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Fuzzy Monotonic K-Nearest Neighbor versus
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Abstract—In real-life applications, monotonic classification is
a widespread task, where the improvement of a particular input
value cannot result in an inferior output. A common drawback of
the existing algorithms for monotonic classification is their sensi-
tivity to noise data which particularly refer to monotonicity vio-
lations in the monotonic circumstance. Motivated by weakening
the impact of noises, the Fuzzy Monotonic K-Nearest Neighbor
(FMKNN) is proposed in this paper, which constructs monotonic
classifiers by taking advantage of the fuzzy dominance relation
between a pair of instances, especially that between incomparable
instances for the first time. Through tuning the thresholds of
fuzzy dominance relation degrees, FMKNN intends to decrease
the disturbance caused by noises which considerably affect the
selection range of the K-Nearest Neighbors in different extent.
The experimental results show that the best average improvement
degrees of FMKNN in terms of the KNN-based and non-KNN-
based classifiers on all the involved datasets arrive at 28%, 11%
and 29% with respect to ACCU, MAE and NMI, respectively,
which demonstrates the superiority of our proposed FMKNN
over other state-of-the-art monotonic classifiers including the
Monotonic Fuzzy K-Nearest Neighbor (MFKNN) which disperses
the impact of noise data by converting crisp class labels into class
membership vectors.

Index Terms—monotonic classification, K-nearest neighbor, ro-
bustness improvement, incomparable instances, fuzzy dominance
relation.
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MOnotonic classification [1] is a special classification
task where there exist monotonicity constraints be-

tween the class label and some features, it means that both
the class label and the feature values are ordinal, and the
class label should not decrease with the increase of the feature
values when the rest remain the same. Formally, monotonic
classification is to predict the class label f(x) of a feature
vector x, such that x � x′ ⇒ f(x) ≥ f (x′), where “ � ”
and “≥ ” represent the dominance relationship among feature
vectors and class labels, respectively. For example, a car with
better main performances and lower price is more likely to
win higher acceptance from consumers. Monotonic classifi-
cations are important tasks because they come up frequently
in real-word application scenarios, such as bankruptcy risk
assessment [2], housing price setting [3], credit rating [4] and
lecture evaluation [5].

Generally, conventional algorithms cannot solve monotonic
classification problems, because they do not take the mono-
tonicity constraints into account, and as a result, they cannot
maintain the monotonicity of prediction results. For exam-
ple, the Shannon’s information entropy based decision tree
induction is an efficient and effective model for common clas-
sification. However, it cannot learn monotonic classification
rules even given a monotonic dataset, because the Shannon’s
information entropy cannot reflect the ordinal structure in
monotonic classification [6]. In recent years, more and more
researchers have devoted to the study of monotonic clas-
sification problems, which results in various of approaches
emerging. Generally, these approaches can be divided into two
categories. The first category is to build monotonic predictors
by taking monotonicity constraints into the framework of
conventional classification or regression algorithms, such as
instance-based classifiers [7], decision trees [8]-[15], ensemble
learning [16]-[19], neural networks [20]-[24], and support
vector machines [25], [26]. The second category is to mono-
tonize the datasets using some preprocessing techniques when
there is a small quantity of instances violating monotonicity
constraints. The most commonly used preprocessing opera-
tions include relabeling [27]-[29], feature selection [30], [31],
instance selection [32], [33] and training set selection [34],
[35].

Among all the methods, instance-based monotonic predic-
tors have a significant superiority when the approximated
target function is very complex but can still be described
by a collection of less complex local approximations. In-
stead of estimating the target function once for the entire
instance space, they complete the approximation task locally
and differently for each new instance to be predicted. So far,
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several instance-based approaches to generating monotonic
predictors have appeared. The earliest achievement is the
Ordered Learning Model (OLM) [33] presented by Ben-David,
which constructs a rule base composed of instances satisfying
monotonicity constraints. When predicting a new instance,
OLM does not emphasize the use of nearby training instances
but just simply takes the maximum class label of all the
instances that are inferior to the predicted instance, which
magnifies the impact of data far away from the predicted
instance. Another instance-based monotonic classifier is the
Ordered Stochastic Dominance Learner (OSDL) [7] proposed
by Cao-Van, which is a probabilistic classifier interpreting the
monotonicity constraints in terms of stochastic dominance.
However, only when the monotonic classification problems are
binary, can OSDL maintain the monotonicity of predictions.

In order to overcome the drawbacks of the above methods,
Duivesteijn and Feelders proposed the Monotonic K-Nearest
Neighbor (MKNN) [36], which is an instance-based monoton-
ic predictor based on the classical K-Nearest Neighbor (KNN)
[37]. MKNN provides a strategy for monotonic prediction by
only making use of the nearby instances, which can not only
decrease the bad influence of very distant instances, but also
improve the operating efficiency. Besides, MKNN can approx-
imate both discrete-valued and real-valued target functions,
thus it is suitable for both classification and regression with
monotonicity constraints. Furthermore, it is easy to see that
the work mechanism of MKNN is quite simple.

