
Information Sciences 536 (2020) 185–204

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Incremental feature selection based on fuzzy rough sets

Peng Ni a , b , Suyun Zhao

a , b , ∗, Xizhao Wang

c , Hong Chen

a , b , Cuiping Li a , b ,
Eric C.C. Tsang

d

a Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin University of China, Beijing, China
b School of Information, Renmin University of China, Beijing,100872, China
c Shenzhen University, Shenzhen, Guangdong, 518061, China
d Macau University of Sciences and Technology, Macau, China

a r t i c l e i n f o

Article history:

Received 10 September 2019

Revised 12 April 2020

Accepted 15 April 2020

Available online 18 May 2020

Keywords:

Feature selection

Fuzzy rough set

Incremental learning

Information measure

a b s t r a c t

Incremental feature selection can improve learning of accumulated data. We focus on in-

cremental feature selection based on rough sets, which along with their generalizations

(e.g., fuzzy rough sets), reduce dimensionality without requiring domain knowledge, such

as data distributions. By analyzing the basic concepts of fuzzy rough sets on incremental

datasets, we propose incremental mechanisms of information measure. Moreover, we in-

troduce a key instance set containing representative instances to select supplementary fea-

tures when new instances arrive. As the key instance set is much smaller than the whole

dataset, the proposed incremental feature selection mostly suppresses redundant computa-

tions. We experimentally compare the proposed method with various non-incremental and

two state-of-the-art incremental methods on a variety of datasets. The comparison results

demonstrate that the proposed method achieves compact results with reduced computa-

tion time, especially on high-dimensional datasets.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this era of big data, as data are increasingly accumulated over time, researchers should develop novel analysis methods

based on incremental learning [14 , 29]. A learning algorithm is considered as incremental if it generates hypotheses h 0 ,

h 1 , …, h n based on corresponding training data t 1 , t 2 , …, t n , where h i +1 only depends on h i and current training data t i .

However, the resulting hypothesis is only applicable to the available training data [11] . Incremental learning reduces the

space and time complexities regarding storage and processing, respectively [7] . In the last decades, incremental learning

has been widely studied, obtaining methods such as incremental classification [2 , 3 , 10 , 12 , 32], incremental clustering [1] , and

incremental feature extraction and selection [22 , 25 , 35].

Incremental feature selection allows to handle sequentially arriving data or large datasets divided into sequentially pro-

cessed subsets. This type of selection is important in incremental learning and applies to streaming data collected over

time to update the selected representative features [18] . Incremental feature selection fully leverages historical information

to substantially reduce the size of the training set [37] . Moreover, arriving data are only processed once, and historical re-

sults are subsequently combined. Feature selection can be roughly divided into wrappers, filters, and embedded algorithms

[13 , 19]. Most existing incremental feature selection methods use the filter approach, which selects features regardless of the
∗ Corresponding author. .

E-mail address: zhao.suyun@yahoo.com (S. Zhao).

https://doi.org/10.1016/j.ins.2020.04.038

0020-0255/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2020.04.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.04.038&domain=pdf
mailto:zhao.suyun@yahoo.com
https://doi.org/10.1016/j.ins.2020.04.038

186 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

learning/mining model and often serves as preprocessing step [4] . Nevertheless, incremental wrapper and hybrid approaches

have not been widely explored.

Currently, incremental feature selection mainly focuses on either streaming features or streaming instances [36] . For

streaming features [18 , 26 , 34 , 47], the selection assumes a fixed number of instances in training data and variable number

of features over time. For streaming instances [15 , 20 , 38], the selection approach updates and maintains a feature subset

using representative features for discriminating new instances from its current surroundings. In addition, a presumed data

distribution determines the selection effectiveness. Alternatively, rough sets [23 , 24], which do not assume a data distribution,

can be adopted for granular computing [21 , 41 , 44 , 45] to perform feature selection on streaming instances.

Based on existing rough set concepts [23 , 24], various methods handle sequentially arriving data to perform incremental

feature selection [15 , 16 , 20 , 38]. These methods include entropy-based [20] , matrix-based [15 , 38], and positive-region-based

incremental feature selection [16] . When only a new instance arrives, Hu et al. [15 , 16] perform incremental feature selection

based on either the modified discernibility matrix or positive region. Likewise, Yang et al. [38] perform incremental feature

selection by updating the discernibility matrix. Wei et al. [35] achieve incremental feature selection using a compact decision

table to improve efficiency. When a group of instances arrives, Liang et al. [20] use information entropy to establish a state-

of-the-art entropy-based incremental feature selection algorithm.

The aforementioned rough-based methods share a common assumption that instances are discretized [30 , 33 , 46]. In real-

world applications, however, there are many continuous features in datasets. A fuzzy rough set [9 , 17], which supports

continuous-valued data, has been proposed to handle such features. Various incremental feature selection methods based on

fuzzy rough sets have been subsequently proposed, such as a matrix-based method [39 , 40]. Yang et al. [39] use fuzzy rough

sets in an incremental feature selection algorithm by discarding irrelevant instances and selecting representative arriving

instances. This method establishes a state-of-the-art matrix-based reduction algorithm (MIAR). However, most matrix-based

algorithms store all the historical discernibility matrices/pairs, being inapplicable when memory is limited. Therefore, effi-

cient and effective feature selection algorithms considering storage limitations should be developed.

We propose an incremental feature selection algorithm using fuzzy rough sets. Our main contributions can be summa-

rized as follows.

• Incremental mechanisms of positive region and dependency function are devised using concepts from fuzzy rough sets

on incremental datasets.

• The key instance set is introduced. This set contains instances that allow to select representative features by updating

previously obtained feature subset when new instances arrive.

• The positive-region-based incremental reduction algorithm (PIAR) is then developed using the key instance set. PIAR

preserves previously obtained features (i.e., it prevents catastrophic forgetting) and learns additional features from the

key instance set.

As the key instance set is much smaller than the whole dataset, the corresponding incremental feature selection prevents

some redundant computations and alleviates computation requirements of storage and processing.

An accelerated attribute reduction method [27] also performs recursive updating based on positive regions. The main

differences between the method in [27] and the proposed method are summarized as follows.

• The methods have different objectives; the one in [27] accelerates reduction algorithms based on all the available data,

whereas the proposed method updates reduction using accumulated data (i.e., data accumulated with subsequently ar-

riving instances).

• The methods adopt different tools; the method in [27] uses classical rough sets, whereas the proposed method uses

fuzzy rough sets.

• The methods handle different types of datasets; the method described in [27] processes discrete data, whereas the pro-

posed method processes continuous-valued data.

The remainder of this paper is organized as follows. Section 2 briefly presents rough sets, fuzzy rough sets, and an

overview of feature selection algorithms based on fuzzy rough sets. In Section 3 , we propose the method to determine the

key instance set for incremental feature selection. In Section 4 , we present the fuzzy-rough-set-based incremental feature

selection method and its proposed improvement. The proposed method is compared with non-incremental and state-of-the-

art incremental feature selection methods in Section 5 . Finally, we draw conclusions and provide directions of future work

in Section 6 .

2. Preliminaries

Rough set theory, initially proposed by Pawlak [23 , 24], is an effective method for feature selection, rule extraction, and

knowledge discovery. In rough set philosophy, each feature is called an attribute, and then feature selection is called at-

tribute reduction. Here, we review rough set theory and its generalization to fuzzy rough sets [9 , 17 , 31]. In addition, we

review three classical feature selection (attribute reduction) algorithms [28 , 39 , 42] and two state-of-the-art incremental fea-

ture selection algorithms based on (fuzzy) rough set techniques [20 , 39].

P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204 187

Table 1

Example of fuzzy decision table.

Instance A b c class

x 1 –0.4 –0.3 –0.5 0

x 2 –0.4 0.2 –0.1 1

x 3 –0.3 –0.4 –0.3 0

x 4 0.3 –0.3 0 1

(

(

(

(

(

2.1. Rough sets and fuzzy rough sets

Usually, data are described as a decision table, denoted by DT = (U, C ∪ D) , where U = { x 1 , x 2 , ..., x n } , called universe,

is a nonempty set with finite number of instances. Each instance in U is described by a nonempty finite set of attributes,

denoted by C ∪ D , where C denotes the set of condition attributes, D denotes the set of decision attributes, and C ∩ D = ∅ . Each

attribute r ∈ C ∪ D corresponds to a map U → V r , in which V r is the value set of r over U . With every subset of attributes,

B ⊆C , the universe is split into q equivalence classes U/B = { X 1 , X 2 , . . . , X q } , where U =

⋃ q
i =1

X i and X i ∩ X j = ∅ for any i 	 = j.

U / B is called a partition of B on U . In addition, ∀ X ⊆U , B X = { X i | X ⊆ X and X i ∈ U/B } and B̄ X = { X i | X i ∩ X 	 = ∅ and X i ∈ U/B } . Pair

(B X, B̄ X) is called a rough set of X on attribute subset B . Clearly, rough set theory is only suitable for crisp attributes. Fuzzy

rough sets generalize rough sets by combining fuzzy sets [43] and rough sets, and they are suitable for both continuous and

crisp attributes [9 , 31].

Let A be a fuzzy subset on U defined as a mapping A : U → [0, 1]. Then, ∀ x ∈ U, A (x) ∈ [0, 1] is the fuzzy membership

degree of x belonging to fuzzy set A [43] . If each attribute r ∈ C corresponds to a map U → [0, 1], each attribute is fuzzy

instead of crisp. As each continuous attribute can be converted into a fuzzy attribute, the decision table with continuous

attributes is called a fuzzy decision table and denoted by FD .

Some concepts and properties of fuzzy rough sets are briefly reviewed below. More details can be found in [9 , 17 , 31].

Given attribute subset B ⊆C and triangular norm T (see the appendix for the properties of the triangular norm), a fuzzy

similarity relation on attribute subset B is defined as R B (· , ·) for every x, y, z ∈ U and satisfying the following properties:

1) Reflexivity (R B (x, x) = 1),

2) Symmetry (R B (x, y) = R B (y, x)),

3) T -transitivity (R B (x, y) ≥ T (R B (x, z), R B (z, y))).

In fact, each similarity relation R B (· , ·) corresponds to an attribute subset B .

The fuzzy rough set was first proposed by Dubois and Prade [9] , and it is defined as follows.

Definition 1. Let U be a nonempty universe and R B (· , ·) be a fuzzy similarity relation on U . A fuzzy rough set is an

ordered pair (R B A, R B A) of fuzzy set A on U such that for every x ∈ U ,

1) R B A (x) = in f u ∈ U max { 1 − R B (x, u) , A (u) } ,
2) R B A (x) = su p u ∈ U min { R B (x, u) , A (u) } .

