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With Discriminative Bags
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Abstract—Multi-instance learning (MIL) is more general and
challenging than traditional supervised learning in that labels are
given at the bag level. The popular feature mapping approaches
convert each bag into an instance in the new feature space.
However, most of them hardly maintain the distinguishability
of bags, and the MIL model does not support self-reinforcement.
In this article, we propose the multi-instance ensemble learn-
ing with discriminative bags (ELDB) algorithm with two new
techniques. The bag selection technique obtains a discriminative
bag set (dBagSet) according to two parts. First, considering the
space and label distribution of the data, the bag selection pro-
cess is optimized through discriminative analysis to obtain the
basic dBagSet. Second, with the state and action transfer strat-
egy, a dBagSet with better distinguishability is obtained through
self-reinforcement. The ensemble technique trains a series of clas-
sifiers with these dBagSets and obtains the final weighted model.
The experimental results show that ELDB is superior to the
state-of-the-art MIL mapping solutions.

Index Terms—Distinguishability, ensemble learning, mapping,
multi-instance learning (MIL), self-reinforcement.

I. INTRODUCTION

COMPARED with traditional single-instance learning
(SIL), the processing data of multi-instance learning

(MIL) [1] is a set of bags with bag-level labels instead of a set
of instances with instance-level labels. In applications, a bag is
labeled as positive if it contains at least one positive instance,
otherwise it is negative. Accordingly, the task of MIL is to
classify bags instead of individual instances. Over the years,
MIL has already been widely applied in many domains, such
as drug activity prediction [2], [3], image retrieval [4], [5],
image classification [6], [7], and text classification [8], [9].
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Existing MIL learners can be roughly divided into three
categories [10].

1) Instance-based approaches seek a function to discrim-
inate instances through an SIL classifier, and establish
MIL assumptions to link the predicted instance label
with the bag label [11], [12]. The label of the instance
is unknown and the adaptability of MIL assumptions is
weak. Hence, the prediction error of the instance label
directly affects the prediction of the bag label.

2) Bag-based approaches measure the distances between
bags and train a bag-level classification model [8], [13].
They do not need to consider instance-level labels. In
contrast, the bag-level distance measure has a great
impact on model performance.

3) Mapping-based approaches map bags into the new
feature space according to statistics information or
clustering technologies. Then bag-level labels are
predicted according to the corresponding mapping
vectors [2], [3], [14]. Through space mapping, the influ-
ence of distance measurement can be reduced to a
certain extent.

The last category can be further divided into the following
subcategories. Statistic-based mapping approaches represent
each bag as a single vector with one or more statistic val-
ues [13], [15]. Kernel-based mapping approaches focus on
designing a kernel for the mapping [9], [16]. Instance-based
mapping approaches transform each bag to a single instance
via instance selection techniques [4], [17]. Bag-based map-
ping approaches transform each bag according to its spatial
relationship [3]. Unfortunately, most existing mapping-based
approaches hardly maintain the distinguishability of bags in
the new feature space. Additionally, the MIL model does not
support self-reinforcement, which means it cannot learn more
to improve its distinguishability. Therefore, bag-based map-
ping methods face the following challenges: 1) how to improve
the distinguishability of bags in the new feature space? and
2) how does the model acquire the self-reinforcement ability?

In this article, we propose the multi-instance ensemble
learning with discriminative bags (ELDB) algorithm to handle
these issues. Fig. 1 compares ELDB with the traditional bag-
based mapping (TBBM) algorithm. The differences include:
1) TBBM only generates a key bag set (kBagSet) by consid-
ering the spatial distribution of the data, while ELDB generates
a discriminative bag set (dBagSet) by further considering the
label information of the data; 2) ELDB introduces a self-
reinforcement mechanism to learn and update the existing
dBagSet. Consequently, the updated dBagSet will have higher
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Fig. 1. Process of TBBM and ELDB: (a) original bag space; (b) kBagSet
for traditional bag mapping; (c) new feature space with kBagSet; (d) dBagSet
for discriminative bag mapping; and (e) new feature space with dBagSet.

distinguishability; and 3) ELDB generates a series of weighted
models with the ensemble technique.

By following MIL mapping-based ensemble methods,
the ensemble technique aims to improve the classification
performance and stability of the model. These methods,
such as the clustering-based and hierarchical sampling meth-
ods [18], [19], commonly train numerous single-instance
classifiers by repeating the mapping process. Furthermore, each
classifier can assign a weight by considering its own contribu-
tion [20]. As a result, in our case, it is more accurate to predict
the label of the bag through the weighted ensemble model.

Experiments are undertaken on 38 MIL classification datasets
to quantify the performance of ELDB. These datasets are
selected from different application areas, such as drug activity
prediction, mutagenicity prediction, image retrieval, and text
categorization. The experimental results show that ELDB is
superior to rival algorithms in general and has higher stability.

