
connection between the pre-trained model and the current task
and provides specific features for the ZSL model. The experimen-
tal results on the three benchmark datasets show that the our ap-
proach proposed in this paper can not only effectively improve the
prediction accuracy of the existing ZSL models such as CADA-VAE
[20] and can significantly improve their convergence speed. Addi-
tionally, we explained the experimental phenomena from the per-
spective of the feature visualization.

The contributions of this paper are as follows.

(1) The concept of Attribute-based Label Tree (ALT) is defined
and a novel ALT based Dataset-Specific Feature Extractor
(ALT-DSFE) is proposed for ZSL in this paper. In ALT-DSFE,
in addition to introducing the pre-trained ResNet to improve
the diversity and richness of the features used for ZSL, we
also use the information of the seen classes and attributes
to guide the fine-tuning process of the pre-trained model. In
this way, the pre-trained model is transformed into a fea-
ture extractor related to the current task, which can better
extract effective features for ZSL. Extensive experimental re-

sults show that the proposed ALT-DSFE can effectively im-
prove the accuracy of the existing ZSL algorithms.

(2) ALT-DSFE provides a unified framework to extract specific
features for different ZSL tasks, and this framework can be
easily embedded into most of the existing ZSL algorithms.
For example, one can use ALT-DSFE to initialize the train-
able feature extractors of the GAN-based and VAE-based ZSL
algorithms to accelerate their convergence rate.

(3) We provide a visual way to explain the experimental phe-
nomena in this paper, which show that the features ex-
tracted by our proposed method are much more separable
than that of the original pre-trained ResNets. This is very
helpful for the ZSL classifier to make the correct decision.

The remaining of this paper is organized as follows. We intro-
duce the related works in Section 2. The details of the proposed
ALT-DSFE are given in Section 3. Section 4 describes the experi-
mental settings, the experimental results, and the corresponding
analysis. In Section 5, we conclude this study.

2. Preliminaries

In this section, we introduce the related works include Zero-
Shot Learning (ZSL), Convolutional Neural Network (CNN), and
CADA-VAE model.

2.1. Zero-shot learning (ZSL).

Many ZSL methods imitate the human reasoning process in the
real world, that is, humans need the description of the unseen
classes and use the knowledge they have known so that humans
can recognize when they first see the new classes. Each class in
ZSL has an attribute to describe this class. The attribute, which is
built from the whole dataset (including both the seen and unseen
classes), is a numeric vector. Each component of the vector, which
ranges from O to 1, corresponding to the class description repre-
sents the degree of the class has this trait or not.

The basic hypothesis of the traditional ZSL is that all testing
data come from unseen classes and the goal of the ZSL model is
to classify the testing data (i.e. the unseen classes) as correctly
as possible. The carrier of knowledge transfer between the seen
classes and the unseen classes has many forms in ZSL, such as se-
mantic attributes and word vectors. Using the same carrier to build
the connection between the seen classes and the unseen classes
could provide a way to transfer the information of the seen classes
to the unseen classes.

The main indicator for evaluating a traditional ZSL algorithm
is the performance of the trained classifier on the unseen classes.
However, in many real-life applications, the coming samples may
belong to both the unseen classes and the seen classes. Inspired by
this observation, Changpinyo et al. [4]| extended the traditional ZSL
to a more general ZSL algorithm named Generalized-ZSL, which
does not restrict the testing data must be the unseen classes. Be-
sides, they proposed a new metric H (as follows), the harmonic
means of the accuracy of the model on the seen and unseen
classes, to measure the performance of the model.