R B A and R B A are the lower and upper approximation operators of A on attribute subset B , respectively.

In most practical applications, only the decision attributes are crisp, whereas the condition attributes are usually contin-

uous. Therefore, we mainly focus on fuzzy decision tables with crisp decision attributes hereinafter.

Proposition 1. Given fuzzy decision table F D = (U, C ∪ D) and ∀ X ⊆U, the lower approximation operator of X on attribute subset

B can be simplified, ∀ x ∈ U, as follows:

R B X (x) =

{
min

u ∈ U, u / ∈ X
{ 1 − R B (x, u) } , x ∈ X

0 , x / ∈ X

.

Proposition 1 gives the topological meaning of the lower approximation operator. That is, the lower approximation value

of x ∈ X is the smallest distance from x to u 	∈ X [17] . Thus, to find the minimal distance, it is necessary to go through

all the instances in the universe. Consequently, fuzzy rough sets hinder or even impede the computation of the rough

approximation on accumulated data. Below, we provide an example of fuzzy rough sets.

Example 1. Let U = { x 1 , x 2 , x 3 , x 4 } , E = { a, b, c } , U/D = { X 1 , X 2 } , X 1 = { x 1 , x 3 } , and X 2 = { x 2 , x 4 } . The lower and up-

per approximation operators of X 1 on attribute subset E are R E X 1 (x) = in f u ∈ U max { 1 − R E (x, u) , X 1 (u) } and R E X 1 (x) =
su p u ∈ U min { R B (x, u) , X 1 (u) } , respectively.

Considering Table 1 , let R E (x, y) = mi n r∈ E (R r (x, y)) , where R r (x, y) = 1 − (max (r(x) , r(y)) − min (r(x) , r(y))) , with r (x),

r (y) ∈ [0, 1] representing the attribute values of instances x, y on attribute r , respectively.

188 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

(

(

(

(

For brevity, we only detail the computation steps for R E (x 1 , x 2). R E (x 1 , x 4) can be computed by following the same pro-

cedure. Denote X(x) = { 1 , x ∈ X

0 , x / ∈ X
. Clearly, once X 1 (x 1) = 1 , max { 1 − R E (x 1 , x 1) , X 1 (x 1) } = 1 always holds.

R E (x 1 , x 1) = R E (x 1 , x 3) = 1 ,

R a (x 1 , x 2) = 1 − (max (a (x 1) , a (x 2)) − min (a (x 1) , a (x 2))) = 1 − (max (−0 . 4 , −0 . 4) − min (−0 . 4 , −0 . 4)) = 1 ,

R b (x 1 , x 2) = 1 − (max (b (x 1) , b (x 2)) − min (b (x 1) , b (x 2))) = 1 − (max (−0 . 3 , 0 . 2) − min (−0 . 3 , 0 . 2)) = 0 . 5 ,

R c (x 1 , x 2) = 1 − (max (c (x 1) , c (x 2)) − min (c (x 1) , c (x 2))) = 1 − (max (−0 . 5 , −0 . 1) − min (−0 . 5 , −0 . 1)) = 0 . 6 ,

R E (x 1 , x 2) = min r∈ E (R r (x 1 , x 2)) = min { R a (x 1 , x 2) , R b (x 1 , x 2) , R c (x 1 , x 2) } = min { 1 , 0 . 5 , 0 . 6 } = 0 . 5 ,

R E (x 1 , x 4) = 0 . 3 ,

R E X 1 (x 1) = in f u ∈ U max { 1 − R E (x 1 , u) , X 1 (u) }
= min { max { 1 −R E (x 1 , x 1) , X 1 (x 1) } , max { 1 −R E (x 1 , x 2) , X 1 (x 2) } , max { 1 −R E (x 1 , x 3) , X 1 (x 3) } , max { 1 −R E (x 1 , x 4) , X 1 (x 4) } }
= min { max { 1 − R E (x 1 , x 1) , 1 } , max { 1 − 0 . 5 , 0 } , max { 1 − R E (x 1 , x 3) , 1 } , max { 1 − 0 . 3 , 0 } }
= min { 1 , 0 . 5 , 1 , 0 . 7 }
= 0 . 5 ,

R E X 1 (x 1) = su p u ∈ U min { R E (x 1 , u) , X 1 (u) }
= max { min { R E (x 1 , x 1) , X 1 (x 1) } , min { R E (x 1 , x 2) , X 1 (x 2) } , min { R E (x 1 , x 3) , X 1 (x 3) } , min { R E (x 1 , x 4) , X 1 (x 4) } }
= max { min { 1 , 1 } , min { 0 . 5 , 0 } , min { 1 , 1 } , min { 0 . 3 , 0 } }
= 1 .

Definition 2. In fuzzy decision table F D = (U, C ∪ D) , the positive region of D relative to C is defined as P OS U
C
(x) =

R C ([x] D)(x) for every x ∈ U , and the dependency degree of D on C is defined as γ U
C

=

∑

x ∈ U
P OS U

C
(x) / | U| , where [x] D =

{ y ∈ U : R D (x, y) = 1 } represents the set containing the instances in U with the same decision classes of x .

Positive region P OS U
C
(x) measures the discernibility of D relative to C for each instance x ∈ U . Dependency function γ U

C
measures the discernibility of D relative to C on the universe.

Based on Proposition 1 , the property of the positive region is described as follows.

Proposition 2. Given fuzzy decision table F D = (U, C ∪ D) , the positive region of D relative to C can be simplified as follows:

∀ x ∈ U, P OS U
C
(x) = min

u ∈ U, u / ∈ [x] D
{ 1 − R C (x, u) } .

Proposition 2 describes the relation between the positive region and lower approximation.

Definition 3. In fuzzy decision table F D = (U, C ∪ D) , B ⊆C is called a reduct of C with respect to D if B satisfies the following

statements:

1) γ U
C

= γ U
B

,

2) for any r ∈ B , γ U
C

	 = γ U
B −{ r} .

To design a feature selection algorithm, it is necessary to determine the increment of the dependency degree with grad-

ually increasing attributes. Thus, the dependency degree and positive region can be described by Proposition 3 .

Proposition 3. If P ⊆Q ⊆C, then

1) P OS U
P
(x) ≤ P OS U

Q
(x) ≤ P OS U

C
(x) ,

2) γ U
P

≤ γ U
Q

≤ γ U
C

.

Proposition 3 shows that the dependency function is monotonic with gradually arriving attributes. Thus,

Proposition 3 verifies the feasibility of the forward feature selection (attribute reduction) algorithm. Note that forward fea-

ture selection (attribute reduction) means to add the most representative attributes successively to the candidate reduct

until the dependency degree reaches its maximum.

2.2. Existing static reduction algorithms and incremental feature selection algorithms

Here, we briefly review three known static reduction algorithms [28 , 39 , 42] and two state-of-the-art incremental feature

selection algorithms [20 , 39]. By clarifying and comparing the characteristics of these algorithms, we determine the necessity

to develop an incremental feature selection (attribute reduction) algorithm based on the positive region. Using Proposition 3 ,

the dependency-function-based reduction algorithm (DAR) is detailed in Algorithm 1 [42] .

Besides DAR, there exist two static feature selection algorithms, namely, entropy-based feature selection algorithm (EAR)

[20 , 28] and discernibility matrix-based selection algorithm (MAR) [39] . Although EAR is based on three kinds of entropy

calculations, we only consider the conditional combination entropy proposed by Qian and Liang [28] as specific case. More

details about entropy and EAR can be found in [20 , 28]. Note that EAR is only suitable for decision tables with crisp attributes,

denoted by DT , because entropy is only appropriate for classical rough sets.

P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204 189

Algorithm 1 DAR

Input: F D = (U, C ∪ D)
Output : red

Step 1: B ← ∅ , γ U
B ← 0

Step 2: lef ← C

Step 3: Calculate γ U
C

Step 4: While (γ U
B < γ U

C), do

a ∗ = arg max
a ∈ le f

γ U
B ∪{ a }

B ← B ∪ { a ∗}

l e f ← l e f − { a ∗}
Calculate γ U

B

End while

Step 5: Let red ← B, i = 0

Step 6: For (i = 0 to | B | − 1)

Take i th attribute b i in B

if γ U
red−{ b i } = γ U

C , then red ← red − { b i }
End for

Step 7: Return red

Algorithm 2 EAR

Input: DT = (U, C ∪ D)
Output: red

Step 1: red ← ∅
Step 2: For each attribute a in C

if Sig inner (a, C, D) > 0, then red ← red ∪ { a }
End for

Step 3: B ← red

Step 4: While (CE (D | B) 	 = CE (D | C)), do

Si g outer (a ∗, B, D) = max { Si g outer (a, B, D) } for a ∈ C − B

B ← B ∪ { a ∗}

End while

Step 5: red ← B

Step 6: Return red

(

(

(

(

Definition 4. Consider decision table D T = (U, C ∪ D) , B ⊆C , and partitions U/B = { X 1 , X 2 , …, X m

} and U/D = { Y 1 , Y 2 , …, Y n }.

A conditional entropy of B relative to D is defined as CE(D | B) =

∑ m

i =1 (
| X i | | U|

C 2 | X i |
C 2 | U|

− ∑ n
j=1

| X i ∩ Y j |
| U|

C 2 | X i ∩ Y j |
C 2 | U|

) , where C 2 | X i | denotes the

number of pairs of instances which are not distinguishable from each other in X i .

Definition 5. Consider decision table D T = (U, C ∪ D) and B ⊆C . ∀ a ∈ B , the inner significance of a in B is defined as Sig inner (a,

B, D) = CE(D | B − { a }) − CE(D | B) . If Sig inner (a, B, D) > 0, then attribute a is indispensable.

Definition 6. Consider decision table D T = (U, C ∪ D) and B ⊆C . ∀ a ∈ C − B , the outer significance of a in B is defined as

Si g outer (a, B, D) = CE(D | B) − CE(D | B ∪ { a })
Definition 7. Given decision table DT = (U, C ∪ D) , B ⊆C be a reduct denoted by red if and only if:

1) CE(D | B) = CE(D | C) ,
2) ∀ a ∈ B, CE(D | C) 	 = CE(D | B − { a }) .

The heuristic algorithm to find a reduct based on the conditional combination entropy [20] is detailed in Algorithm 2 .

And the incremental EAR (EIAR) is detailed in Algorithm 3 [20] .