There are two features of ELDB.
1) New Discriminative Bag Selection Method: a) compared

with the state-of-the-art mapping-based methods, the
mapping vectors of bags generated by ELDB have bet-
ter distinguishability in terms of theoretical analysis and
b) compared with instance-based discriminative map-
ping methods, ELDB has higher scalability in terms of
time complexity analysis and experiments.

2) Classifier Ensemble Method: Multiple weighted models
jointly determine the label of the bag. Consequently, the
final prediction is more accurate and stable.

The remainder of this article is organized as follows.
Section II introduces basic notations and some MIL methods
directly related to our work. Section III proposes the ELDB
algorithm. Section IV describes the comparison algorithms,
the datasets used, and the experimental results and discussions.
Section V concludes and points out some future issues.

II. PRELIMINARIES

Table I captures some important notations used through-
out this article. A multi-instance dataset is denoted by T =

TABLE I
NOTATIONS

{Bi}Ni=1, where Bi = {xij}ni
j=1 is a bag, xij ∈ R

d is an instance,
and d is the dimension of each instance. Y = [y1, . . . , yN],
where yi ∈ {−1,+1} is the label of Bi.

Three lines of researches are directly related to our work.
They are instance-based discriminative analysis, mapping
function construction, and classifier ensembling.

Instance-Based Discriminative Analysis: The mapping
method with instance selection is one of the processing strate-
gies for the MIL classification problem. The core part is to
design a mapping function based on selected instances and
to transform bags into the new feature space. The simplest
approach is to construct a mapping function from all instances
in the intermediate instance pool [4]. The similarity between
bag Bi and instance x ∈ X =⋃N

i=1 Bi is defined as

f C
s (Bi, x) = min

j
exp

(
−λ∥∥xij − x

∥
∥2

)
. (1)

One disadvantage of this method is that the number of
instances largely determines the time cost of the algorithm.
Two strategies to deal with this problem are as follows [21].
One is to select an instance from each positive bag via kernel
density estimation. The other is to select the most positive
instance and the least negative instance from all instances.
However, neither of them considers the distinguishability of
bags in the new feature space.

To handle this problem, a clustering-based strategy is
designed to explore correlations between positive and nega-
tive concepts [22]. An instance evaluation criterion is proposed
to select the most discriminative instances [2]. In addition, a
similarity function different from (1) is defined as follows:

f W
s (Bi, x) = max

j
exp

(
−λ∥∥xij − x

∥
∥2

)
. (2)

We borrow the core idea of these two methods and design the
bag selection technique with the discriminative analysis and
self-reinforcement mechanism.

Mapping Function: With a dBagSet Te = {Bζk}ψk=1 ⊂ T ,
Bi ∈ T is mapped to a new feature space as follows [3]:

fb(Bi, Te) �→ bi =
[
biζ1 , . . . , biζψ

]
(3)

where 1 ≤ ζk ≤ N and biζk is the correlation value between Bi

and Bζk . Consequently, the dataset is mapped to a new one as

fm(T , Te) �→ V = {bi}Ni=1. (4)
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Fig. 2. Overall framework of ELDB with bag selection and ensemble techniques. The symbols “+” and “−” represent the positive and negative bags,
respectively. The dotted circles with a number represent the selected bags. The variable L represents the learned discriminative matrix and will be used to
update the basic dBagSet. The solid lines with the hollow 90◦- and the hollow-arrow represent the mapping of a basic dataset to the set of single instances
Vi

d and Vi
s based on a dBagSet respectively. The weight wi is the performance value of the model Mi on Vi

s.

Here, we formulate the correlation function of two bags as
average Hausdorff distance [3]. In addition, we introduce a
simple distance

bik = ‖xi − xk‖ (5)

where xi =∑ni
j=1 xij/ni.

Classifier Ensembling: Zhou and Zhang [18] showed that
the multi-instance representation can be adapted to SIL. In
their setting, by repeating the clustering-based mapping strat-
egy with different clustering centers, many classifiers can
be combined into an ensemble for prediction. By contrast,
we introduce the self-reinforcement mechanism and assign a
weight to each classifier.

III. PROPOSED ALGORITHM

In this section, we will first present the overall framework,
and then introduce two crucial techniques, namely, the bag
selection technique and ensemble technique.

A. Overall Framework

Fig. 2 presents the overall framework of ELDB. To improve
the classification performance and the stability of MIL single-
model (such as [2], [3], and [16]), we randomly divide
the dataset T into the basic dataset Td = {Bξi}Nd

i=1 and the
update dataset Ts = {Bξi}Ni=Nd+1, where 1 ≤ ξi ≤ N. Then,
the weighted ensemble model is learned through two crucial
techniques.

First, the bag selection technique with two parts is used to
generate the dBagSet Te ⊂ T . One part is the discriminative

analysis. By considering the spatial and label distribution of
Td, we generate the discriminative matrix L and the basic
dBagSet T 0

e . Another part is the self-reinforcement mecha-
nism. For the subset of Ts, the self-reinforcement mechanism
is employed to determine whether a dBagSet can be updated.
Consequently, we can obtain the updated dBagSets with higher
distinguishability.