2% ACCseen * ACCunseen
aCCSeen + aCCunSGEn

(1)

2.2. Convolutional Neural Network (CNN).

The unique sparse-connectivity structure and parameter-sharing
strategy adopted by Convolutional Neural Network (CNN) make it
very good at extracting local features from data. Therefore, CNN
and its variant algorithms have been widely utilized in the com-
puter vision field in recent years [9,22,23]. Usually, in a typical
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CNN based deep learning algorithm, CNN units are used as the fea-
ture extractor and the fully-connected layer is used as the classi-
fier. The quality of the extracted feature has a direct impact on the
performance of the classifier. Specifically, if the feature extractor
is able to extract sufficiently good features from the training data,
then even with a simple classifier for decision making, the final
model performance is often acceptable. In other words, it is dif-
ficult to make accurate predictions based on low-quality features
no matter how complex the classifier is. Up to now, many CNN
based feature extractors have been proposed such as VGG [22], In-
ception [23], and ResNet [9]. These feature extractors can help the
deep neural network extract the effective features from the orig-
inal data, and then complete the classification or regression tasks
more efficiently.

Take the ResNet [9] as an example, the unique residual struc-
ture allows it can be extended to a neural network having much
more hidden layers than before (e.g., sometimes the number of the
hidden layers is more than one thousand [8]). Such a deep archi-
tecture provides the ability to learn the rich patterns effectively
from large-scale datasets. In recent years, it has become fashion-
able to train pre-trained models based on the dataset ImageNet
and ResNet, and thus there are many pre-trained models available
[15,21]. These pre-trained ResNet models can be used as the fea-
ture extractors in many image processing tasks.

2.3. CADA-VAE Model.

CADA-VAE is the latest ZSL algorithm, which was proposed by
Schonfeld et al. [20] in 2019. In CADA-VAE, the authors built two
VAE models to reconstruct the features and attributes respectively.
Through making a cross-connection within the two VAE models,
the model could learn the shared cross-modal latent representa-
tions of attributes and images features to enhance the representa-
tion of both attributes and features in the latent space. Then the
authors aligned the distribution of features and attributes in the
third space (i.e., the latent space). In this way, they could gener-
ate the most similar features to the raw images by only using the
class attributes. The cross alignment and cross-modal representa-
tion make this algorithm achieve state-of-the-art performance on
many ZSL datasets. This model also provides a way to minimize
the semantic gap between the features and the attributes.

Like most of the ZSL algroithms, the input of the CADA-VAE
is the features extracted by ResNet-101 and the class attributes.
Therefore, one can infer that the qualities of the features and the
class attributes have a significant impact on the performance of the
CADA-VAE model.

As we mentioned in Section 1, although the pre-trained mod-
els trained with ResNet on large-scale datasets have rich infor-
mation, they may ignore the intrinsic connection between the
datasets used for training the pre-trained models and the current
ZSL dataset. Therefore, the qualities of the features and the class
attributes are hard to be guaranteed. To solve this problem, we de-
sign a novel dataset-specific feature extractor named ALT-DSFE for
ZSL, which is extention of the pre-trained ResNet with the infor-
mation of the seen classes and attributes. ALT-DSFE can exploit the
inner relationship between the datasets used for training the pre-
trained models and the current ZSL dataset to some extent. And
then ALT-DSFE provides specific features for different ZSL tasks.
Next, we present the details of ALT-DSFE.

3. Dataset-specific feature extractor according to ALT
(ALT-DSFE)

As we mentioned above, most of the existing ZSL models use
the pre-trained CNNs as their feature extractors. These pre-trained

CNNs are generally obtained by using CNN based deep learning al-
gorithms to train on the large-scale data sets such as ImageNet
[6]. These training datasets almost have no direct connection to
the datasets used in ZSL. What's worse, there is no other strat-
egy adopted in the ZSL algorithms to fine-tune the parameters of
these pre-trained models in the training process of ZSL to adapt
to the current task. As a consequence, the feature mismatch prob-
lem always makes it difficult for these feature extractors (i.e., the
pre-trained models) to be used sufficiently, and the low quality of
extracted features makes it difficult for ZSL algorithms to train a
model with good generalization ability.