Although MKNN has the above mentioned advantages, it is
extremely susceptible to monotonicity violations. Before using
MKNN, preprocessing measure must be taken [38]. Beyond
this, a modification of MKNN, called Monotonic Fuzzy K-
Nearest Neighbor (MFKNN) [39], was designed from the
angle of algorithm improvement based on the Fuzzy K-Nearest
Neighbor (FKNN) [40]. It increases the robustness of MKNN
against noises by introducing the calculation method of class
fuzzy memberships, without the need for data preprocessing.

In monotonic classification problems discussed in this ar-
ticle, the noise refers to the label noise which means the
incorrect observed label. We assume the label noise is noisy
completely at random (NCAR), that is the occurrence of a
labelling error is independent from the vector of features and
the true class itself [41]. The label noises lead to violation of
monotonicity between features and the label.

The main contribution of this paper is that we propose
a new modification of MKNN, named Fuzzy Monotonic K-
Nearest Neighbor (FMKNN), which is able to handle noises
without the need of data preprocessing. Different from the
existing fuzziness based monotonic classifiers [42]-[43], such
as MFKNN in which only the class membership information
is used, FMKNN uses the fuzzy dominance relations [44]
between instances, especially between the incomparable in-
stances, for the first time. In order to highlight the advantage
of our work, we make a comprehensive comparison between
FMKNN and MFKNN theoretically and experimentally. The
similarities and differences between the two methods are
listed, as well as their respective characteristics. By conducting
contrast experiments with both KNN-based and non-KNN-
based monotonic classifiers, we validate that our proposed

FMKNN has significant advantage over MFKNN when ad-
dressing monotonic classification with much noises and in-
comparable instance pairs.

The rest of this paper is organized as follows. In Section
II, we provide the background knowledge about monotonic
classification and fuzzy dominance relation. In Section III,
we introduce two existing KNN-based monotonic classifiers
MKNN and MFKNN briefly, which give rise to our work in
this article. In Section IV, we propose our FMKNN mod-
el in detail. In Section V, we discuss the similarities and
differences between FMKNN and MFKNN theoretically. In
Section VI, we present the experimental framework used in
different empirical studies. In Section VII, we conduct contrast
experiments and analyze the results. Finally, in Section VIII,
we summarize the contributions and conclude this paper.

Throughout this paper, we use KNN for K-Nearest Neigh-
bor, MKNN for Monotonic K-Nearest Neighbor, FKNN for
Fuzzy K-Nearest Neighbor, MFKNN for Monotonic Fuzzy K-
Nearest Neighbor, FMKNN for Fuzzy Monotonic K-Nearest
Neighbor, ‘≥’ and ‘≤’ for the ordinal relation between two
variables, ‘�’ and ‘�’ for the dominance relation between two
instances.

II. BACKGROUND KNOWLEDGE

In this section, we introduce the background knowledge
involved in this paper.

A. Monotonic Classification

Here we use a series of definitions to explain the knowledge
about monotonic classification problems.

Let U = {(xi, yi)}Ni=1 be the universe of instances, where
xi = [x1i , x

2
i , · · · , xni ] is the feature vector of the i-th instance,

yi ∈ {l1, l2, · · · , ld} is the target decision value, N is the total
number of training instances, n is the number of features, and
d is the number of decision values.

Compared with general classification problems, monotonic
classification problems have two unique characteristics.

1) Both features and the decision variable are fully
ordered: the values of the features and the decision variable
are either fully ordered symbolic or numeric. We use ‘≥’ and
‘≤’ to indicate the ordinal relationship among feature values
and decision values. For example, xki ≥ xkj represents the k-
th feature value of the i-th instance is not inferior to that of
the j-th one, where i, j ∈ {1, 2, · · · , N}, k ∈ {1, 2, · · · , n}.
Particularly, in the Employee Selection problem, for the E-
ducation Background feature, the doctoral degree is superior
to the master’s degree, which can be expressed as “doctoral
degree ≥ master’s degree”.

Definition 1: If xki ≥ xkj holds well for any k ∈
{1, 2, · · · , n}, then we say xi dominates xj , denoted by
xi � xj or xj � xi.

Definition 2: For instances (xi, yi) and (xj , yj), if there
exists a dominance relationship between their feature vectors
xi and xj , i.e., xi � xj or xi � xj , then we say (xi, yi) and
(xj , yj) are comparable; otherwise, they are incomparable.

The dominance relation between two instances is partially
ordered and denoted by ‘�’ and ‘�’. In mathematics, a
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partially ordered set (also poset) consists of a set together with
a binary relation called a “partial order”. The word “partial”
is used as an indication that not every pair of elements needs
to be comparable. In real datasets, it is common that not any
two instances are comparable.