Second, the ensemble technique integrates these dBagSets
according to a SIL classifier fc(· · · ) and the specified map-
ping function: 1) basic and update datasets will be mapped
as the sets of single-instances Vi

d and Vi
s, respectively; 2) the

single-instances model Mi is trained with Vi
d and the label vec-

tor [yξ1 , . . . , yξNd
]; and 3) the model weight wi is computed

based on Mi and Vi
s. Finally, the weighted ensemble model is

obtained by integrating dBagSets, models, and weights.

B. Bag Selection Technique

The bag selection technique includes two parts. First, the
discriminative analysis technique generates the basic dBagSet.
Second, the self-reinforcement mechanism provides a strategy
for updating dBagSet.

1) Discriminative Analysis: We rewrite the instance eval-
uation criterion [2] as the discriminative analysis for bags as
follows. To obtain the basic dBagSet with the discriminative
power according to the spatial and label distribution of the
dataset, we need to compute

max
Te⊆Td⊂T

∑

yξi �=yξj

d
(
fb

(
Bξi , Te

)
, fb

(
Bξj , Te

))
(6)
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and

min
Te⊆Td⊂T

∑

yξi=yξj

d
(
fb

(
Bξi , Te

)
, fb

(
Bξj , Te

))
(7)

where d(·, ·) denotes the distance between two mapping
vectors. In case that Te is known, we also let dij =
d(fb(Bξi , Te), fb(Bξj , Te)).

To transform the multiobjective optimization into single-
objective, the bag-link matrix � = [δij]Nd×Nd

is introduced,
where

δij =
{
λij, yξi �= yξj

−λij, yξi = yξj

(8)

where λij > 0 is a scale parameter. Consequently, the
combined optimization objective is

max
Te⊆Td⊂T

J (Td, Te) = 1

2

∑

Bξi ,Bξj∈Td

dijδij. (9)

It represents the distinguishability of all bags belonging to
Td in the new feature space. However, the current problem
is how to find Te. The simplest method is to traverse each
nonempty subset Te ⊆ Td, but the time complexity O(2N) is
unacceptable.

To tackle this problem, the diagonal bag selection matrix
Q = [qij]Nd×Nd is introduced, where qij = 1 if i = j and
Bξi ∈ Te; otherwise 0. More specifically, dij is formulated as

dij =
∥
∥
∥Qb∗ξi

− Qb∗ξj

∥
∥
∥

2
(10)

where b∗ξi
= fb(Bξi , Td) according to (3). Then, we have

J (Td, Te) = 1

2

∑

i,j

((
b∗ξi

)T
QTQb∗ξi

+
(

b∗ξj

)T
QTQb∗ξj

−
(

b∗ξi

)T
QTQb∗ξj

−
(

b∗ξj

)T
QTQb∗ξi

)

δij.

(11)

For (8), the simplest setting is used here, i.e., ∀i, j : λij = 1.
Additionally, let � = [γij]Nd×Nd be a diagonal matrix, where
γii =∑

j δij. So, we have

J (Td, Te) =
∑

i,j

((
b∗ξi

)T
QTQb∗ξi

−
(

b∗ξi

)T
QTQb∗ξj

)

δij

= tr
(

QTV∗d(� −�)
(
V∗d

)TQ
)

= tr
(

QTV∗dL
(
V∗d

)TQ
)

=
∑

Bξk∈Te

b∗ξk
L
(

b∗ξk

)T
(12)

where V∗d = fm(Td, Td) is computed according to (4).
Consequently, the distinguishability score pk of Bk ∈ T is
defined as

pk = b∗kL
(
b∗k

)T (13)

and L serves as the discriminative matrix. Furthermore, the
original optimization problem becomes

max
Te⊆Td⊂T

∑

Bξk∈Te

pξk . (14)

Algorithm 1 selfReinforcement(T i
e , T ′,m)

Input:
State T i

e ;
T ′ ⊆ Ts ⊂ T ;
Action mode m (“a” or “r”);

Output:
The updated state T i

e ;
Action ai;

1: ai = 0;
2: τ = arg minBζk∈T i

e
pζk , where Bζτ ∈ T i

e and pζk is
computed according to (13);

3: for (Bξj ∈ T ′) do
4: if (pξj > pζτ ) then
5: if (m == “a”) then
6: T i

e ← T i
e ∪ {Bξj}; // Add

7: else
8: T i

e ← T i
e ∪ {Bξj} \ {Bζτ }; // Replace

9: Update τ and pζτ ;
10: end if
11: ai = 1;
12: end if
13: end for
14: return T i

e , ai;

To obtain the basic dBagSet Te, we calculate the score
of each bag Bξi ∈ Td, and then select ψ bags with the
highest score as the elements of Te. The whole process is
represented as

Te = bagSelection(Td, ψ). (15)

By considering the solution interval of (14), we design four
types of dBagSet initialization modes as follows.