To alleviate this problem, we propose a novel dataset-specific
feature extractor according to an attribute-based label tree (ALT-
DSFE) in this section, which can utilize the information of the
seen classes and attributes to fine-tune the parameters of the pre-
trained models. In this way, the extracted features could be much
more suitable for the current ZSL task and help to improve the
training efficiency of the ZSL algorithm and the accuracy of the
model. Next, we present the details of the proposed ALT-DSFE.

To make a better introduction to the proposed ALT-DSFE, we
first make a review of the concept of the Label Tree (LT) and de-
scribe a new concept named Attribute-based Label Tree(ALT).

Label Tree (LT) and Attribute-based Label Tree(ALT). Label Tree
(LT) is a tree structure constructed by a hierarchical class la-
bel where a high-level class label contains multiple low-level
class labels. For example, ImageNet [6] dataset has a hierarchi-
cal label tree, which is built according to the WordNet database
[17]. However, the WordNet database is organized by humans,
which means that the structure of the WordNet database is built
subjectively.

In ZSL, benchmark datasets have specifical attributes to de-
scribe each class with the same criterion. All these attributes are
numeric vectors, and intuitively one can use the K-means tech-
nique to group them and generate newly high-level labels. The
center of the super-classes can be chosen as the clustering center
of basic classes. In this way, a hierarchical label tree can be orga-
nized in a relatively objective way. We call it Attribute-based Label
Tree(ALT).

To satisfy the setting requirement of ZSL algorithms, we input
the seen classes’ attributes into a revised K-means model to gen-
erate the high-level labels. If the number of the generated label’s
level is more than two, the centroid of the higher level label would
be chosen as the means of the base-level vectors. In transductive
ZSL, we can use the seen and unseen classes’ attributes to build the
hierarchical label tree. In this way, we can transfer more knowl-
edge from the seen classes to the unseen classes.

Next, we introduce the details of the proposed ALT-DSFE.

Dataset-Specific Feature Extractor According to ALT (ALT-DSFE). In
our method, we use the pre-trained ResNet as the base feature ex-
tractor. Different from existing methods that only use one classi-
fier to predict the label, our method uses multiple classifiers to
predict a label tree. It is worth noting that if the label tree has
more than one-level, the number of classifiers in our method will
be set as the same number of level. For example, given a dataset
with N level labels, we use N classifiers to do the prediction. In this
way, we can use the information of the seen classes and attributes
to fine-tune the parameters of the pre-trained model. We call this
method ATL based Datasets-Specific Feature Extractor (ALT-DSFE).
The structure of the proposed ALT-DSFE is shown as Fig. 1.

As shown in Fig. 1, the most obvious feature of ALT-DSFE is that
there are multiple fully-connected layers connected to the output
layer of the feature extractor.

It is noted that the conventional models usually only have one
classifier and their fine-tuning process is very slow. In our method,
we use mutiple classifiers to speed up the fine-tuning process by
optimizing their joint loss at the same time. For example, suppose
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Fig. 1. The structure of ALT-DSFE.

Table 1
Datasets introduction.
Seen Unseen Total Attributes
CuB 150 50 200 312
SUN 645 72 717 102
AWA2 40 10 50 85

Note: The values in the column Seen, Unseen, and Total refer to the number of
the seen classes, unseen classes, and total classes, respectively. The values in the
column Attributes refers to the dimension of the vector that describes each class.

there are N classifiers, the loss function can be expressed as
L:)\.1*L1+)\.2*L2+...+)\.H*LN (2)

L= —(y"logtarget + (1 — y") log (1 — target/"))(1 < i < N)
(3)

where L; is the loss function of different level classifiers, A are used
to control the influence of different higher-level labels, m is the
number of samples in each seen class, and i is the level value of
the label.

The learning process of the proposed algorithm is shown in
Algorithm 1. Once the training process is done, we can obtain the
dataset-specific feature extractor.

4. Experimental results and analysis

In this section, we give the details of our experimental settings
and results.