The incremental computation of conditional combination entropy CE U ∪ �U (D | B) is given in [20] , where more details of

EIAR can be found. As EAR and EIAR are only suitable for crisp attributes, datasets with continuous attributes should be

discretized before their application at the expense of information loss. The third classical feature selection (attribute reduc-

tion) method is the discernibility-matrix-based reduction algorithm, MAR [39] , which can handle a fuzzy decision table with

continuous attributes. The discernibility matrix, which is a discernibility measure, is defined as follows.

Definition 8. Given fuzzy decision table F D = (U, C ∪ D) , the discernibility matrices of attribute a and attribute set C with

respect to D are respectively defined as

1) DM(a) = { (x i , x j) ∈ U × U| 1 − R a (x i , x j) ≥ R C [x i] D (x i) , x j / ∈ [x i] D } ,
2) DM(C) = ∪ a ∈ C DM(a) .

Definition 8 shows that each entry of the discernibility matrix of C contains the instance pairs that can be discerned by

C . Thus, the discernibility matrix contains the discernibility information of the fuzzy decision table.

190 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

Algorithm 3 EIAR

Input: DT = (U, C ∪ D) , �U, red

Output: newred

Step 1: B ← red , compute U/B = { X B 1 , X
B
2 , …, X B m }, U/C = { X C 1 , X

C
2 , …, X C s } , �U/B = { M

B
1 , M

B
2 , …, M

B
m ′ },

�U/C = { M

C
1 , M

C
2 , …, M

C
s ′ }

Step 2: Compute (U ∪ �U) /B = { X ′ B 1 , X
′ B
2 , …, X

′ B
k

, X B
k +1

, X B
k +2

, …, X B m , M

B
k +1

, M

B
k +2

, …, M

B
m ′ }, (U ∪ �U) /C = { X ′ C 1 ,

X
′ C
2 , …, X

′ C
k ′ , X

C
k ′ +1

, X C
k ′ +2

, …, X C s , M

C
k ′ +1

, M

C
k ′ +2

, …, M

C
s ′ }

Step 3: If k = 0 and k ′ = 0 , go to step 4; otherwise, go to step 5

Step 4: Compute CE �U (D | B) and CE �U (D | C). If C E �U (D | B) = C E �U (D | C) , go to step 7; otherwise, go to step 5 .

Step 5: While (CE U ∪ �U (D | B) 	 = CE U ∪ �U (D | C)), do

Sig outer
U∪ �U

(a ∗, B, D) = max { Sig outer
U∪ �U

(a, B, D) } for a ∈ C − B

B ← B ∪ { a ∗}

End while

Step 6: For each attribute a in B

if Sig inner
U∪ �U

(a, B, D) = 0, then B ← B − { a }
End for

Step 7: newred ← B

Step 8: Return newred

Algorithm 4 MAR

Input: F D = (U, C ∪ D)
Output: red

Step 1: ∀ x i ∈ U, compute R C [x i] D (x i)

Step 2: For each condition attribute a ∈ C , compute its fuzzy discernibility matrix DM (a) and DM (C)

Step 3: Core D (C) ← ∅
For each a ∈ C , compute DM(C − { a })
If DM(C − { a }) 	 = DM(C) , then Core D (C) ← Core D (C) ∪ { a }

Step 4: red ← Core D (C), and DM(a) ← DM(a) − DM(red) for ∀ a 	∈ red

Step 5: While (DM (red) 	 = DM (C)), do

add attribute a ∗ ∈ C − red satisfying | DM(a ∗) | = max
a ∈ C−red

| DM(a) | into red

DM (red) ← DM (red) ∪ DM (a ∗) and DM(a) ← DM(a) − DM(a ∗) for ∀ a ∈ C − red

End while

Step 6: Return red

Algorithm 5 MIAR

Input: F D = (U, C ∪ D) , �U, red

Output: newred

Step 1: B ← red

Step 2: For each condition attribute a ∈ C , compute its fuzzy discernibility matrix DM

′ (a) and DM

′ (C) in fuzzy decision table (U ∪ �U, C ∪ D).

Step 3: If D M

′ (B) = D M

′ (C) , go to Step 5

Step 4: While (DM

′ (B) 	 = DM

′ (C)), do

add attribute a ∗ ∈ C − B satisfying | D M

′ (B ∪ { a ∗}) | = max
a ∈ C−B

| D M

′ (B ∪ { a }) | into B

DM

′ (B) ← DM

′ (B) ∪ DM

′ (a ∗), for ∀ a ∈ C − red

End while

Step 5: While (D M

′ (B) = D M

′ (C)), do

select attribute a ∈ B satisfying D M

′ (B) = D M

′ (B − { a }) , and let B = B − { a }
End while

Step 6: newred ← B

Step 7: Return newred

(

(

Proposition 4. Cor e D (C) = { a ∈ C : DM(C − { a }) 	 = DM(C) } .
Proposition 4 implies that if an instance pair can be discerned by attribute a but not by the attributes in C − { a } , then

attribute a is a core attribute. The reduct can be analogously defined by using a fuzzy discernibility matrix as follows.

Definition 9. Given fuzzy decision table F D = (U, C ∪ D) , B ⊆C is a reduct if and only if:

1) DM(B) = DM(C) ,

2) ∀ a ∈ B , DM(B − { a }) 	 = DM(C) .

The heuristic algorithm to find a reduction result using a fuzzy discernibility matrix [39] is detailed in Algorithm 4 . And

the incremental version of MAR (MIAR) is detailed in Algorithm 5 [39] .

The incremental computation of relative discernibility relation D M

′
(B) is defined in [39] , where more details are available.

Table 2 lists the characteristics of the three kinds of reduction algorithms. The computation time of DAR is high, thus being

inefficient or even unfeasible on accumulated data. As no mature incremental dependency-degree-based reduction algorithm

is currently available for notably speeding up DAR, this problem remains to be addressed.

P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204 191

Algorithm 6 DIAR (dependency-function-based attribute reduction algorithm)

Input: F D = (U, C ∪ D) , �U, red, POS U
red

, POS U C

Output: newred

Step 1: B ← red

Step 2: Calculate P OS U∪ �U
B , P OS U∪ �U

C γ U∪ �U
B , and γ U∪ �U

C using Theorem 1

Step 3: Calculate �S B
Step 4: While (γ U∪ �U

B < γ U∪ �U
C) , do

le f ← C − B

a ∗ = arg max
a i ∈ le f

γ U∪ �U
B ∪{ a i }

B ← B ∪ { a ∗}

End while

Step 5: newred ← B

Step 6: For (i = 0 to | B | − 1)

Take i th attribute b i in B

If γ U∪ �U
newred−{ b i } ≥ γ U∪ �U

C , then newred ← newred − { b i }
End for

Step 7: Return newred .

Algorithm 7 PIAR (positive-region-based attribute reduction al-

gorithm)

Input: F D = (U, C ∪ D) , �U, red, POS U
red

, POS U C

Output: newred

Step 1: B ← red

Step 2: Calculate P OS U∪ �U
B and P OS U∪ �U

C using Theorem 1

Step 3: Calculate �S B
Step 4: While (| �S B | 	 = 0), do

le f ← C − B

a ∗ = arg max
a ∈ le f

| �t (B ∪{ a }) |
�S B ← �S B − �t (B ∪ a ∗)
B ← B ∪ { a ∗}

End while

Step 5: newred ← B

Step 6: For (i = 0 to | B | − 1)

Take i th attribute b i in B

if ∀ x ∈ (U ∪ �U) , POS U∪ �U
newred−{ b i } (x) ≥ POS U∪ �U

C (x)

then newred ← newred − { b i }
End for

Step 7: Return newred .

Table 2

Comparison of reduction algorithms.

Algorithm Discretization Storage requirement Computation time Reduction size Accuracy Efficient incremental algorithm

MAR No High Low Suitable Very high Yes

EAR Yes Low High Small Low Yes

DAR No Low High Suitable High No

(

3. Key instances in dynamic fuzzy decision table

Let U denote the original universe, �U denote the set of arriving instances, and F D

U∪ �U = (U ∪ �U, C ∪ D) denote a

dynamicuzzy decision table. In this table, the lower approximation and reduct are different from those of the original table.

Given a dynamic fuzzy decision table, the positive region and dependency degree can be recomputed on the whole decision

table by using the static algorithm (Algorithm 1), but this solution is time consuming. As just some not all instances are key

to conduct such computation, we propose the key instance set to quickly update the dependency degree and reduct.

3.1. Key instance set

In a dynamic fuzzy decision system, positive region POS U ∪ �U (x) has the following properties.

Theorem 1. Given dynamic fuzzy decision table F D

U∪ �U = (U ∪ �U, C ∪ D) , we have

1) if x ∈ U , then

P OS U∪ �U
C (x) =

{
min

u ∈ �U,u / ∈ [x] D

{ 1 − R C (x, u) } , if P OS U C (x) > min

u ∈ �U,u / ∈ [x] D
{ 1 − R C (x, u) }

U
.
P OS C (x) , otherwise

192 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

Fig. 1. Positive region before and after reduction for (a) C and (b) B ⊆C .

Fig. 2. Key instance set for (a) C and (b) B ⊆C .

(

(

(

2) if x ∈ �U , then P OS U∪ �U
C

(x) = min

u ∈ (U∪ �U) ,u / ∈ [x] D
{ 1 − R C (x, u) } .

Proof.

1) By Proposition 2 , if x ∈ �U , the result is straightforward.

2) If x ∈ U ,

P OS U∪ �U
C (x) = min

u ∈ (U∪ �U) ,u / ∈ [x] D
{ 1 − R C (x, u) } = min

{
min

u ∈ U,u / ∈ [x] D
{ 1 − R C (x, u) } , min

u ∈ �U,u / ∈ [x] D
{ 1 − R C (x, u) }

}
.

If P OS U
C
(x) > min

u ∈ �U,u / ∈ [x] D
{ 1 − R C (x, u) } , P OS U∪ �U

C
(x) = min

u ∈ �U,u / ∈ [x] D
{ 1 − R C (x, u) } ; otherwise, P OS U∪ �U

C
(x) = P OS U

C
(x) . �

Theorem 1 mainly describes the change of the positive region according to the arriving instances. The positive region

does not always change with these instances, and Theorem 1 allows to quickly update the positive region and prevent

recomputing the positive region on the whole dataset. Moreover, P OS U∪ �U
C

(x) is not always different from P OS U
C
(x) on all

instances. Therefore, we collect the instances on which P OS U∪ �U
C

(x) is different from P OS U
C
(x) to form a special set.