2) There are monotonicity constraints between features
and the decision variable: that is to say, an instance with
better performance on all the features cannot be assigned to an
inferior decision value, which can be expressed as: if xi � xj ,
then yi ≥ yj ; if xi � xj , then yi ≤ yj .

Definition 3: For any two instances (xi, yi), (xj , yj) ∈ U ,
if xki ≥ xkj → yi ≥ yj holds under the premise that the two
instances perform the same on all the remaining features, then
we say the decision variable is monotonic with respect to the
k-th feature.

Definition 4: If any two instances in dataset U satisfy the
monotonicity constraints, then we say U is monotonic.

Definition 5: A classifier is monotonic if xi � xj → ŷi ≥
ŷj holds well for any two instances (xi, yi), (xj , yj) ∈ U ,
where ŷi and ŷj are respectively the prediction results of the
two instances generated by the classifier.

In order to address the monotonic classification, we need to
generate a classifier which aims to approximate a monotonic
target function as accurately as possible by making a trade-off
between the prediction accuracy and the maintenance degree
of monotonicity.

B. Fuzzy Dominance Relations

As explained above in Section II-A, it is not always true that
two instances are comparable. Two instances are incomparable
when there is no dominance relationship between their feature
vectors. In the theory of fuzzy mathematics, the dominance
relation between incomparable instances can be measured.

Fuzzy dominance relation not only can represent whether
an instance dominates another, but also can measure how
much the former is superior to the latter, especially for the
incomparable instances. Here we put forward a method of
calculating the degree of fuzzy dominance relation between
two instances. The following are relevant definitions and
descriptions in detail.

Definition 6: A fuzzy dominance relation R is a fuzzy set on
the product set U × U , which is described by a membership
function µR : U × U → [0, 1]. If the cardinality of U is
finite, the fuzzy dominance relation can also be represented
by an N × N matrix (rij)N×N , where rij is interpreted as
the dominance degree of instance (xi, yi) over (xj , yj).

The fuzzy dominance degree of (xi, yi) over (xj , yj) with
respect to the k-th feature is marked as rkij and can be
computed by the following equation [44]:

rkij =
1

1 + e−a(x
k
i−xk

j )
, (1)

where a is a positive parameter. According to the character-
istics of (1) which is a Logsig transfer function essentially,
we can know that when xki ≤ xkj , rkij ∈ [0, 0.5]; otherwise,
rkij ∈ [0.5, 1].

Next, to get the overall fuzzy dominance degree of (xi, yi)
over (xj , yj), a weighted aggregation operation on each rkij

is worked out, where the correlation coefficients are adopted
as the weights which can reflect the degree of statistical
monotonicity between features and the decision variable. The
aggregation equation is shown as:

rij =

n∑
k=1

Corr(featurek, d) ∗ rkij , (2)

where Corr(featurek, d) is the correlation coefficient be-
tween the k-th feature featurek and the decision variable
d, rij is the overall fuzzy dominance degree of (xi, yi) over
(xj , yj).

Generally, the overall fuzzy dominance degree between two
instances takes a value in the range [0,1], so rij needs to be
normalized to the range [0,1] after obtained by (2).

In particular, after normalization, rij < 1
2 represents that

(xi, yi) is more likely to be inferior to (xj , yj); rij = 1
2 shows

that (xi, yi) equals to (xj , yj); 1
2 < rij < 1 means that (xi, yi)

is more likely to be superior to (xj , yj); rij = 1 indicates that
(xi, yi) dominates (xj , yj) absolutely. Usually, rij + rji = 1
holds well for every i, j ∈ {1, 2, · · · , N}.

III. MONOTONIC CLASSIFIERS BASED ON KNN
In this section, we particularly introduce the existing mono-

tonic classifiers based on KNN, which lead to our research
directly in this article.

A. Monotonic K-Nearest Neighbors (MKNN)

The classical KNN can approximate both discrete-valued
and real-valued target functions, and correspondingly for an
unseen instance, the estimation result is the most common
class label or the mean numeric decision value of its K-nearest
neighbors.

For an unseen instance, after fixing a distance matric,
KNN selects the first K instances which are closest to it as
its K-nearest neighbors. Fig. 1 shows the selection strategy
intuitively, where the plane geometries stand for the instances
described with only two features. In particular, the triangle
represents the instance to be predicted, besides, the circles
and squares denote instances from two different categories.
Based on the principle of closest distance, for the triangle,
when K = 1, Circle A is selected as its 1-nearest neighbor,
and when K = 5, Circles A, B, C, and Squares D, E are
selected as its 5-nearest neighbors.

When dealing with monotonic classification problems, the
conventional KNN will lose its efficiency, because in its
whole prediction process, the monotonicity constraints are
not concerned. To overcome this problem, the MKNN was
designed.