4.1. Experimental datasets

In our experiments, the training datasets should have both the
raw images and the attributes information of the classes. Thus we
chose three typical ZSL datasets that satisfy this requirement, that
is, CUB-200-2011 (CUB) [25], SUN attribute (SUN) [19], and Animal
with attribute 2 (AwA2) [27], as our experimental datasets. The de-
tails of the three datasets are shown in Table 1.

4.2. Experimental settings and results

In our study, we used the pre-trained ResNet-101 excluding
the last pooling layer as the base feature extractor of the pro-
posed ALT-DSFE. To demonstrate the scalability of our algorithm,
we chose a state-of-the-art model CADA-VAE [20] as the base clas-
sifier and the learning rate of the classifiers is ten times to the
learning rate of the ResNet-50 network. The parameter A used in
our method is set to 1. The total losses of all classifiers are opti-
mized together to get the final feature extractor.

Once the training process is done, we can input the learned
features to CADA —VAE [20] and evaluate the performance of
the model. The details of the experimental results are shown in
Tabel 2.

Algorithm 1 ALT-DSFE ALGORITHM.

Input: Learning rate «, influence controller A, training seen
classes {(xh|(x”) c (Xseen)}, unseen classes Xynseen; the class at-
tributes A = ay, a, ..., ap; the number of the clusters in each level
label K; the number of the levels N.

Output: The parameters of all level classifiers 0, noval features
F(Fseen. Funseen € F).

Step 1: K-means clustering

1: Randomly initialize k sample a,(1 < k < n) as the clusters cen-
troids ¢y, ¢y, ..., Cx
Initialize Flag=True.

: if N==1 then break
else
for level =2, ...,N do
while Flag == True do
Initialize the clustering sets S®) as empty sets.(1 <i <

N QR W

Klevel)
8: for(=1,2,...,ndo
: Calculate L2 distance between the classes attribute
vector a; and the clusters centroid vector ¢;(1 < j < Kjeyer)

10: dij=+v(@—cp)?(1=<l=n1<j=<Kep)

11: Put the nearest g, to the sets Z;
12: Zj = argmilgeq o,y dji
13: fork=1,2,...,K do
14: Calculate the new centroid c;
1
15: G = 5@ D aes @
16: if ¢} # c; then
17: Update the centroid with ¢]
18: G=¢
19: else
20: Flag = False
21: Initialize the centroid set c; as the input of next level la-
bel.
22: Return all level labels

Step 2: Constructing ALT
1: Generate label tree data S = {(x", y", yh. ... y") | (xp, Y2, ¥, o Y1)
€ (Xseen. Y1. Y2, ... Yn)}
. Initialize 9R, ch s 9C2 s aens QCN
: while not done do
for 1 <m<Ndo
Ln = — (i 1g (0c,, (Br (")) + (1 = i) Ig (1 = b, (Fr(xM)))
L= L1+ meqa.ny Am L
(QR, 9(_‘1 s 962, ey OCN) = (OR: 9{_‘1 s 9(2, ceey GCN) —oaxVL
. Input Xseen, Xunseen to O generating the noval features F.

: F = Or(Xseen, Xunseen)
10: Return 6g, F

From Table 2, we can observe that compared with other ZSL al-
gorithms, our method can significantly improve the prediction ac-
curacy of the model. For example, on the dataset CUB, our method
improves the synthetical accuracy (i.e., H) of the state-of-the-art
CADA-VAE model from 52.4% to 64.2%. Similar observations can
also be found in the dataset AwA2. For the dataset SUN, although
our model does not achieve the highest accuracy, the gap with the
current state-of-the-art CADA-VAE model is very small.

These experimental results imply that our method can provide
ZSL classifier with higher quality features, which proves that the
feature extractor proposed in this paper is effective.