Definition 10. In dynamic fuzzy decision table F D

U∪ �U = (U ∪ �U, C ∪ D) , �S B = { x ∈ U ∪ �U| P OS U∪ �U
B

(x) < P OS U∪ �U
C

(x) } is
called the key instance set of B in FD

U ∪ �U .

Definition 10 shows that the key instance set of B has the instances whose positive region values on B change when

some instances arrive. Fig. 1 and 2 illustrate Definition 10 .

In Fig. 1 and 2 , the crossing points denote instances with positive label, and the dot points denote instances with negative

label. The purple lines represent the minimal distance from instance 1 (with the x mark) to the instance represented by a

dot. In Fig. 2 , the blue and red points represent the original and arriving instances, respectively.

Point distributions on all attributes C and reduct B are respectively shown in Fig. 1 (a) and (b). Fig. 1 shows that the

minimal distance (i.e., purple line) does not change before and after reduction. Therefore, distinguishability does not change

due to reduction. In contrast, the minimal distances change when new instances arrive, as shown in Fig. 2 , in which the

P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204 193

Fig. 3. Relation between key instance set and positive region.

(

(

(

(

(

(

(

(

(

(

(

(

(

(
minimal distances, indicated by purple line, become smaller. Therefore, B is not the reduct of C in Fig. 2 , and it should be

updated by supplementing new attributes for the purple lines in Fig. 2 (a) and (b) to be equal. Thus, instance 1 is key for

the selection of new attributes, and all such instances compose the key instance set.

3.2. Properties of key instance set

The key instance set has the following properties.

Proposition 5. Given dynamic fuzzy decision table F D

U∪ �U = (U ∪ �U, C ∪ D) and B ⊆C,

1) ∀ x ∈ U ∪ �U − �S B , P OS U∪ �U
B

(x) = P OS U∪ �U
C

(x) ,

2) P OS U∪ �U
B

(x) < P OS U∪ �U
C

(x) if and only if x ∈ �S B .

Proof.

1) By Proposition 3 , we get ∀ x ∈ U ∪ �U , P OS U∪ �U
B

(x) ≤ P OS U∪ �U
C

(x) . By Definition 10 , ∀ x ∈ �S B , we get P OS U∪ �U
B

(x) <

P OS U∪ �U
C

(x) . From these results, if x 	∈ �S B , then P OS U∪ �U
B

(x) = P OS U∪ �U
C

(x) (i.e., ∀ x ∈ U ∪ �U − �S B , P OS U∪ �U
B

(x) =
P OS U∪ �U

C
(x)).

2) By Definition 10 , the result is straightforward. �

Proposition 5 clearly shows that the key instance set consists of all instances that do not reach the maximum positive

region values, as illustrated in Fig. 3 .

Proposition 6. Given dynamic fuzzy decision table F D

U∪ �U = (U ∪ �U, C ∪ D) and B, P ⊆C, the following statements always hold:

1) ∀ x ∈ U ∪ �U − �S B , if B ⊆P , then P OS U∪ �U
B

(x) = P OS U∪ �U
P

(x) ,

2) ∀ x ∈ �S B , if P ⊆B , then P OS U∪ �U
P

(x) < P OS U∪ �U
C

(x) ,

3) ∀ x ∈ �S B , if B ⊆P , then P OS U∪ �U
B

(x) ≤ P OS U∪ �U
P

(x) ≤ P OS U∪ �U
C

(x) .

Proof.

1) By Proposition 5 , we get, ∀ x ∈ U ∪ �U − �S B , P OS U∪ �U
B

(x) = P OS U∪ �U
C

(x) . By Proposition 3 , ∀ x ∈ U ∪ �U − �S B and B ⊆P ,

P OS U∪ �U
B

(x) ≤ P OS U∪ �U
P

(x) . As P OS U∪ �U
B

(x) already reaches its maximum, then P OS U∪ �U
P

(x) must be equal to P OS U∪ �U
B

(x) .

2) By Definition 10 , we get, ∀ x ∈ �S B , P OS U∪ �U
B

(x) < P OS U∪ �U
C

(x) . By Proposition 3 , ∀ x ∈ �S B and P ⊆B , P OS U∪ �U
P

(x) ≤
P OS U∪ �U

B
(x) . Thus, P OS U∪ �U

P
(x) < P OS U∪ �U

C
(x) always holds.

3) By Proposition 3 , the result is straightforward. �

Proposition 6 shows the effect of adding and removing attributes on the positive region values. Proposition 6 (1) guaran-

tees that ∀ x 	∈ �S B , P OS U∪ �U
B

(x) already reaches its maximum and does not change with more attributes added to B . Thus, we

can call U ∪ �U − �S B as a positive region invariant set, which is the complementary of the key instance set. Furthermore,

the statements (2)&(3) in Proposition 6 show that ∀ x ∈ �S B , P OS U∪ �U
B

(x) cannot reach its maximum with any attribute

deleted from B . It is possible and feasible that P OS U∪ �U
B

(x) reaches its maximum with one or more attributes added to B .

Proposition 7. Given dynamic fuzzy decision table F D

U∪ �U = (U ∪ �U, C ∪ D) and B, P, Q ⊆C, the following two statements al-

ways hold:

1) ∅⊆�S B ⊆U ∪ �U ,

2) if P ⊆Q ⊆B , then �S P ⊇�S Q ⊇�S B .

Proof.

1) By Definition 10 , the result is straightforward.

2) By Proposition 3 (1), ∀ x ∈ U ∪ �U , if P ⊆Q ⊆B , then P OS U∪ �U
P

(x) ≤ P OS U∪ �U
Q

(x) ≤ P OS U∪ �U
B

(x) and P OS U∪ �U
B

(x) <
U∪ �U U∪ �U U∪ �U U∪ �U U∪ �U
P OS
C

(x) ⇒ P OS
Q

(x) < P OS
C

(x) ⇒ P OS
P

(x) < P OS
C

(x) . �

194 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

(

(

(

(

(

(

(

(

Proposition 7 (1) indicates the lower and upper boundaries of the key instance set. Proposition 7 (2) shows that the key

instance set is anti-monotonic with the addition of attributes. Hence, the key instance set becomes smaller with more

attributes.

Based on the key instance set, the relative contribution of the attributes with respect to the obtained reduct in a dynamic

fuzzy decision table can be measured using a new approach.

Definition 11. Given dynamic fuzzy decision table F D

U∪ �U = (U ∪ �U, C ∪ D) , if �S B is the key instance set of B , then ∀ a ∈
C − B ,

1) ∀ t (B ∪{ a }) = { x ∈ �S B | P OS U∪ �U
B ∪{ a } (x) = P OS U∪ �U

C
(x) } is called the incremental discernible instance set of a in B with respect

to D ,

2) the cardinality of �t (B ∪ { a }) is called the relative significance degree of a in B with respect to D .

Definition 11. shows that the incremental discernible instance set is composed of some instances from key instance set

�S B . In addition, the positive region values of �t (B ∪ { a }) reach their maxima when attribute a is added to B . Therefore, the

cardinality of the incremental discernible instance set reflects the relative significance degree of a in B with respect to D .

Based on this concept, the incremental reduction algorithm based on positive region can be designed without recomputing

on the universe.

3.3. Incremental mechanism designed on key instance set

Theorem 2 allows to determine if a reduct in the original fuzzy decision table remains a reduct when some incremental

instances arrive.

Theorem 2. Given the dynamic fuzzy decision table F D

U∪ �U = (U ∪ �U, C ∪ D) and B ⊆C, if B is a reduct on fuzzy decision table

F D

U = (U, C ∪ D) , then

1) γ U∪ �U
B

≤ γ U∪ �U
C

,

2) If Q ⊆B ⊆P ⊆C , then γ U∪ �U
Q

≤ γ U∪ �U
B

≤ γ U∪ �U
P

≤ γ U∪ �U
C

.

Proof.

As B is a reduct on F D

U = (U, C ∪ D) , we have B ⊆C . By Definition 2 and Proposition 3 , the results in Theorem 2 (1) and

(2) are straightforward. �
Theorem 2 shows that B may not be a reduct anymore on FD

U ∪ �U and that a forward strategy should be adopted to

update the original reduct. The incremental mechanism of the dependency function in the dynamic fuzzy decision table is

presented in Theorem 3 .

Theorem 3. (Incremental mechanism of dependency degree). Consider dynamic fuzzy decision table F D

U∪ �U = (U ∪ �U, C ∪ D) ,

B ⊆C, and key instance set �S B of B on FD

U ∪ �U . When an attribute a ⊆ C − B is added to B, then

1) γ U∪ �U
B ∪{ a } =

| U∪ �U | γU∪ �U
B

−∑

x ∈ �S B
POS U∪ �U

B
(x)+ ∑

x ∈ �S B
POS U∪ �U

B ∪{ a } (x)

| U∪ �U | ,

2) �γ U∪ �U
B ∪{ a } = γ U∪ �U

B ∪{ a } − γ U∪ �U
B

=

∑

x ∈ �S B
P OS U∪ �U

B ∪{ a } (x) −∑

x ∈ �S B
P OS U∪ �U

B
(x)

| U∪ �U | .

Proof.

1) By the definition of dependency function, we get

γ U∪ �U
B ∪ { a } =

∑

x ∈ U∪ �U P OS U∪ �U
B ∪ { a } (x)

| U ∪ �U | =

∑

x ∈ U ∪ �U −�S B
P OS U∪ �U

B ∪ { a } (x) +

∑

x ∈ �S B
P OS U∪ �U

B ∪ { a } (x)
| U ∪ �U | .

By Proposition 5 , we get ∀ x ∈ U ∪ �U − �S B , P OS U∪ �U
B

(x) = P OS U∪ �U
C

(x) . Thus, ∑

x ∈ U ∪ �U −�S B

P OS U∪ �U
B ∪ { a } (x) =

∑

x ∈ U ∪ �U −�S B

P OS U∪ �U
B (x) ,

and we have

γ U∪ �U
B ∪ { a } =

∑

x ∈ U ∪ �U −�S B
P OS U∪ �U

B (x) + ∑

x ∈ �S B
P OS U∪ �U

B ∪ { a } (x)
| U∪ �U |

=

∑

x ∈ U∪ �U P OS U∪ �U
B (x) −∑

x ∈ �S B
P OS U∪ �U

B (x) + ∑

x ∈ �S B
P OS U∪ �U

B ∪ { a } (x)
| U∪ �U |

=

| U∪ �U | γ U∪ �U
B −∑

x ∈ �S B
POS U∪ �U

B (x) + ∑

x ∈ �S B
POS U∪ �U

B ∪ { a } (x)
| U∪ �U | .