The difference between KNN and MKNN lies in the strategy
of selecting the nearest neighbors. In MKNN, all the instances
are assumed to satisfy the monotonicity constraints. We denote
the instance to be predicted as (x0, y0), and use ŷ0 to stand for
the predictive decision value. According to the monotonicity
constraints, ŷ0 is supposed to lie in the interval [ymin, ymax],
where ymin is the superlative class label of all the training
instances which are inferior to (x0, y0) on each feature, and
conversely ymax is the lowest class label of all the training
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Fig. 1. The selection range of K nearest neighbors in KNN.

 

 

  

  

  

  

    

 

？ 

 

  

Upper-bound 

𝒚𝒎𝒂𝒙 
  

𝒚𝒎𝒊𝒏 

Lower-bound 

Fig. 2. The lower-bound and upper-bound of a predicted instance in MKNN.

instances which are superior to (x0, y0) on each feature. The
K-nearest neighbors of the predicted instance are selected from
the training instances whose class labels lie in [ymin, ymax]. In
comparison with the traditional KNN, MKNN is more likely
to guarantee the predictive results of the unseen instances to
satisfy the monotonicity constraints by setting the ranges for
selecting the K-nearest neighbors.

Fig. 2 visually shows the key points of MKNN. The lower-
bound and upper-bound highlighted here are respectively the
potential regions where points that determine ymin and ymax

lie. The ymin and ymax can be mathematically expressed as
follows.

ymin = max {y|(x, y) ∈ U ∧ x � x0} , (3)

ymax = min {y|(x, y) ∈ U ∧ x0 � x} , (4)

where U is a monotonic dataset.
After selecting the K-nearest neighbors, KNN and MKNN

adopt the same mechanism for prediction. In both models, if
the decision variable is symbolic, the prediction is made by
using the majority voting strategy which means that the most
common class label of the K-nearest neighbors is taken as the
final predictive class label; otherwise, if the decision variable

is numeric, the prediction is the mean target decision values
of the K-nearest neighbors.

Although MKNN can maintain monotonicity to some exten-
t, its ability of resistance to noises is rather weak. The reason
is that if the class labels of the instances which determine
the interval [ymin, ymax] are polluted by noises, the selection
range of the predicted instance will be fixed incorrectly, which
leads to a failed classification. The training data must be fully
monotonic before the adoption of MKNN.

B. Monotonic Fuzzy K-Nearest Neighbors (MFKNN)

In order to ameliorate the robustness of MKNN against
noises, a modified model called MFKNN [39] has been
proposed on the basis of FKNN [40]. Essentially, MFKNN
is a fusion of MKNN and FKNN. On the one hand, it obtains
the strong robustness by following the technique of FKNN
for fuzzifying the crisp class label of each instance; on the
other hand, it guarantees the monotonicity of the classification
results to some extent through adopting the strategy of MKNN
for extracting nearest neighbors. MFKNN solves monotonic
classification problems polluted by noises without the need for
data preprocessing. The process of MFKNN roughly consists
of the following three steps.

Step 1. Fuzzify the crisp class label of each training
instance.

In MFKNN, firstly the crisp class label of each instance
needs to be fuzzified by adopting the mechanism mentioned
in FKNN, which can disperse the influence of a noisy datum
to its nearest neighbors. The fuzzification operation is shown
in detail as follows.

Case 1. For the instances whose feature values are repeated
but their class labels are different, the class membership
degrees are computed as the frequencies of each category in
the entire training set.

u((xi, yi), lj) =
|{(x, y) ∈ U |x = xi ∧ y = lj}|
|{(x, y) ∈ U |x = xi}|

, (5)

where u((xi, yi), lj) represents the membership degree of the
i-th instance with respect to the j-th category, i = 1, 2, · · ·N ,
j = 1, 2, · · · , C.

Case 2. For the instances apart from those in Case 1, their
class membership degrees are calculated based on the class
distribution of the K-nearest neighbors which are extracted by
using the strategy mentioned in MKNN.

u((xi, yi), lj) =

{
RCr + (nnlj/K) ∗ (1−RCr), if yi = lj ;
(nnlj/K) ∗ (1−RCr), if yi 6= lj ,

(6)

where K is the number of nearest neighbors, nnlj is the
number of nearest neighbors belonging to category lj , RCr is
a parameter called “Real Class relevance” which takes values
from [0,1]. If there are no neighbors labeled with yi around
instance (xi, yi), then RCr is considered as the minimum
membership of (xi, yi) to category yi.

Step 2. Calculate the class memberships of the predicted
instance.

For a predicted instance (x0, y0), MFKNN extracts its K-
nearest neighbors in the same manner as MKNN. Then the
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memberships of (x0, y0) to each class is computed by the
following equation [43]:

u((x0, y0), lj) =

k∑
r=1

u((xr, yr), lk) ∗ 1
‖x0−xr‖q−1

k∑
r=1

1
‖x0−xr‖q−1

, (7)

where (xr, yr) are the K-nearest neighbors of instance
(x0, y0), r = 1, 2, · · · ,K, q is a parameter which controls
the distances between (x0, y0) and its K-nearest neighbors.