Besides, we studied the effect of the proposed algorithm on
the efficiency of model training. In the experiment, we used the
same input data and the same hyper-parameters for the algorithm
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Table 2
The details of the experimental results.
CUB SUN AWA2
(ACCseen ACCunseen H ACCseen ACCunseen H ACCseen ACCunseen H
LATEM [26] 57.3 15.2 24.0 28.8 14.7 19.5 77.3 115 20.0
CVAE [18] - - 345 - - 26.7 - - 51.2
SP-AEN |[5] 34.7 70.6 46.6 249 38.6 30.3 233 90.9 371
PSRZSL 2] 24.6 54.3 33.9 20.8 37.2 26.7 20.7 73.8 323
DeViSE [7] 53.0 23.8 32.8 27.4 16.9 209 74.7 17.1 27.8
ALE [1] 62.8 23.7 344 331 21.8 26.3 81.8 14.0 23.9
SYNC [4] 70.9 11.5 19.8 433 7.9 134 90.5 10.0 18.0
SE [12] 533 41.5 46.7 30.5 40.9 349 68.1 58.3 62.8
f-CLSWGAN (28] 57.7 43.7 49.7 36.6 42.6 394 68.9 52.1 59.4
CADA-VAE [20] 53.5 51.6 524 35.7 47.2 40.6 75.0 55.8 63.9
Ours 68.0 60.1 64.2 37.7 42.8 40.1 78.5 55.6 65.1
1 7
0.8
2 2
0.6
0.4 0.6
0.8 0.2 T
05 0 0.1
0 1k 2k 3k 4k 5k 6k 7k 0 1k 2k 3k 4k 5k 6k 7k 8k 0 1k 2k 3k 4k 5k 6k
7 A
WMW 3 loss 5 :
loss S8
2
0.7
0.6 0.7 0.09
15 age —_— ace
acc
0.1 0.2 4e-3
0 Sk 10k 15k 20k 25k 30k 35k 40k 0 5k 10k 15k 20k 25k 30k 0 4k 8k 12k 16k
(a) CUB (b) AWA (c) SUN

Fig. 2. The changing curves of the loss value and the accuracy of the model on the three datasets. On the top figures, green lines refer to the accuracy of the model, the
blue lines refer to the loss change during the learning process of the model with the multi-level label training strategy. The meanings of the curves in the bottom figure are

shown in the figures.

Table 3
The effect of the multi-level label and the one-level label training strategies on the
performance of the model.

DATASETS Multi-level One-level
CUB 74.5 449
SUN 46.3 10.1
AWA2 91.2 66.2

Note: Multi-level and One-level refer to that we use the information extracted from
the multi-level label and the base label to fine-tune the pre-trained ResNet respec-
tively.

but only with different level labels. Then we marked the changing
curve of the loss value and the accuracy of the model with a multi-
level label training strategy and that of the model with a one-
level label training strategy. The experimental results are shown
in Table 3 and Fig. 2.

From Table 3, we can observe that the model with a multi-level
label training strategy has significantly better performance than
the model with a one-level label training strategy on all the three
datasets. For example, the accuracy of the model with a multi-level

label training strategy is more than 30% than that of the model
with a one-level label training strategy on the dataset SUN.

In addition, Fig. 2 shows that the proposed multi-level labels
training strategy can accelerate the convergence rate of the algo-
rithm and greatly reduce the training time. For example, multi-
level labels feature extractor only needs about 6000 iterations
to converge, but one-level labels feature extractor needs at least
15,000 iterations. Moreover, it can be seen from Fig. 2 that the
loss value of the multi-level labels feature extractor decreases sig-
nificantly faster than that of the one-level labels feature extractor,
which means that our method can effectively accelerate the train-
ing efficiency of the model.

In conclusion, the experimental results on three benchmark
datasets show that our proposed feature extractor is effective.
Next, we explain the above experimental phenomena from a visual
point of view.

4.3. Explanation to the experimental results

The above experimental results reflect the effectiveness of the
proposed method from the perspective of the predictive accuracy
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Fig. 6. The weights comparison of our feature extractor and the original one.

and convergence rate of the model. In this section, we directly
study the effect of our method on the change of data features in a
visual way to explain the above experimental results. Specifically,
we visualized the original features and the extracted features by
our method through the dimensionality reduction method such as
PCA. The experimental results are shown in Fig. 3.