1) Global (g) uses all bags to generate dBagSet.
2) Positive (p) only uses all positive bags.
3) Negative (n) only uses all negative bags.
4) Balance (b) chooses equal amount of positive and

negative discriminative bags.
We will compare these modes through experiments.
2) Self-Reinforcement Mechanism: We borrow the idea

of [23] to design the self-reinforcement mechanism for
dBagSet updating. Let T i

e be the i-th updated state of the
dBagSet. Specifically, T 0

e is obtained according to (15). Let
action ai indicate whether a state T i

e will be updated.
Algorithm 1 presents the pseudocode of the self-

reinforcement mechanism. Line 1 sets action ai to 0. Line
2 computes the score of Bζk ∈ T i

e and obtains the index
τ = arg minBζk∈T i

e
pζk . Lines 3–13 traverse each bag Bξj ∈ T ′.

If pξj ≤ pζτ , the state will not be changed; otherwise the action
ai is set to 1. For different action modes, the corresponding
operations are as follows.

1) Addition (a): Update T i
e by adding the selected bag.

2) Replacement (r): Update T i
e by replacing bag and

recomputing p∗τ .
In fact, the update strategies of these two action modes are

completely different. The action “a” uses a greedy strategy
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of finding as many bags with high distinguishability as possi-
ble. While the action “r” introduces a competitive strategy to
exclude some bags. Additionally, we mark the algorithm name
as aELDB when selecting the action mode “a”; otherwise
rELDB.

The discriminative analysis and self-reinforcement mecha-
nism will jointly participate in the construction of the weighted
ensemble model.

C. Ensemble Technique

For ease of description, the input/output relationships of a
SIL classifier (e.g., kNN) used are formulated as follows:

M = f model
c (V,Y) (16)

w = f weight
c (V,Y,M) (17)

ŷi = f predict
c (bi,M). (18)

All inputs have been defined in Section II. For the output,
M is the trained single-instance classification model, w is the
value of performance measure (e.g., F1-measure) and ŷi is the
predicted label of Bi.

Algorithm 2 lists the ELDB algorithm. The initialization is
implemented in lines 1 and 2. The dataset T is randomly split
into two parts Td and Ts. Td will be used for the discriminative
analysis and Ts for the self-reinforcement mechanism.

The basic state and parameter computation are implemented
in lines 3–10. Line 3 generates the state T 0

e according to the
discriminative analysis with Td. Lines 4 and 5 map Ts and Td

to the sets of single-instances Vs and Vd, respectively. Lines
6 and 7 assign the corresponding label vector. Line 8 trains a
classification model M0 according to V0

d and its corresponding
label vector Yd. Line 9 computes the weight of the model M0.
To make the most of T ’s information, line 10 retrains the
model M0.

The weighted ensemble model construction is implemented
in lines 11–23. Line 11 records the basic model M0 and its
weight w0 and state T 0

e . Line 12 computes the value of loops
nl. Lines 13–23 are the main loop. For each loop, line 14
chooses a subset T ′ of Ts. Line 15 updates the state T i

e and
gets the current action ai according to the self-reinforcement
mechanism. Lines 16–22 update records when ai == 1.

With the weighted ensemble model M, the label of the bag
Bi can be predicted as

ŷi = sign

⎛

⎝
∑

j

wjYij

⎞

⎠ (19)

where

Yij = f predict
c

(
fb

(
Bi, T i

e

)
,Mi

)
(20)

where fb(·, ·) is the mapping function according to (3) and
sign(x) = 1 if x ≥ 0; otherwise −1.

D. Analysis and Discussions

In this section, we analyze the properties of ELDB and
discuss the reason of ensembling.

Algorithm 2 ELDB (T ,Y, α, ψ, t, m)
Input:

Dataset T ;
Label vector Y;
Proportion of basic dataset α;
Size of dBagSet ψ ;
Size of batch t;
Action mode m (“a” or “r”);

Output:
Weighted ensemble model M;

1: Td = {Bξi}Nd
i=1, where Nd = �α × N� and N = |T |;

2: Ts = {Bξi}Ni=Nd+1;
// Step 1. Basic state and parameter computation.

3: T 0
e = bagSelection (Td, ψ) according to (15);

4: V0
d = fm(Td, T 0

e ) according to (4);
5: V0

s = fm(Ts, T 0
e );

6: Yd = [yξ1 , . . . , yξNd
];

7: Ys = [yξNd+1 , . . . , yξN ];
8: M0 = f model

c (V0
d,Yd) according to (16);

9: w0 = f weight
c (V0

s ,Ys,M0) according to (17);
10: Update M0 by recomputing f model

c (V0,Y), where V0 =
fm(T , T 0

e );
// Step 2. Weighted ensemble model construction.