Step 3. Obtain the predictive result by converting the class
memberships into a crisp class label.

In FKNN which is used to solve traditional classification
problems, the crisp class label of the predicted instance is
determined by the maximum membership principle, which
means that the class label with the maximum membership is
considered as the predictive result, however, this rule is not
suitable for monotonic classifications.

In MFKNN, the crisp class label of the predicted instance
is calculated as the mean value of lMIN and lMAX , which
has been proved in [45], where

MIN = min

{
m ∈ {1, 2, · · · , C}|

m∑
i=1

u((x0, y0), li) ≥
1

2

}
,

(8)

MAX = max

{
m ∈ {1, 2, · · · , C}|

C∑
i=m

u((x0, y0), li) ≥
1

2

}
.

(9)

IV. FUZZY MONOTONIC K-NEAREST NEIGHBORS

In this section, we propose another modification of MKNN
called Fuzzy Monotonic K-Nearest Neighbors (FMKNN)
which aims to enhance the resistance ability of MKNN to
noises without the need of data preprocessing. In comparison
with the original MKNN, the extraction range of nearest neigh-
bors in FMKNN is softened by applying the fuzzy dominance
degree to describing the dominance relation between any two
instances.

A. Method of Extracting K-Nearest Neighbors in FMKNN

Similar to the original MKNN, FMKNN also limits the
decision value of a predicted instance (x0, y0) to an interval
[yδ1min, y

δ2
max], but unlike MKNN, FMKNN defines this interval

on the basis of fuzzy dominance relations between instances
rather than the absolute dominance relations. yδ1min and yδ2max

are shown as follows.

yδ1min = max {y|(x, y) ∈ U ∧ x0 �δ1 x} , (10)

yδ2max = min {y|(x, y) ∈ U ∧ x �δ2 x0} , (11)

where U is a monotonic dataset, δ1 ∈
(
1
2 , 1
)

and δ2 ∈
(
1
2 , 1
)

are two thresholds which control the fuzzy dominance degree
between x0 and a training instance x. x0 �δ1 x represents that
x0 fuzzily dominates x in the degree ranging from [δ1, 1], and
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Fig. 3. The lower-bound δ1 and upper-bound δ2 of FMKNN.

x �δ2 x0 denotes that x fuzzily dominates x0 in the degree
ranging from [δ2, 1].

Corresponding to the explanations of ymin and ymax in
MKNN, in FMKNN yδ1min is the superlative class label of all
the training instances that are fuzzily dominated by (x0, y0)
in the degree ranging from [δ1, 1], and conversely yδ2max is the
lowest class label of all the training instances which fuzzily
dominate yδ2max in the degree ranging from [δ2, 1].

By tuning the thresholds δ1 and δ2, the lower-bound and
upper-bound will be extended slightly in different degrees, so
that the instances which determine the endpoints of the interval
[ymin, ymax] can be ignored if they are polluted by noises.
The extended bounds are noted as lower-bound δ1 and upper-
bound δ2, and are shown in Fig. 3.

Once the thresholds δ1 and δ2 are fixed, the interval
[yδ1min, y

δ2
max] is determined, then the K-nearest neighbors of

(x0, y0) are extracted from the training instances whose deci-
sion values lie in [yδ1min, y

δ2
max].

Different from the original MKNN where the dominance
relations between the predicted instance and its K-nearest
neighbors are absolute, in FMKNN the dominance relations
are fuzzified, and MKNN can be considered as a special case
of FMKNN.

B. The Flow of FMKNN

The entire process of FMKNN for predicting a new instance
(x0, y0) mainly includes the following four steps, and can be
exemplified in Algorithm 1.

Step 1. Calculate the degree of fuzzy dominance relation
ri0 between each training instance (xi, yi) and the predicted
instance (x0, y0) with (2), and obtain yi ∈

[
yδ1min, y

δ2
max

]
with

(10) and (11).
Step 2. Extract the candidates for nearest neighbors of

(x0, y0) from the training data whose target decision values
are in the interval [yδ1min, y

δ2
max], and calculate the Euclidean

distances between the predicted instance (x0, y0) and each
candidate (xC , yC) extracted in Step 2 with (12).

Step 3. Select out the K-nearest neighbors with the first K
minimum distances to (x0, y0).

Step 4. Predict the decision value ŷ0 of (x0, y0) by using the
majority voting strategy for symbolic decision variables and
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dis ((x0, y0) , (xC , yC)) =

√
(x01 − xC1)

2
+ · · ·+ (x0k − xCk)2 + · · ·+ (x0n − xCn)2 + (y0 − yC)2 (12)

averaging the target decision values of the K-nearest neighbors
for numeric decision variables.

Algorithm 1 FMKNN Algorithm
Input:

Training dataset–D, thresholds which control the fuzzy
dominance degree between the predicted instance and
training data–δ1 and δ2, the number of selected nearest
neighbors–K, the instance to be predicted–(x0, y0).