1) The result is straightforward from Theorem 3 (1). �

Theorem 3 shows that when computing γ U∪ �U
B ∪{ a } , we should compute P OS U∪ �U

B
(x) and P OS U∪ �U

B ∪{ a } (x) on the key instance set

�S .
B

P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204 195

(

(

(

(

(

(

3.4. Main theorem of key instance set

Lemma 1 is necessary to propose the main theorem of the key instance set.

Lemma 1. In fuzzy decision table F D = (U, C ∪ D) , P ⊆C is called a reduct of C with respect to D if P satisfies the following

statements:

1) ∀ x ∈ U , P OS U
P
(x) = P OS U

C
(x) ,

2) ∀ r ∈ P , ∃ x ∈ U , P OS U
P−{ r} (x) 	 = P OS U

C
(x) .

Proof.

1) If P is a reduct of C , then γ U
C

= γ U
P

⇔

∑

x ∈ U P OS U
C
(x) / | U| =

∑

x ∈ U P OS U
P
(x) / | U| . If P ⊆C , then P OS U

P
(x) ≤ P OS U

C
(x) . Assume

∃ x ∈ U for which P OS U
P
(x) < P OS U

C
(x) , then ∑

x ∈ U
P OS U P (x) / | U | <

∑

x ∈ U
P OS U C (x) / | U | ,

which contradicts the first condition. Thus, ∀ x ∈ U , P OS U
P
(x) = P OS U

C
(x) .

1) By Definition 3 (2) and Proposition 3 , if P is a reduct of C , then, ∀ r ∈ P ,

γ U
C

	 = γ U
P−{ r} ⇔

∑

x ∈ U P OS U
C
(x) / | U| 	 =

∑

x ∈ U P OS U
P−{ r} (x) / | U| ⇔ ∃ x ∈ U, P OS U

P−{ r} (x) 	 = P OS U
C
(x) . �

Lemma 1 shows that reduct P is the minimal subset of C in which all positive region values reach their maxima.

Theorem 4. (Main theorem of key instance set). Given dynamic fuzzy decision table F D

U∪ �U = (U ∪ �U, C ∪ D) and B ⊆C, the

following statements are always equivalent:

1) �S B = ∅ ,
2) ∃ P ⊆B that is a reduct in FD

U ∪ �U .

Proof.

(1) ⇒ (2) By Proposition 5 and Definition 10 , �S B = ∅ ⇔ ∀ x ∈ U ∪ �U , P OS U∪ �U
B

(x) = P OS U∪ �U
C

(x) . By Lemma 1 , B ⊆C con-

tains a reduct in FD

U ∪ �U . Clearly, P ⊆B is a reduct in FD

U ∪ �U if and only if P is a minimal subset satisfying the conditions of

Lemma 1 .

(2) ⇒ (1) By Lemma 1 , ∀ x ∈ U ∪ �U , P OS U∪ �U
P

(x) = P OS U∪ �U
C

(x) . By Proposition 3 , P ⊆ B ⇒ P OS U∪ �U
P

(x) ≤ P OS U∪ �U
B

(x) .

Thus, ∀ x ∈ U ∪ �U , P OS U∪ �U
B

(x) = P OS U∪ �U
C

(x) . By Definition 10 , we can easily prove that �S B = ∅ �
Theorem 4 shows that B contains one reduct when �S B = ∅ . Therefore, �S B = ∅ can set a stop criterion for feature selec-

tion (attribute reduction) by using the forward strategy.

4. Incremental feature selection based on key instance set

4.1. Incremental feature selection based on dependency function

Based on the incremental mechanism of the dependency function given in Theorem 3 , we detail the proposed incremen-

tal feature selection (attribute reduction) method in Algorithm 6 .

In DIAR, step 4 uses the incremental mechanism of the dependency function, thus reducing redundant computation.

However, the increment of the dependency function is always computed on a fixed key instance set. Intuitively, this set

should be updated and become smaller with arriving attributes. As the key instance set can be updated using the positive

region, we use the positive region for improving DIAR.

4.2. Incremental feature selection based on positive region

Theorem 4 allows to improve DIAR by using the incremental mechanism of the positive region instead of that of the

dependency function, as detailed in Algorithm 7 .

Lemma 1 and Theorem 4 ensure that the reduct obtained from PIAR is also a reduct of both DAR and DIAR. PIAR provides

the following improvements over DIAR:

• The key instance set becomes smaller with arriving attributes in PIAR, whereas the set remains fixed in DIAR.

• Steps 6 in PIAR and DIAR are different. For example, if attribute p i is not redundant, PIAR only conducts computation

on instance x ∈ (U ∪ �U) satisfying P OS U∪ �U
newred−{ b i } (x) < P OS U∪ �U

C
(x) . However, DIAR computes γ U∪ �U

newred−{ b i } . Therefore, PIAR

reduces the computation cost compared with DIAR.

In real applications, PIAR, DIAR, and DAR share the limitation of being sensitive to noise. Consequently, we add threshold

α ∈ [0, 1] in the measure of information to mitigate the effect of noise in practice. Specifically, step 3 uses P OS U∪ �U
B

(x) +
α < P OS U∪ �U

C
(x) , while step 4 uses P OS U∪ �U

B ∪{ a } (x) + α ≥ P OS U∪ �U
C

(x) , and step 6 uses P OS U∪ �U
newred−{ b } (x) + α ≥ P OS U∪ �U

C
(x) .
i

196 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

Table 3

Time complexities of DAR, DIAR, and PIAR.

DAR O (
∑ m

i =1 (| C| + 1 − i) | U ∪ �U | 2)
DIAR O (

∑ l
i =1 (| le f | + 1 − i) | �S || U ∪ �U |)

PIAR O (
∑ k

i =1 (| le f | + 1 − i) | �S i −1 || U ∪ �U |)
0 ≤ m ≤ | C |, 0 ≤ l ≤ | lef |, and 0 ≤ k ≤ | lef | represent

the number of while loops in DAR, DIAR, and PIAR,

respectively.

Table 4

Time complexity per algorithm step.

Algorithm Steps 2 and 3 Step 4 Step 6

DAR O (| C || U ∪ �U | 2) O (
∑ m

i =1 (| C| + 1 − i) | U ∪ �U | 2) O (| B | 2 | U ∪ �U | 2)

DIAR O (| C| (| U|| �U | + | �U || U ∪ �U |)) O (
∑ l

i =1 (| le f | + 1 − i) | �S || U ∪ �U |) O (| B | 2 | U ∪ �U | 2)

PIAR O (| C| (| U|| �U | + | �U || U ∪ �U |)) O (
∑ k

i =1

∑

(| le f | + 1 − i) | �S i −1 || U ∪ �U |) O (| B | 2 | U ∪ �U | 2)

B is the candidate reduct before step 6. The time complexities of unlisted steps are equal in the three algorithms.

Table 5

Specifications of selected datasets to evaluate feature selection.

Dataset Attribute type Number of attributes Number of instances Number of classes

Waveform Real 21 5000 3

Letter Integer 16 20,000 26

Shuttle Integer 9 58,000 7

Credit Integer 23 30,000 2

Gene9 Real 12,600 203 5

Gene12 Real 9182 174 11

Gene14 Real 3312 203 5

FPS-5 Real 3208 3600 6

FPS-7 Real 4813 3600 6

4.3. Scalability analysis

DAR, DIAR, and PIAR have the same space complexity of O (| U ∪ �U |), and their worst time complexities are listed in

Table 3 .

As | lef |is smaller than | C |, | �S | is usually much smaller than | U ∪ �U |, | �S i −1 | ≥ | �S i | , and | �S 0 | = | �S | , it is easy to

conclude that the computation time of the proposed DIAR and PIAR is smaller than that of DAR. Although PIAR and DIAR

have similar time complexities, PIAR is notably faster than DIAR in simulations. To clarify this difference, we list the worst

time complexities per algorithm step in Table 4 .

In steps 2 and 3 of DIAR and PIAR, P OS U∪ �U
B

and P OS U∪ �U
C

should be computed using the incremental mechanism of the

positive region. Thus, DIAR and PIAR are faster than DAR in this step.

In step 4 of DIAR and PIAR, only P OS U∪ �U
B ∪{ a } (x) should be computed for every x ∈ �S B , a ∈ lef , | �S B | ≤ | U ∪ �U |. Note that

| �S B | reduces when adding a new attribute into B in PIAR, whereas �S remains invariant in DIAR. Thus, PIAR requires less

time than DIAR to compute this step, because the values of l and k are usually similar.

In step 6, redundant attributes are deleted. In PIAR, we check whether any attribute b i is redundant without computing

all P OS U∪ �U
B −{ b i } (x) , x ∈ U ∪ �U . However, all P OS U∪ �U

B −{ b i } (x) , x ∈ U ∪ �U should be computed in DIAR.

Overall, PIAR and DIAR may have the same worst time complexity. However, PIAR is substantially faster than DIAR in the

detailed analyses. Thus, we consider PIAR instead of DIAR to compare the proposed method with various non-incremental

and incremental feature selection algorithms.

5. Experimental evaluations

We compared the proposed PIAR with a classical algorithm (DAR) [42] , an intuitive non-incremental algorithm (NonIAR),

and two state-of-the-art rough-set-based incremental algorithms on real datasets [20 , 39] to verify its performance.

5.1. Experimental setup

All experiments were conducted on a computer with Ubuntu release 16.0, Intel Core i7-4790 CPU at 3.60 GHz, and

8 GB RAM and implemented by C ++ . We considered the nine UCI datasets [8] listed in Table 5 , which differ considerably

regarding numbers of instances and features. There are three main types of data, namely, data with high dimensionality and

P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204 197

few instances, with low dimensionality and several instances, and with high dimensionality and several instances. Therefore,

these datasets allow to comprehensively analyze the algorithm performance in terms of dimensionality and instances.

To simulate dynamical datasets, we equally split the original datasets into six subsets with the same distribution as the

original dataset. These subsets were provided successively and incrementally to the algorithms.

To illustrate the calculation of fuzzy similarity relation R B (· , ·), we considered the bounded intersection (also called

the Łukasiewicz T-norm) given by

T L (a , b) = max { 0 , a + b − 1 } , a, b ∈ [0 , 1]

as special case of triangular norm T . The similarity degree satisfying T L can be calculated as follows:

∀ x, y ∈ U, R B (x, y) = mi n r∈ B (R r (x, y)) ,

where R r (x, y) = 1 − (max (r(x) , r(y)) − min (r(x) , r(y))) with r (x), r (y) ∈ [0, 1] represents the attribute values of instances x,

y on attribute r , respectively. More details can be found in [31] .