11: M = {(M0,w0, T 0
e )};

12: nt = �(N − Nd)/t�;
13: for (i ∈ [1..nt]) do
14: T ′ = {Bξ((i−1)×t+Nd+1) , . . . ,Bξ(i×t+Nd)

} ⊆ Ts;
15: T i

e , ai = selfReinforcement (T i−1
e , T ′, m) according to

Algorithm 1;
16: if (ai == 1) then
17: Compute Vi

d and Vi
s based on T i

e ;
18: Mi = f model

c (Vi
d,Yd);

19: wi = f weight
c (Vi

s,Ys,Mi);
20: Update Mi by recomputing f model

c (Vi,Y);
21: M←M ∪ {(Mi,wi, T i

e )};
22: end if
23: end for
24: return M;

1) Properties of ELDB: For TBBM methods, kBagSet is
generated according to the spatial distribution of the dataset.
However, these methods do not consider the distinguishability
of bags in the new feature space. Here distinguishability is
represented by: 1) the bags with the same label are similar
to each other and 2) the bags with the different label should
represent the disparity among them.

To enhance distinguishability, we introduce discriminative
analysis by considering the spatial and label distribution of the
data. If (14) is optimized, then ∀Bξi ,Bξj ,Bξk ∈ Td, yξi = yξj ,

and yξi �= yξk , we have dij ≤ dik.
In addition, we design the self-reinforcement mechanism to

obtain the updated dBagSet with higher distinguishability. Let
T i

e and T i+1
e denote the previous state and the updated state,

respectively. Their two properties are as follows.

1) For action mode “a,”
∑|T i

e |
j=1 pζj <

∑|T i+1
e |

k=1 pζk , where pζj

and pζk are computed scores according to (14).
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2) For action mode “r,” ∃Bζτ ∈ T i
e ∀Bζk ∈ T i+1

e , pζτ < pζk .
Consequently, T i+1

e can make the bag more distinguishable
in the new feature space by comparing with T i

e .
2) Why Ensembling: Let TE = {T i

e }βi=0 be dBagSet union.
A straightforward question is, why not only use the state
T β

e with higher distinguishability? On the one hand, with the
update of T i

e ∈ TE, the following events are inevitable: 1) for
the addition mode, limβ→∞ |T 0

e |/β∞ = 0, where β∞ denotes
the cardinality of T β

e \ T 0
e and 2) for the replacement mode,

limβ→∞ |T β
e ∩ T 0

e | = 0. Therefore, the model based on T β
e

may lose the information of the basic state T 0
e . On the other

hand, the ensemble model obtained based on TE will reduce
the uncertainty of a single model that completely depends on
T i

e . With this process, the stability of the model is enhanced.

IV. EXPERIMENTS

In this section, we report five groups of experimental
results to analyze the effectiveness of the ELDB algorithm.
Section IV-A describes the characteristics and parameter set-
tings of comparison algorithms. Section IV-B explains the
features of seven types of datasets used in experiments.
Section IV-C compares the performances of ELDB with seven
state-of-the-art algorithms. Section IV-D presents the results
of statistical significance comparisons. Section IV-E analyzes
the parameter sensitivity of ELDB. Section IV-F compares the
time cost of all rival methods. Section IV-G conducts experi-
ments on large-scale datasets. Through these experiments, we
aim to answer the following.

1) Is ELDB more accurate than rival algorithms?
2) What are the advantages and disadvantages of ELDB?
3) How sensitive is ELDB to parameter settings?
4) How efficient is ELDB?
The experimental environment is the Windows 10 64-bit

operating system, 16-GB memory, AMD Ryzen 7 4800U CPU
1.8GHz, Python 3.9.2. The Python source code is available at
https://github.com/InkiInki/ELDB.

For each dataset, the average F1-measure of ten times
10-fold cross-validation (10CV) and its standard deviation (the
value with “±”) are reported.

A. Comparison Algorithms

We compare ELDB with four types of state-of-the-art
mapping-based MIL algorithms.

1) Statistic Based: We select Simple-MI [15] as the com-
parison. It uses the mean vector of the bag as the representation
of the bag itself. Thus, it does not need parameter settings.

2) Kernel Based: For comparison, the miFV algorithm is
used [16]. It uses the Gaussian mixture model (GMM) to
extract the information of instance space, and then encodes
each bag to a single-single. For its parameter settings, the
number of components for GMM is enumerated in {1, 2, 3}
and the PCA energy is set to 1.

3) Instance Based: The crucial step of this type of
methods is how to find key instances. For comparison,
the StableMIL, miVLAD, MILFM, and MILDM algorithms
are used [2], [17], [22], [24]. For the parameter settings of
StableMIL, the threshold τ is set to 0.25. For miVLAD,

TABLE II
DETAILED PROPERTIES OF THE USED DATASETS

the number of clustering centers for kMeans is enumerated
in {1, 2} and the PCA energy is set to 1. For MILFM and
MILDM, the similarity function is formulated as (2), and γ
is enumerated in {0.1, . . . , 1.0}. Besides, the number of clus-
tering centers for MILFM and the number of discriminative
instances for MILDM are set to 40 and the number of bags,
respectively.