Output:
The decision value of the predicted instance–ŷ0

1: Initialize null matrices pre−yδ1min , pre−yδ2max and DIS;
2: for (xi, yi) ∈ D do
3: Compute ri0 with expression (2);
4: if ri0 ≤ δ1 then
5: Store yi into pre−yδ1min ;
6: else if ri0 ≥ δ2
7: Store yi into pre−yδ2max ;
8: end if
9: Calculate the maximum value in pre−yδ1min with expres-

sion (10) and denote it as yδ1min;
10: Calculate the minimum value in pre−yδ2max with expres-

sion (11) and denote it as yδ2max; . Step 1

11: end for
12: for (xi, yi) ∈ D do
13: if yi ∈

[
yδ1min, y

δ2
max

]
then

14: Calculate the Euclidean distance dis0i between
(x0, y0) and (xi, yi) with expression (12) and

store it to DIS;
15: end if
16: end for . Step 2
17: Find the K-nearest neighbors of (x0, y0), which corre-

spond to the first K minimum distances of DIS; . Step 3

18: Obtain ŷ0 by using the majority voting strategy for sym-
bolic decision variables and averaging the target decision
values of the K-nearest neighbors for numeric decision
variables; . Step 4

19: return ŷ0.

C. An Example

Here an example is given to illustrate vividly how our
proposed FMKNN can counter the influence of noise data,
which is shown as Fig. 4 where the dots, pentagrams, triangles
and squares respectively represent two-dimensional monotonic
instances belonging to class 1, class 2, class 3 and class 4 in
order of categories from low to high, and point A stands for
an unseen instance to be predicted. The coordinates of each
point represent two feature values of an instance. Obviously,

Fig. 4. A vivid example of FMKNN.

we can see that points B and C are noises which violate the
monotonicity constraints.

Under the prediction rule of MKNN, the predicted class
label f(A) of the unseen instance A would be controlled by
its closest inferior neighbor B and closest superior neighbor
C, that is 4 < f(A) < 2, which is unreasonable.

However, in our proposed FMKNN, according to (1) and
(2), the fuzzy dominance degree δ1 of A over B is 0.7272,
and δ2 of C over A is 0.7536. By fine-tuning the values of δ1
and δ2, such as letting δ1 = 0.8080 and δ2 = 0.8285, noises
B and C are skipped, then D and E would be the instances
which limit f(A) to interval [2,3]. Then we can predict
f(A) by implementing the K-nearest neighbors strategy on
the instances belonging to class 2 and 3.

V. FUZZY MONOTONIC -NEAREST NEIGHBORS VS.
MONOTONIC FUZZY K-NEAREST NEIGHBORS

THEORETICALLY

Both MFKNN and FMKNN are proposed to improve the
robustness of MKNN without the need for data preprocessing,
and the best performances of the two algorithms are obtained
by finding a balance between the classification accuracy and
the maintenance degree of monotonicity. In this section, in or-
der to illustrate their respective characteristics, the differences
between the two algorithms are discussed from the following
aspects.

1) Types of addressed problems: MFKNN can only solve
classification problems with symbolic decision variables by
converting crisp class labels into the form of class member-
ships, without concerning regression problems with mono-
tonicity constraints.

However, FMKNN can deal with both classification and
regression problems with monotonicity constraints. When the
decision variable is symbolic, the prediction of the predicted
instance is obtained by using the majority voting strategy
which means that the most common class label of the K-
nearest neighbors is considered as the final result, and when
the decision variable is numeric, the average target decision
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value of the K-nearest neighbors is assigned to the predicted
instance.

2) Mechanisms for fuzzifying: In MFKNN, the fuzzifying
mechanism acts on converting crisp class labels into fuzzy
class membership vectors, which can decrease the impacts of
all the noise data whose class labels are wrongly changed.

In FMKNN, the fuzzifying mechanism aims to fuzzify
the dominance relations between two instances, especially
between incomparable instances, through which the noises that
determine the selection range of the K-nearest neighbors can
be ignored.

3) Strategy for extraction of the K-nearest neighbors: In
MFKNN, the K-nearest neighbors of a predicted instance are
selected from the training instances whose class labels are in
the interval [ymin, ymax] which is controlled by the instances
superior or inferior to the predicted instance absolutely. Be-
sides, both Step 1 and Step 2 of MFKNN involve the extraction
of K-nearest neighbors.

In FMKNN, the decision values of the K-nearest neighbors
are limited to the interval [yδ1min, y

δ2
max] which is determined by

the instances fuzzily dominating or dominated by the predicted
instance. Additionally, only Step 2 of FMKNN concerns the
extraction of K-nearest neighbors.

4) Mechanisms for resisting noises: In MFKNN, the im-
pacts of all the noise data are decomposed during the process
of converting crisp class labels into class membership vectors.
The reason is that for each instance, its class membership to
every category is computed based on the class distribution of
its multiple nearest neighbors as (6), therefore, even though
some neighbors are polluted, the calculation results of class
memberships can only be slightly affected.