We selected the computation time, speedup ratio, reduction ratio, and classification accuracy as measures of the algo-

rithm effectiveness and efficiency.

The speedup ratio is defined as

SpeedupRatio =

T baseline

T
,

where T baseline is the computation time of the DAR classical reduction algorithm and T is the computation time of the

evaluated algorithm. If the classical algorithm did not work on certain datasets, we considered the maximal running time of

the evaluated as T baseline . The speedup ratio can take values in [0, ∞].

The reduction ratio is defined as

Reduct ionRat io =

Reduct

At t ribute s
,

Where Reduct is the size of the reduct and Attributes is the number of condition attributes. The reduction ratio can take

values in [0,1].

We used the K -nearest neighbors (KNN) [6] (with usual value of K = 3), support vector machine (SVM), and extreme

gradient boosting (XGB) [5] to measure the classification performance of the reduced datasets [33] . After obtaining a reduct

for the dataset, 5-fold cross-validation was applied to ensure the fairness and stability of the classification results.

5.2. Comparison with non-incremental feature selection algorithms

From the available non-incremental feature selection algorithms, such as DAR, MAR, and EAR, we selected DAR as baseline

for comparison, because the proposed algorithm, PIAR, is based on the dependency function or positive region. Moreover, we

considered an intuitive non-incremental feature selection (attribute reduction) algorithm, NonIAR, that does not recompute

DAR from the beginning of an empty set but uses the historical reduct as original candidate of the new reduct. Specifically,

B ← red is used as step 1 of DAR, whereas the other steps do not change.

5.2.1. Computation time

We obtained the computation time of PIAR, NonIAR, and DAR as data subsets subsequently arrived. The evolution of the

computation time is shown in Fig. 4 .

Fig. 4 shows that the DAR trend grows up dramatically, indicating that DAR spends increasingly more time as instances

arrive, especially on datasets with high dimensionality and several instances. For example, DAR spends about 9 days and

23 h (860,597 s) on dataset FPS-5, and we omit the DAR trend for dataset FPS-7, as it exceeds 10 days. Therefore DAR does

not perform well on datasets with high dimension and several instances.

The computation time of NonIAR remains below that of DAR, showing its higher speed as new instances arrive and the

effectiveness to initialize a candidate reduct by using the original reduct when new instances arrive. However, NonIAR is still

time consuming when new instances arrive, because as a non-incremental algorithm, it performs calculations on the whole

dataset. Thus, dataset size affects the computation time of NonIAR. As a result, it is necessary to propose an incremental

algorithm, which need not be executed on all available data when new instances arrive.

Overall, the computation times of DAR and NonIAR are substantially higher than that of PIAR, showing the high effi-

ciency of PIAR as new instances arrive, given its processing on some instead of all instances. Thus, PIAR prevents redundant

calculations and substantially reduces the computation time.

5.2.2. Speedup ratio

The average speedup ratio for each dataset is shown in Fig. 5 . Datasets with low dimensionality and several instances

are denoted by I, those with high dimensionality and few instances by II, and those with high dimensionality and several

instances by III. Given the excessively long execution time of DAR on dataset FPS-7 of over 10 days, we consider only FPS-5

as dataset with high dimensionality and several instances.

198 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

Fig. 4. Computation time in CPU seconds according to arriving instances.

Fig. 5. Average speedup ratios for DAR/PIAR and DAR/NonIAR.

Fig. 5 shows the high speedup ratio of DAR/PIAR, being higher on datasets with high dimensionality and several instances.

Therefore, PIAR is more efficient than DAR, especially on such datasets. In addition, NonIAR is faster than DAR.

Fig. 6 shows the speedup ratios of NonIAR and PIAR. When the ratio of available-to-arriving data is 1:1, the PIAR speedup

ratio increases more sharply than that of NonIAR on datasets Waveform, Letter, Shuttle, and Credit. These datasets have

low dimensionality and several instances. However, the trends of PIAR and NonIAR increase similarly on datasets Gene9,

Gene12, Gene14, and FPS-5, which have high dimensionality and few instances. Therefore, when the size of arriving data is

comparable to that of available data, PIAR provides higher speedup than NonIAR on datasets with several instances.

5.3. Comparison with state-of-the-art rough-set-based incremental feature selection algorithms

We also compared two state-of-the-art rough-set-based incremental feature selection algorithms, namely, MIAR [39] and

EIAR [20] , with the proposed PIAR.

5.3.1. Comparison between piar and eiar

Although PIAR and EIAR are rough-set-based incremental attribute reduction methods, their procedures are very differ-

ent. First, they use different information measures, as PIAR is based on positive region, whereas EIAR is based on entropy.

Second, PIAR and EIAR consider fuzzy rough sets and rough sets, respectively.

As EIAR cannot be applied to datasets with real-valued attributes, we use the fuzzy C-means to discretize data. We

omitted the preprocessing time of EIAR, and thus, the computation time of EIAR is longer than that presented in this paper.

P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204 199

Fig. 6. Speedup ratio of NonIAR and PIAR as data subsets arrive.

When the ratio of available-to-arriving data is high, such as 4:1 or 5:1, the PIAR speedup increases more sharply than that of NonIAR. Hence, as the size of

arriving data is lower than that of available data, the efficiency of PIAR is substantially better than that of NonIAR. Therefore, PIAR more suitably handles

accumulating data than NonIAR.

Table 6

Computation time (CPU seconds) of PIAR and EIAR on data with low dimensionality and

several instances.

Dataset PIAR EIAR

Waveform 141.90 48.83

Letter 931.30 317.50

Shuttle 1341.24 28.94

Credit 1467.95 863.06

Average 970.60 314.58

Table 7

Reduction of PIAR and EIAR on the datasets with low dimensionality and several instances.

Dataset

PIAR EIAR All attributes

No. red. Red. ratio No. red. Red. ratio No. attr. Red. ratio

Waveform 15 0.714 14 0.667 21 1

Letter 9 0.563 11 0.688 16 1

Shuttle 6 0.667 6 0.667 9 1

Credit 13 0.565 15 0.652 23 1

Average 10.75 0.627 11.5 0.668 17.25 1

Overall, we compared PIAR and EIAR on nine datasets with different characteristics and divided the datasets into three

types: datasets with low dimensionality and several instances, those with high dimensionality and few instances, and those

with high dimensionality and several instances. The corresponding results show that neither PIAR nor EIAR are efficient on

every type of dataset, and we analyze the advantages and drawbacks of each method.

We first compare PIAR and EIAR on datasets with low dimensionality and several instances. The computation time and

reduction results are listed in Tables 6 and 7 , respectively, and the classification performance is shown in Fig. 7 . All classi-

fication results were obtained from the original datasets, that is, although EIAR runs on discretized datasets, the accuracy

was computed with respect to the original datasets.

Table 6 shows that the computation time of PIAR is often higher than that of EIAR, thus being less efficient on datasets

with low dimensionality and several instances. Table 7 and Fig. 7 show that PIAR and EIAR obtain reducts with comparable

classification accuracies. Overall, EIAR is much faster than PIAR and provides similar reduction performance on the evaluated

datasets. Hence, PIAR is not as suitable for datasets with low dimensionality and several instances as EIAR.

200 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

Fig. 7. Classification accuracy of PIAR and EIAR on datasets with low dimensionality and several instances.

Table 8

Computation time (CPU seconds) of PIAR and EIAR on data with high dimensionality

and few instances.

Dataset PIAR EIAR

Gene9 460.73 129.04

Gene12 109.80 85.90

Gene14 19.41 19.23

Average 196.65 78.06

Table 9

Reduction of PIAR and EIAR on datasets with high dimensionality and few instances.

Dataset

PIAR EIAR All attributes

No. red. Red. ratio No. red. Red. ratio No. attr. Red. ratio

Gene9 27 0.002 7 0.001 12,600 1

Gene12 22 0.002 8 0.001 9182 1

Gene14 14 0.004 7 0.002 3312 1

Average 21 0.003 7.33 0.001 8364.67 1

Fig. 8. Classification accuracy of PIAR and EIAR on datasets with high dimensionality and few instances.

Table 8 lists the efficiency of PIAR and EIAR on datasets with high dimensionality and few instances. Again, EIAR is faster

than PIAR on such datasets.

The reduction and performance comparison of PIAR and EIAR are provided in Table 9 and Fig. 8 , respectively. EIAR can

obtain a reduct that is slightly more compact, but its classification performance is lower than that of PIAR. Moreover, the

reduction results of EIAR speed up learning at the expense of information loss, because EIAR requires discretization. Com-

paratively, PIAR can obtain a reduct with an acceptable reduction ratio and high classification accuracy on the datasets with

high dimensionality and few instances.

We finally compare EIAR and PIAR on datasets with high dimensionality and several instances. The efficiency in terms of

computation time is listed in Table 10 , while the reduction and classification accuracy are provided in Table 11 and Fig. 9 ,

respectively. The computation time of EIAR is higher than that of PIAR. Therefore, PIAR is faster than EIAR on datasets with

high dimensionality and several instances.

P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204 201

Table 10

Computation time (CPU seconds) of PIAR and EIAR on data with high dimensionality

and several instances.

Dataset PIAR EIAR

FPS-5 6585.27 6840.74

FPS-7 13,368.93 241,457.62

Average 9977.10 124,149.18

Table 11

Reduction of PIAR and EIAR on datasets with high dimensionality and several instances.

Dataset

PIAR EIAR All attributes

No. red. Red. ratio No. red. Red. ratio No. attr. Red. ratio

FPS-5 50 0.016 51 0.016 3208 1

FPS-7 47 0.010 47 0.010 4813 1

Average 48.5 0.013 49 0.013 4010.5 1

Table 12

Computation time (CPU seconds) of PIAR and MIAR as instances arrive.

Dataset PIAR MIAR

Waveform 141.90 278.14

Gene9 460.73 348.66

Gene12 109.80 155.41

Gene14 19.41 85.13

Letter 931.30 Out of memory

Shuttle 1341.24 Out of memory

Credit 1467.95 Out of memory

FPS-5 6585.27 Out of memory

FPS-7 13,368.93 Out of memory

Average 182.96 216.84

The average results of PIAR are computed on datasets for which MIAR does not run out

of memory.

Table 13

Reduction of PIAR and MIAR.