4) Bag Based: This type of methods differs from instance-
based mapping methods in that the key is bags rather than
instances. The BAMIC [3] algorithm is used for comparison.
In particular, ELDB is one of these algorithms. The parameter
settings of BAMIC and ELDB are: the distance functions are
formulated as the average Hausdorff distance [3] and (5); the
number of selected bags is set to r × min{N, 100}, where r
is enumerated in {0.1, . . . , 1.0}, N is the size of dataset. The
additional parameters for ELDB were: 1) proportion of basic
dataset α = 0.75 and 2) size of batch t = N(1− α)/2.

By mapping the dataset T into the set of new feature vectors
V, we need to employ a SIL classifier to train a single-instance
model. The details are implemented in Section III-C. In our
settings, kNN, J48, and SVM are employed.

B. Experimental Datasets

Two drug activity prediction [1], two mutagenicity
prediction [25], three image retrieval [26], [27], one medical
image [28], [29], one text [8], two original image [4], [6], and
three biocreative datasets [30], [31] are utilized to verify the
performances of ELDB. Table II lists some details for these
datasets.1 The symbol “#” means that the original images are
transformed to bags based on bag generators [32]. In the fol-
lowing parts, we will briefly introduce the domain knowledge
of these datasets.

1The original images of the messidor dataset can be found at http://www.
adcis.net/en/third-party/messidor/. The text dataset can be found at http://
www.lamda.nju.edu.cn/data_MItext.ashx/. Some processed datasets of Corel
and GHIM can be found at https://github.com/InkiInki/Data001. The others
can be found at http://www.figshare.com/articles/MIProblems_A_repository_
of_multiple_instance_learning_datasets/6633983.
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TABLE III
F1-MEASURE WITH STANDARD DEVIATIONS ON FIVE TYPES OF MIL DATASETS

1) Drug Activity Prediction: By studying a collection of
existing molecules, drug activity prediction attempts to predict
whether new molecules can be manufactured medicines [1].
Each molecule can be represented as a bag, and its eligibility to
manufacture drugs depends on its instances. During the learn-
ing procedure, a molecule is positive if at least one instance
inside can be used to manufacture a drug; otherwise negative.
Musk1 and musk2 are MIL real-world drug activity prediction
datasets.

2) Mutagenicity Prediction: One way for predicting car-
cinogenicity is to predict compound molecular mutagenic-
ity. The main challenge is how to effectively detect these
molecules [25], [33]. The MIL datasets mutagenesis1 and
mutagenesis2 are two versions of mutagenicity prediction.

3) Image Retrieval: The problem of content-based image
retrieval includes identifying the intended target object in the
image. The difficulty is that the image comprises a large num-
ber of diverse things. In the SIL setting, the image may not
be retrieved well. Fortunately, this problem is suitable to the
MIL scenario: each image can be viewed as a bag of segments
containing one or more regions [27]. The goal is to distinguish
whether the image contains an object of interest. The elephant,
fox, and tiger [26] datasets are used in our research.

4) Medical Image: Messidor is a medical classification
dataset that includes 546 healthy patients and 654 diabetes
fundus images [28]. Its purpose is to detect whether the image
contains lesions, which is consistent with MIL’s application to
image retrieval datasets [29], [34].

5) Text: There are twenty subdatasets in the news-
groups text dataset, such as alt.atheish, comp.graphics, and
misc.forsale [8]. Each of subdataset contains 50 positive and
50 negative bags. TFIDF features [35] represent each instance
in the bag as a 200-dimensional vector. The goal of the text
dataset is to determine whether a particular bag contains target
newsgroups information.

6) Corel and GHIM: To evaluate ELDB and the rival algo-
rithms, we sample 20 and all categories from Corel database
with 100 categories [4], [36] and GHIM database with 20 cat-
egories [6], respectively. For all images in these databases, we

Fig. 3. Sample images taken from Corel database. From left to right and
top to bottom are: 1) bird; 2) ship; 3) church; 4) illustration; 5) girl; 6) filed;
7) goat; 8) fruit; 9) hall; 10) beads; 11) motorcycle; 12) people; 13) poster;
14) molecular; 15) rhino; 16) bikini; 17) tennis; 18) flower; 19) texture; and
20) car.

need to build the MIL model to distinguish the selected pos-
itive and negative categories. Furthermore, these images have
been segmented by the SB system [32], [37]. Fig. 3 shows
sample images taken from the Corel database.

7) Biocreative: Biocreative is a text categorization
dataset [30], [31]. The task is to figure out whether some Gene
Ontology codes should be used to annotate a pair of genes.
For evaluation, component, function, and process datasets are
employed.