In FMKNN, by fuzzifying the dominance relations between
instances, the decision value range of the K-nearest neighbors
to be selected can be slightly extended in different degrees.
Therefore, if the instances which determine the endpoints of
interval [ymin, ymax] are noises whose decision values are
wrongly changed, they can be replaced with their incompa-
rable instances whose decision values are the same with the
original decision values of the noise data before contaminated.

5) Strategy for maintaining the monotonicity of pre-
dictions: The strategy for maintaining the monotonicity of
MFKNN is the same with that of the original MKNN, which
is implemented by restricting the predicted class label to
an interval [ymin, ymax] determined by the training instances
which dominate or are dominated by the predicted instance
absolutely.

In FMKNN, the interval [yδ1min, y
δ2
max] where the predicted

decision values lie is determined by the training instances
which have fuzzified dominance relations with the predicted
instance. Through fuzzifying the dominance relations, the
noises that impact the interval [ymin, ymax] can be ignored,
so that the monotonicity of FMKNN can be maintained better
than that of MFKNN.

VI. EXPERIMENTAL FRAMEWORK

In order to highlight our motivation and contribution, we
compared FMKNN 1 with other well-known monotonic classi-

1http://github.com/Rose1987/FMKNN

fiers taken from the state-of-the-art, which include both KNN-
based and non-KNN-based classifiers. Most of the classifiers
have been adopted to do experimental comparisons with a
newly proposed algorithm for monotonic classification [10],
[12], [30], [32], [33], [35], [39], [42]. The two groups of
experiments were carried out independently on both artificial
and real-world monotonic classification tasks. The following
are the details of the experiments.

A. Involved Classifiers

1) KNN-based classifiers:
• Original K-Nearest Neighbour (KNN) [37]
• Fuzzy K-Nearest Neighbour (FKNN) [40]
• Monotonic K-Nearest Neighbour (MKNN) [36]
• Monotonic Fuzzy K-Nearest Neighbour (MFKNN) [39]
2) non-KNN-based classifiers:
• Ordinal Stochastic Dominance Learning (OSDL) [7]
• Ordinal Learning Module (OLM) [33]
• Monotonic Multi-Layer Perceptron network (MonMLP)

[24]
• C4.5 decision tree for Monotonic Induction (MID) [48]
• Rank Discrimination Measure Tree (RDMT) [15]
• Partially Monotonic Decision Tree (PMDT) [8]

B. Performance Metrics

An ideal monotonic classifier should keep a good balance
between the classification accuracy and the monotonicity de-
gree of predictions. In the experiments, we adopt the classifi-
cation accuracy (ACCU) [46], the mean absolute error (MAE)
[47] and the non-monotonicity index (NMI) [48] to evaluate
the performances of monotonic classifiers.

ACCU is the proportion of correctly classified testing in-
stances in all the testing instances, which is a commonly used
metric for measuring conventional classification problems.

ACCU =
TI

TI + FI
, (13)

where TI is the number of instances that are correctly
classified; FI is the number of instances that are incorrectly
classified.

Different from ACCU, MAE is more suitable for monotonic
classifications. It can reflect the order information of the
predictive results, which is the average absolute differences
between the predicted ranks and the target ones.

MAE =
1

M

M∑
i=1

|O(ŷi)−O(yi)|, (14)

where M is the number of instances to be predicted, yi is the
target decision value of the i-th instance, ŷi is the predicted
decision value of the i-th instance, O(yi) is the rank of yi in
the sequence of the decision values {l1, l2, · · · , lC} with order
l1 < l2 < · · · < lC , and similarly O(ŷi) is that of ŷi, that is
if yi = lα, then O(yi) = α, where α = 1, 2, · · · , C.

Although MAE can measure prediction results from the
perspective of order information, it does not consider the
monotonicity constraints. In order to present a comprehensive
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evaluation, we need another metric NMI to measure the
capability of the classifiers for maintaining monotonicity. NMI
was first provided by Ben-David [1], which is the ratio of
instance pairs that violate the monotonicity constraints.

NMI =
NMP

M2 −M
, (15)

where NMP is the number of monotonicity violation instance
pairs.

C. Datasets

In order to compare the performances of FMKNN and
MFKNN, we conduct experiments on 20 monotonic dataset-
s which are derived from UCI [50], KEEL [51] and the
homepage of WEKA (http://www.cs.waikato.ac.nz/ml/weka/).
All the datasets are widely used in the field of monoton-
ic classification [10], [12], [15], [17], [30]-[33], [35], [42],
[43]. The main characteristics of these datasets are listed in
Table I, where Ins., Al. and Cl. represents the number of
training instances, features and categories, respectively; I.P.
is the proportion of incomparable instance pairs in the total
instance pairs; N.P. denotes the percentage of the instance
pairs violating the monotonicity constraints in the comparable
instance pairs.