Dataset

PIAR MIAR All attributes

No. red. Red. ratio No. red. Red. ratio No. attr. Red. ratio

Waveform 15 0.714 13 0.619 21 1

Gene9 27 0.002 27 0.002 12,600 1

Gene12 22 0.002 12 0.001 9182 1

Gene14 14 0.004 12 0.004 3312 1

Letter 9 0.563 – – 16 1

Shuttle 6 0.667 – – 9 1

Credit 13 0.565 – – 23 1

FPS-5 50 0.016 – – 3208 1

FPS-7 47 0.010 – – 4813 1

Average 19.5 0.181 16 0.157 6278.75 1

The average results of PIAR and all attributes are computed on datasets for which MIAR

does not run out of memory.

Table 14

Characteristics of incremental feature selection algorithms evaluated in this study.

Criterion PIAR EIAR MIAR

Storage requirements Low Low High

Performance on datasets with low dimensionality and high number of instances Slow Fast Out of memory

Performance on datasets with high dimensionality and low number of instances Acceptable Fast Slow

Performance on datasets with high dimensionality and high number of instances Fast Acceptable Out of memory

Classification accuracy High Acceptable or poor Good

Requires data discretization No Yes No

202 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

Fig. 9. Classification accuracy of PIAR and EIAR on datasets with high dimensionality and several instances.

Fig. 10. Classification accuracy of PIAR and MIAR.

(

(

(

(

Table 11 shows the reduction of PIAR and EIAR on the datasets with high dimensionality and several instances. For

comparison, some thresholds were considered for EIAR to obtain similar size of reducts as those from PIAR. Fig. 9 shows

that PIAR has better classification accuracy than EIAR.

Overall, the comparison between PIAR and EIAR mainly unveils two aspects:

1) EIAR obtains reduction with lower classification performance by data discretization that leads to information loss.

2) PIAR is more efficient on the datasets with high dimensionality, whereas EIAR is more efficient on those with low di-

mensionality.

5.3.2. Comparison between piar and miar

We also compare PIAR and MIAR in terms of computation time and classification accuracy. Although both PIAR and MIAR

are based on fuzzy rough sets, they have different characteristics. First, PIAR is based on the positive region, whereas MIAR

is based on the discernibility matrix. Second, MIAR requires more storage than PIAR. From the comparison, we unveil the

advantages and drawbacks of PIAR and MIAR.

The computation times of PIAR and MIAR are listed in Table 12 . MIAR runs out of memory on datasets Letter, Shuttle,

Credit, FPS-5, and FPS-7, because it is storage-intensive on datasets with several instances. Thus, only the comparison results

on the other four datasets (i.e., Waveform, Gene9, Gene12, and Gene14) are listed for MIAR in Table 12 . PIAR often works

faster than MIAR. More importantly, PIAR requires much less storage than MIAR, and hence it can handle datasets with high

dimensionality and several instances.

Regarding performance, Table 13 shows that PIAR and MIAR have similar reduction ratios. For example, the average re-

duction ratios of PIAR and MIAR are 16 and 19.5, respectively, indicating the ability of both algorithms to reduce dimension-

ality. Fig. 10 shows that PIAR has better classification accuracy than MIAR, while its reduction ratios mostly remain below

0.4%.

Overall, the comparison between PIAR and MIAR mainly unveils two aspects:

1) Unlike PIAR, MIAR cannot handle datasets with several instances.

2) When the arriving instances are fewer than the available ones, PIAR is substantially faster than MIAR.

5.3.3. Overall comparison of incremental feature selection methods

We summarize the characteristics of the incremental feature selection algorithms, namely, PIAR, EIAR, and MIAR, in

Table 14 . The entries highlighted in bold indicate the unsuitability of the algorithm to the indicated criterion. In practice,

we should choose the appropriate incremental feature selection algorithm according to the available hardware and dataset

P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204 203

(

(

(

(

(

(

(

(

(

characteristics. For example, MIAR is preferred if the necessary memory is available. If computation time is restricted, EIAR

is preferred, and for high-dimensional data, PIAR is preferred.

6. Conclusions

We propose an incremental feature selection algorithm based on fuzzy rough sets. In addition, we obtain various insights

on incrementally selected relevant features with successively arriving instances. Our main contributions can be summarized

as follows:

1) Incremental mechanisms, such as the incremental positive region and key instance set, are proposed with strict mathe-

matical reasoning and serve as bases to design an incremental feature selection algorithm, PIAR.

2) The proposed algorithm fully leverages historical feature selection results and prevents recomputing on all available data.

3) Although the proposed algorithm may achieve a relatively low performance on datasets with low dimensionality and

several instances, it exhibits high performance on datasets with high dimensionality.

Note that feature selection for datasets with low dimensionality is not necessary, because their data have many redun-

dant instances but few or no redundant attributes. Consequently, the proposed algorithm spends much time identifying re-

dundant instances from arriving instances, but few or no new features are added to the original selection on such datasets.

In contrast, datasets with high dimensionality have many redundant or even conflicting features. Thus, arriving instances

are often informative and may lead to determination of features not included in the original feature selection. Therefore, the

proposed algorithm is suitable to handle datasets with high dimensionality.

From this study and its results, we provide future directions of research:

1) Explore incremental feature selection with streaming features based on fuzzy positive regions.

2) Besides the incremental solutions mainly focused on streaming features and streaming instances, incremental class labels

should be investigated.

Declaration of Competing Interest

None.

CRediT authorship contribution statement

Peng Ni: Conceptualization, Methodology, Software, Validation, Data curation, Writing - original draft. Suyun Zhao: Inves-

tigation, Conceptualization, Methodology, Data curation, Writing - original draft, Supervision. Xizhao Wang: Investigation,

Methodology, Supervision. Hong Chen: Supervision, Methodology. Cuiping Li: Supervision, Methodology. Eric C.C. Tsang:

Writing - review & editing.

Acknowledgments

This work is supported by the National Key Research & Development Plan of China (2018YFB1004401, 2017YFB1400700,

2016YFB10 0 0702), NSFC (No. 61702522, 61772536, 61772537, 61732006, 61532021), NSSFC (No. 12 \ &ZD220), National Ba-

sic Research Program of China (973) (No.2014CB340402), National High-Technology Research and Development Program of

China (863) (No.2014AA015204), and Fundamental Research Funds for the Central Universities, and the Research Funds of

Renmin University of China (15XNLQ06). This study was partially done when the authors worked in SA Center for Big Data

Research in RUC. This Center is funded by a Chinese National 111 Project Attracting.

Appendix

A triangular norm is an operator T : [0, 1] 2 → [0, 1] satisfying:

1) Boundary condition: T (a, 1) = a, a ∈ [0 , 1] ,

2) Commutativity: T (a, b) = T (b, a) , a, b ∈ [0 , 1] ,

3) Associativity: T (T (a, b) , c) = T (a, T (b, c)) for a, b, c ∈ [0 , 1] ,

4) Monotonicity: a < α, b < β⇒ T (a, b) ≤ T (α, β) for a, b, α, β ∈ [0, 1].

References

[1] M. Ackerman , S. Dasgupta , Incremental clustering: the case for extra clusters, in: Advances in Neural Information Processing Systems, 2014,
pp. 307–315 .

[2] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, D.B. R.osen, Fuzzy ARTMAP: A neural network architecture for incremental supervised learning
of analog multidimensional maps, IEEE. Trans. Neural. Netw. 3 (5) (1992) 698–713, doi: 10.1109/72.159059 .

[3] G. Cauwenberghs , T. Poggio , Incremental and decremental support vector machine learning, in: Proceedings of the 2001 Neural Information Processing
Systems, 2001, pp. 409–415 .

http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0001
https://doi.org/10.1109/72.159059
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0003

204 P. Ni, S. Zhao and X. Wang et al. / Information Sciences 536 (2020) 185–204

[4] X.Y. Che, D.G. Chen, J.S. Mi, A novel approach for learning label correlation with application to feature selection of multi-label data, Inf. Sci. 512 (2020)
795–812, doi: 10.1016/j.ins.2019.10.022 .

[5] T.Q. Chen, C. Guestrin, Xgboost: a scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785–794, doi: 10.1145/2939672.2939785 .

[6] D. Coomans, D.L. Massart, Alternative k -nearest neighbour rules in supervised pattern recognition: part 1. k -nearest neighbour classification by using
alternative voting rules, Anal. Chim. Acta 136 (1982) 15–27, doi: 10.1016/S0 0 03- 2670(01)95359- 0 .

[7] A.K. Das, S. Sengupta, S. Bhattacharyya, A group incremental feature selection for classification using rough set theory based genetic algorithm, Appl.

Soft Comput. 65 (2018) 400–411, doi: 10.1016/j.asoc.2018.01.040 .
[8] D. Dua, E.K. Taniskidou, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2018

https://archive.ics.uci.edu/ml/datasets.html/ .
[9] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17 (2–3) (1990) 191–209, doi: 10.1080/03081079008935107 .

[10] J. Gama, I. Žliobait ̇e, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on concept drift adaptation, ACM. Comput. Surv. 46 (4) (2014) 1–37, doi: 10.1145/
2523813 .

[11] C. Giraud-Carrier , A note on the utility of incremental learning, AI. Commun. 13 (4) (20 0 0) 215–223 .
[12] S.U. Guan, F. Zhu, An incremental approach to genetic-algorithms-based classification, IEEE. Trans. Syst., Man, Cybern., Part B: Cybern 35 (2) (2005)

227–239, doi: 10.1109/TSMCB.2004.842247 .

[13] I. Guyon , A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. 3 (2003) 1157–1182 .
[14] Donatella Frimani, Massimo Mecella, Monica Scannapieco, Carlo Batini, On the meaningfulness of ‘Big Data quality’. 1 (2016) 6–20, doi: 10.1007/s41019-

015-0 0 04-7.
[15] F. Hu , J. Dai , G.Y. Wang , Incremental algorithms for attribute reduction in decision table, Control. Decis. 22 (3) (2007) 268 .

[16] F. Hu, G. Wang, H. Huang, Y. Wu, Incremental attribute reduction based on elementary sets, in: International Workshop on Rough Sets, Fuzzy Sets,
Data Mining, and Granular-Soft Computing, 2005, pp. 185–193, doi: 10.1007/11548669 _ 20 .

[17] Q.H. Hu, L. Zhang, S. An, D. Zhang, D.R. Yu, On robust fuzzy rough set models, IEEE Trans. Fuzzy Syst. 20 (4) (2011) 636–651, doi: 10.1109/TFUZZ.2011.