C. Performance Comparisons

Tables III and IV compare the performance of ELDB with
the four types of comparison algorithms. The variables n
and d represent the number of instances and dimensions for
MIL datasets, respectively. The action modes, addition and
replacement of the self-enhancement mechanism, are repre-
sented by the symbols “a” and “r” of aELDB and rELDB.
With the little black bullet, the best performance value for
each dataset is emphasized. Average denotes the average clas-
sification performance across all datasets. Mean rank indicates
the average of the classification performance ranking of the
current algorithm on each dataset.
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TABLE IV
F1-MEASURE WITH STANDARD DEVIATIONS ON COREL AND GHIM DATABASES

The experimental results demonstrate that ELDB can be
applied to most MIL classification tasks and has the greatest
overall classification performance, according to results on each
dataset, average and mean rank; and the standard deviation of
ELDB is second only to miFV, according to the average classi-
fication results. The following could be the reason: for starters,
the self-reinforcement mechanism can improve a dBagSet’s
overall distinguishability and make mapping results of bags
more discriminative. The final model, on the other hand, is
made up of a number of weighted models. The label of a
bag can be predicted more correctly and stably by taking into
account the influence of these models.

Some outcomes necessitate extra attention.
1) On the text datasets, the effects of ELDB are signif-

icantly better than StableMIL, MILFM, and MILDM.
The reason may be that the three comparison methods
are looking for key instances in the specified instance
space. For example, the key instances of StableMIL are
positive instances that can change the label of negative
bags. However, the text dataset is sparse and the attribute
values of instances are small. As a result, some neg-
ative instances may have similar characteristics to the
positive instances. This may lead to unsatisfactory map-
ping results of these methods. While ELDB designs the
discriminative analysis and the self-reinforcement mech-
anism to keep the bag distinct in the new feature space.
The feature makes ELDB unaffected by characteristics
such as dataset sparsity.

2) The classification results of aELDB is overall better than
rELDB. The cause for this could be that the action mode
“r” ignores some bags with high distinguishability when
specifying the cardinality of dBagSet.

D. Statistical Significance Comparisons

Table V summarizes the p-value of two-tailed t-test
between ELDB and all comparative algorithms in this

experimental scenario. The 95% confidence level (α =
0.05) is used to calculate all paired t-test values. According
to statistical theory, there is no significant difference
between two algorithms when the p-value is greater
than 0.05.

The majority of the p-values in the second column are
greater than 0.05. As a result, aELDB and rELDB are only
two types of ELDB. Similarly, the results of the sixth column
demonstrate that miVLAD is the closest approach to ELDB.
They are, however, two fundamentally different approaches.
In comparison to the other approaches, the remaining columns
reveal that ELDB is statistically considerably better (including
the same type of algorithm BAMIC). In other words, ELDB
outperforms the state-of-the-art MIL mapping methods in most
cases.

E. Parameter Analysis

Figs. 4 and 5 show the experimental results of parame-
ter analysis on two types of datasets, including the image
retrieval and the text classification tasks. The symbols “k,”
“j,” and “s” denote the used single-instance classifier kNN,
J48, and SVM, respectively; “a” and “r” denote the addi-
tion and replacement modes, respectively; and “g,” “p,” “n,”
and “b” denote four bag initialization modes, respectively.
Specially, the black long solid line represents the upper
and lower limits of the F1-measure value for the current
experiment.

For all of these images, the abscissa represents the pro-
portion of discriminative bag selection, whereas the ordinate
represents F1-measure values. The following summarizes the
impact of parameters on ELDB.

1) Action Modes: Action “a” performs better in terms of
classification performance than action “r.” However, the
complexity of “a” is greater than that of “r” with the
given basic dBagSet.
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TABLE V
TWO-TAILED t-TEST RESULTS FOR ELDB VERSUS FOUR TYPES MAPPING-BASED MIL METHODS ON A TOTAL OF 18 DATASETS SHOWN IN TABLE III.

THE PROPOSED BAG-BASED AELDB AND RELDB ARE DENOTED BY AE AND RE, RESPECTIVELY. THE STATISTIC-BASED SIMPLE-MI IS

ABBREVIATED AS SM. THE KERNEL-BASED MIFV IS DENOTED BY FV. THE INSTANCE-BASED STABLEMIL, MIVLAD, MILFM,
AND MILDM ARE DENOTED BY ST, VL, FM, AND DM, RESPECTIVELY. THE BAG-BASED BAMIC IS DENOTED BY BA

Fig. 4. Parameter analysis of ELDB with different proportions of discriminative bags, best distance function, best classifier, and four bag initialization modes
for image classification task: Elephant, fox, and tiger.

2) Distance Function: The average Hausdorff dis-
tance and (5) yield approximately the same number
of optimal results on image retrieval and text
datasets.