From Fig. 3, the first line figures are the distribution of the orig-
inal features, the second line figures are the distribution of the fea-
tures extracted by our method. We can observe that the features at
the first line are more separable than that of the second line. For
example, the original features of CUB are mixed, while the features
extracted by our method have an explicit classification boundary.
Similar phenomena can be observed from the experimental results
on the dataset SUN.

In the case of two-dimensional visualization, the experimental
results on the dataset AwA2 are not obvious enough. Therefore, we
use a three-dimensional visualization method to optimize it and
the experimental results are shown in Fig. 4. From Fig. 4, we can
clearly observe that the feature extracted by our method are more
separable than the original features.

The parameter value with better performance among several
trials will be given. In this paper, we conducted extra experiments
to test the sensitivity of the influence controller A and learning
rate on the performance of the proposed method. From our experi-
ments result in Fig. 5, we found that, when the parameter learning
rate was set to 0.01 and A was set to 1, the model could get the
highest accuracy.

Through the above analysis, we can give a speculative expla-
nation for the experimental results in this paper. That is, the pro-
posed feature extractor can make the data features more separable,
which helps the classifier to make the decision faster and better. It
validated that the convergence speed and accuracy of the model
have been greatly improved.

4.4. Remark

(1) The validity of the proposed algorithm is verified from
Bartlett theory.

Inspired by the Bartlett theory, that is, the smaller the norm
of weights, the better the generalization ability of the model
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for those feed-forward neural networks with the same network
complexity [3], we did an extra experiment to test whether the
norm of the learned weights is smaller than that of the original
weights. The experimental results are shown in Fig. 6 from which
we can observe that our features weight have more values close
or equal to zero. These results mean that our model has a greater
ability in generalization than the original one.

(2) Our method vs transfer learning.

Our feature extractor is trained by using a pre-trained model
and the training process of our model indeed uses the idea of
transfer learning, parameter-transfer. It's confirmed that using our
feature extractor can greatly reduce training time and computa-
tional cost.

(3) Our method vs ensemble learning.

Our method is totally different from ensemble learning. Ensem-
ble learning is to use multiple classifiers to make predictions, and
by combining these predictions, to determine a final label. In our
approach, the multiple classifiers are used to predict multiple level
of class labels rather than obtaining a final label.

(4) Why ResNet? Many variants of CNN, such as VGG and Incep-
tion, can be the feature extractor in ZSL. A considerable number of
references verify algorithmically and experimentally that features
extracted by ResNets are really more effective than those by other
CNN variant models. Mathematically and logically, the essential ex-
planation to this reason is still unclear so far.

5. Conclusions

In this work, we proposed a novel feature extraction method
named ALT-DSFE for ZSL. ALT-DSFE uses the information extracted
from the Attribute-based Label Tree (ALT) to fine-tune the param-
eters of the pre-trained ResNet model and then provides the ZSL
classifier with dataset-specific features. Compared with the tradi-
tional feature extraction methods for ZSL (i.e. directly using the
pre-trained models as the feature extractor), ALT-DSFE can provide
ZSL with features that are closely related to the current task, which
helps the classifier to make the prediction better. The experimental
results on three benchmark datasets show that ALT-DSFE can not
only effectively improve the predictive accuracy of the ZSL model,
but also significantly accelerate the convergence rate of the model.
We analyzed the experimental phenomena from the perspective
of visualization, which experimentally show that our method can
make the features more separable than the pre-trained ResNets. It
implicitly explains why the proposed feature extractor can improve
the classification ability of the ZSL models.

Although ALT-DSFE provides an efficient way to extract
datasets-specific features for ZSL, many issues are remained to be
further studied. For example, we still cannot explain the effec-
tiveness of ALT-DSFE theoretically. In the future, we will further
explore this issue and test the ALT-DSFE’s sensitivity to different
types of classifiers such as SVM [31].
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