2181180 .
[18] X.G. Hu, P. Zhou, P.P. Li, J. Wang, X.D. Wu, A survey on online feature selection with streaming features, Front. Comput. Sci. 12 (3) (2018) 479–493,

doi: 10.1007/s11704- 016- 5489- 3 .
[19] H.X. Li, L. Zhang, B. Huang, X.Z. Zhou, Cost-sensitive dual-bidirectional linear discriminant analysis, Inf. Sci. 510 (2020) 283–303, doi: 10.1016/j.ins.2019.

09.032 .
[20] J. Liang, F. Wang, C. Dang, Y. Qian, A group incremental approach to feature selection applying rough set technique, IEEE Trans. Knowl. Data Eng. 26

(2) (2014) 294–308, doi: 10.1109/TKDE.2012.146 .

[21] K.Y. Liu, X.B. Yang, H. Fujita, D. Liu, X. Yang, Y.H. Qian, An efficient selector for multi-granularity attribute reduction, Inf. Sci. 505 (2019) 457–472,
doi: 10.1016/j.ins.2019.07.051 .

[22] L.P. Liu, Y. Jiang, Z.H. Zhou, Least square incremental linear discriminant analysis, in: 9th IEEE International Conference on Data Mining, 2009, pp. 298–
306, doi: 10.1109/ICDM.2009.78 .

[23] Z. Pawlak , Rough sets: Theoretical aspects of Reasoning About Data, 9, Springer Science & Business Media, Berlin, Germany, 2012 .
[24] Z. Pawlak, A. Skowron, Rough sets: some extensions, Inf. Sci. 177 (1) (2007) 28–40, doi: 10.1016/j.ins.2006.06.006 .

[25] S. Perkins , K. Lacker , J. Theiler , Grafting: fast, incremental feature selection by gradient descent in function space, J. Mach. Learn. Res. 3 (2003)

1333–1356 .
[26] S. Perkins , J. Theiler , Online feature selection using grafting, in: Proceedings of the 20th International Conference on Machine Learning, 2003,

pp. 592–599 .
[27] Y.H. Qian, J.Y. Liang, W. Pedrycz, C. Dang, Positive approximation: an accelerator for attribute reduction in rough set theory, Artif. Intell. 174 (9–10)

(2010) 597–618, doi: 10.1016/j.artint.2010.04.018 .
[28] Y.H. Qian, J.Y. Liang, Combination entropy and combination granulation in rough set theory, Int. J. Uncertain. Fuzz. Knowl. Syst. 16 (2) (2008) 179–193,

doi: 10.1142/S0218488508005121 .

[29] J.C. Schlimmer, R.H. Granger, Incremental learning from noisy data, Mach. Learn. 1 (3) (1986) 317–354, doi: 10.10 07/BF0 0116895 .
[30] K. Selvakumar, M. Karuppiah, L. SaiRamesh, S.H. Islam, M.M. Hassan, G. Fortino, K.K.R. Choo, Intelligent temporal classification and fuzzy rough set-

based feature selection algorithm for intrusion detection system in WSNs, Inf. Sci. 497 (2019) 77–90, doi: 10.1016/j.ins.2019.05.040 .
[31] E.C.C. Tsang, D.G. Chen, D.S. Yeung, X.Z. Wang, J.W. Lee, Attributes reduction using fuzzy rough sets, IEEE. Trans. Fuzzy. Syst. 16 (5) (2008) 1130–1141,

doi: 10.1109/TFUZZ.2006.889960 .
[32] P.E. Utgoff, Incremental induction of decision trees, Mach. Learn. 4 (2) (1989) 161–186, doi: 10.1023/A:102269990 0 025 .

[33] C.Z. Wang, Y.L. Qi, M.W. Shao, Q.H. Hu, D.G. Chen, Y.H. Qian, Y.J. L.in, A fitting model for feature selection with fuzzy rough sets, IEEE. Trans. Fuzzy.

Syst. 25 (4) (2017) 741–753, doi: 10.1109/TFUZZ.2016.2574918 .
[34] J. Wang, M. Wang, P. Li, L. Liu, Z. Zhao, X. Hu, X. Wu, Online feature selection with group structure analysis, IEEE. Trans. Knowl. Data. Eng. 27 (11)

(2015) 3029–3041, doi: 10.1109/TKDE.2015.2441716 .
[35] W. Wei, P. Song, J.Y. Liang, X.Y. Wu, Accelerating incremental attribute reduction algorithm by compacting a decision table, Int. J. Mach. Learn. Cybern.

10 (9) (2018) 2355–2373, doi: 10.1007/s13042- 018- 0874- x .
[36] X. Wu, K. Yu, W. Ding, H. Wang, X. Zhu, Online feature selection with streaming features, IEEE Trans. Pattern Anal. Mach. Intell. 35 (5) (2013) 1178–

1192, doi: 10.1109/TPAMI.2012.197 .
[37] J. Xu, C. Xu, B. Zou, Y.Y. Tang, J.T. Peng, X.G. You, New incremental learning algorithm with support vector machines, IEEE. Trans. Syst. Man. Cybern.

Syst. 49 (11) (2018) 1–12, doi: 10.1109/TSMC.2018.2791511 .

[38] M. Yang , An incremental updating algorithm for attribute reduction based on improved discernibility matrix, Chin. J. Comput. 30 (5) (2007) 815–822 .
[39] Y.Y. Yang, D.G. Chen, H. Wang, E.C.C. Tsang, D.L. Zhang, Fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving,

Fuzzy. Sets. Syst 312 (2017) 66–86, doi: 10.1016/j.fss.2016.08.001 .
[40] Y.Y. Yang, D.G. Chen, H. Wang, X.Z. Wang, Incremental perspective for feature selection based on fuzzy rough sets, IEEE Trans. Fuzzy Syst. 26 (3) (2018)

1257–1273, doi: 10.1109/TFUZZ.2017.2718492 .
[41] J.T. Yao, A.V. Vasilakos, W. Pedrycz, Granular computing: perspectives and challenges, IEEE Trans. Cybern. 43 (6) (2013) 1977–1989, doi: 10.1109/TSMCC.

2012.2236648 .

[42] Y.Y. Yao, Y. Zhao, J. Wang, On reduct construction algorithms, Trans. Comput. Sci. 2 (2008) 100–117, doi: 10.1007/978- 3- 540- 87563- 5 _ 6 .
[43] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965) 338–353, doi: 10.1016/S0019- 9958(65)90241- X .

[44] H.Y. Zhang, H.J. Song, S.Y. Yang, Feature selection based on generalized variable-precision (ϑ, σ)-fuzzy granular rough set model over two universes,
Int. J. Mach. Learn. Cybern. 10 (5) (2019) 913–924, doi: 10.1007/s13042- 017- 0770- 9 .

[45] L.B. Zhang, H.X. Li, X.Z. Zhou, B. Huang, Sequential three-way decision based on multi-granular autoencoder features, Inf. Sci. 507 (2020) 630–643,
doi: 10.1016/j.ins.2019.03.061 .

[46] X. Zhang, C.L. Mei, D.G. Chen, J.H. Li, Feature selection in mixed data: a method using a novel fuzzy rough set-based information entropy, Pattern.

Recognit 56 (2016) 1–15, doi: 10.1016/j.pat cog.2016.02.013 .
[47] J. Zhou , D.P. Foster , R.A. Stine , L.H. Ungar , Streamwise feature selection, J. Mach. Learn. Res. 7 (2006) 1861–1885 .

https://doi.org/10.1016/j.ins.2019.10.022
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/S0003-2670(01)95359-0
https://doi.org/10.1016/j.asoc.2018.01.040
https://archive.ics.uci.edu/ml/datasets.html/
https://doi.org/10.1080/03081079008935107
https://doi.org/10.1145/2523813
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0011
https://doi.org/10.1109/TSMCB.2004.842247
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0014
https://doi.org/10.1007/11548669_20
https://doi.org/10.1109/TFUZZ.2011.2181180
https://doi.org/10.1007/s11704-016-5489-3
https://doi.org/10.1016/j.ins.2019.09.032
https://doi.org/10.1109/TKDE.2012.146
https://doi.org/10.1016/j.ins.2019.07.051
https://doi.org/10.1109/ICDM.2009.78
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0022
https://doi.org/10.1016/j.ins.2006.06.006
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0025
https://doi.org/10.1016/j.artint.2010.04.018
https://doi.org/10.1142/S0218488508005121
https://doi.org/10.1007/BF00116895
https://doi.org/10.1016/j.ins.2019.05.040
https://doi.org/10.1109/TFUZZ.2006.889960
https://doi.org/10.1023/A:1022699900025
https://doi.org/10.1109/TFUZZ.2016.2574918
https://doi.org/10.1109/TKDE.2015.2441716
https://doi.org/10.1007/s13042-018-0874-x
https://doi.org/10.1109/TPAMI.2012.197
https://doi.org/10.1109/TSMC.2018.2791511
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0037
https://doi.org/10.1016/j.fss.2016.08.001
https://doi.org/10.1109/TFUZZ.2017.2718492
https://doi.org/10.1109/TSMCC.2012.2236648
https://doi.org/10.1007/978-3-540-87563-5_6
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1007/s13042-017-0770-9
https://doi.org/10.1016/j.ins.2019.03.061
https://doi.org/10.1016/j.pat ignorespaces cog.2016.02.013
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0046
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0046
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0046
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0046
http://refhub.elsevier.com/S0020-0255(20)30346-7/sbref0046

	Incremental feature selection based on fuzzy rough sets
	1 Introduction
	2 Preliminaries
	2.1 Rough sets and fuzzy rough sets
	2.2 Existing static reduction algorithms and incremental feature selection algorithms

	3 Key instances in dynamic fuzzy decision table
	3.1 Key instance set
	3.2 Properties of key instance set
	3.3 Incremental mechanism designed on key instance set
	3.4 Main theorem of key instance set

	4 Incremental feature selection based on key instance set
	4.1 Incremental feature selection based on dependency function
	4.2 Incremental feature selection based on positive region
	4.3 Scalability analysis

	5 Experimental evaluations
	5.1 Experimental setup
	5.2 Comparison with non-incremental feature selection algorithms
	5.2.1 Computation time
	5.2.2 Speedup ratio

	5.3 Comparison with state-of-the-art rough-set-based incremental feature selection algorithms
	5.3.1 Comparison between piar and eiar
	5.3.2 Comparison between piar and miar
	5.3.3 Overall comparison of incremental feature selection methods

	6 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix
	References