3) Bag Selection Mode: The effect of the global mode
“g” is better when the number of discriminative bags
ψ is small. As the ψ increases, there is no significant
difference between four modes.
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Fig. 5. Parameter analysis of ELDB with different proportions of discriminative bags, best distance function, best classifier, and best bag initialization mode
for text classification task: Alt.atheism, comp.graphics, comp.os.ms, and so on.

TABLE VI
TOTAL CPU RUNTIME OF ONE TIME 10CV FOR THE COMPARED ALGORITHMS ON

EIGHT MIL CLASSIFICATION DATASETS (MEASURED IN MILLISECONDS)

4) Classifier: kNN and SVM are more suitable for these
datasets than J48.

F. Time Complexity and Efficiency Comparisons

We compare the time complexity and runtime of ELDB
to that of seven rival algorithms. For ELDB, the weighted
ensemble model construction costs O(dN2), where d is the
dimension and N is the size of the dataset. By contrast, Simple-
MI costs O(dN), StableMIL costs O(dn2), miFV costs O(dn),
miVLAD costs O(dn), MILFM costs O(dn2), MILDM costs
O(dn2), and BAMIC costs O(dN2), where n is the size of
instance space. Normally, N � n, so O(N2) � O(n2). To
verify the theoretical analysis, we compare the CPU runtime
on eight datasets for these methods, as shown in Table VI.
The results show that our method has similar runtime with
miFV and BAMIC algorithms. Besides, even on the small-
scale dataset, the runtime of StableMIL, MILFM, and MILDM
are relatively large.

G. Large-Scale Datasets

We make recommendations for ELDB parameter settings for
large-scale datasets based on the above experimental results.

For the action mode, “a” performs better than “r” in terms of
the classification performance. However, the dimension of the
mapping vector based on “r” is relatively low. Therefore, the
action mode can use “r” on the large-scale datasets; otherwise
“a.” In addition, the distance function can use the (5). The
bag selection mode can use the global mode “g.” The number
of discriminative bags ψ can be set to the number of bags N
times the proportion of basic dataset α, where α can be set to
0.75. The size of the batch can be set to N × (1− α)/2. The
single-instance classifier can use kNN or SVM.

As shown in Table VII, we only compare rELDB with four
rival algorithms, because StableMIL, MILFM, and MILDM
have relatively high time complexity. The experimental results
show that rELDB has good performance on large datasets,
particularly on the function dataset.

H. Discussions

We can now answer the four questions proposed at the start
of this section.

1) ELDB is more accurate than popular mapping-based MIL
supervised classification algorithms, such as Simple-MI
and MILDM. This is validated by Tables III and IV.
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TABLE VII
F1-MEASURE WITH STANDARD DEVIATIONS ON MIL BIOCREATIVE DATASETS

2) ELDB has the best overall classification performance
and second stability. The disadvantage of ELDB is that
the weighted ensemble model becomes more compli-
cated as the dBagSet in the model is updated. Therefore,
ELDB has a higher time complexity than the similar
method BAMIC. Presently, we use reasonable parameter
settings to alleviate this problem.

3) ELDB is insensitive to parameter settings, such as the
action mode and bag selection mode. This is validated
by Figs. 4 and 5.

4) ELDB is an efficient algorithm. This is validated by
Table VI.

V. CONCLUSION AND FURTHER WORK

This article designs the ELDB algorithm with the new
discriminative bag selection method and classifier ensemble
strategy for supervised MIL classification tasks. In theory, the
bag selection results are divided into two categories: 1) basic
and 2) updated dBagSets. The basic dBagSet is generated by
taking into account the dataset’s spacial and label distribu-
tion. Based on this dBagSet, the bags can be mapped into the
new feature space and be easily separated from each other.
In addition, we design the self-reinforcement mechanism to
enhance the mapping-ability of the basic dBagSet and obtain
the updated dBagSet. Naturally, this process can be gradually
strengthened through updates.

The classifier ensemble strategy is designed to make full
use of the generated dBagSet. For each dBagSet, we can train
a single-instance classification model and assign a weight by
considering its contribution. At last, all of these models can
be combined to form a weighted ensemble model. The experi-
mental results on 38 datasets show that ELDB outperforms the
state-of-the-art MIL mapping methods in terms of F1-measure
and statistical significance. The parameter analysis shows how
parameters affect ELDB and suggests parameter settings for
large-scale datasets. The time complexity further demonstrates
that ELDB provides an effective tradeoff between runtime
efficiency and classification performance.

The following topics deserve further investigation.
1) A more effective self-reinforcement mechanism.

Currently, only addition and replacement are available
in action modes. In the future, we will examine more
flexible learning modes.

2) A better weight assignation scheme. We currently use
the model’s classification performance as its weight.
However, the model’s weight may be related to the
overall distinguishability of its corresponding dBagSet.

3) Classification performance improvement on datasets
such as mutagenesis2, process, and tiger.
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