Actually, it is difficult to find a real large-scale dataset with
a big percentage of noises. In order to make the experimental
results more convincing, an artificial monotonic dataset named
Artiset is generated according to (16), where there are 20000
instances and N.P.=34.15%. The noises in Artiset are intro-
duced under the mechanism of uniform label noises which are
noisy completely at random (NCAR), by using the rand(u,v)
function in Matlab, which outputs a matrix with u rows and
v columns, whose elements are uniformly distributed random
numbers ranged in [0,1]. In addition, because if the noises
are also involved in the testing process, the testing accuracy
which measures the performance of a classifier will be affected
negatively, the noises in Artiset are introduced only in the
training partition.

g (x1, x2) = round
((

x1 +
x22 − x21

2

)
∗ Cl

)
, (16)

where round(·) is a function which rounds a real number to
an integer.

In the original datasets involved in the experiments, dif-
ferent features have different dimensions and magnitudes. If
the datasets are directly used in the KNN-based algorithms,
the feature with larger magnitude will play an exaggerated
role on the distance between instances. As a consequence,
the accuracy of the experimental results will be seriously
affected. Therefore, it is necessary to normalize the original
feature values before training. In this article, the Min-Max
normalization is adopted, of which the expression is

x′ =
x0 −min
max−min

, (17)

where x0 is the original value of an instance on a feature; min
is the minimum value of all the instances on this feature, while

TABLE I
DESCRIPTION OF THE 20 SELECTED DATASETS

Dataset Ins. Al. Cl. I.P. N.P. Source

Arcene 900 10000 2 97.98% 0.00% UCI
Boston Housing 506 13 4 85.15% 3.98% UCI
Breast Cancer 699 9 2 38.43% 3.93× 10−2% UCI
Car Evaluation 1728 6 4 85.64% 3.89× 10−2% UCI
Machine CPU 209 6 4 50.47% 0.00% UCI
Parkinson’s Disease 756 754 2 99.73% 0.00% UCI
Q Bankruptcy 250 6 2 56.23% 0.00% UCI
WDG40 5000 40 3 99.96% 0.00% UCI
Wine 178 13 3 96.31% 2.41% UCI
Australian 690 14 2 97.80% 1.53% KEEL
Pima 768 8 2 92.42% 2.16% KEEL
Vowel 990 14 11 98.77% 10.46% KEEL
Wine-red 1599 12 6 98.83% 3.09% KEEL
Wisconsin 683 9 2 41.96% 1.31× 10−2% KEEL
Balance 625 4 3 74.36% 31.01% WEKA
ERA 1000 4 9 83.23% 17.44% WEKA
ESL 488 4 9 29.35% 1.32% WEKA
LEV 1000 4 5 75.92% 5.23% WEKA
SWD 1000 10 4 87.38% 6.95% WEKA
Artiset 20000 2 5 50.28% 34.15% - -

max is on the contrary. After the Min-Max normalization, all
the original feature values fall into the range [0, 1].

VII. EXPERIMENTAL STUDIES

In the experiments, all the classifiers are separately im-
plemented by carrying out the 10-fold cross validation (10-
CV) scheme on each dataset. The parameters of algorithms
are firstly initialized and used for experiments, and then the
parameter with best performance is finally selected for each
algorithm and is listed in Table II. All the results are shown in
Tables III-VIII, and the best indicator value for each dataset
has been marked in bold.

TABLE II
PARAMETERS SET FOR THE ALGORITHMS COMPARED

Algorithm Parameters

KNN K=5, distance = euclidean, neighborsType = inRange
FKNN K = 9, k = 5, distance = euclidean
MKNN K = 5, distance = euclidean, neighborsType = inRange
MFKNN K = 9, k = 5, distance = euclidean
OSDL balanced = No, classificationType = median,

lowerBound = 0, upperBound = 1,
tuneInterpolationParameter = No, weighted = No, interpo-
lationStepSize = 10, interpolationParameter = 0.5

OLM modeResolution = conservative
modeClassification = conservative

MonMLP default parameters, hidden1 = 8
iter.max = 1000, monotonic = all att

MID R = 1, confidence = 0.25, items per leaf = 2
RDMT H = Pessimistic rank discrimination measure,

measureThreshold = 0, items per leaf = 2
PMDT threshold θ = 0, items per leaf = 2
FMKNN K=5, δ1 = 0.8080, δ2 = 0.8285

A. Experimental Results and Discussions on KNN-based Clas-
sifiers

Table III shows the prediction abilities of the five KNN-
based models. We can clearly see that the prediction accuracies
of the traditional KNN and FKNN are extremely poor in most
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TABLE III
COMPARISON RESULTS WITH KNN-BASED CLASSIFIERS IN ACCU

Dataset KNN FKNN MKNN MFKNN FMKNN

Arcene 0.4510 0.7321 0.6516 0.6347 0.8739
Boston Housing 0.0132 0.7174 0.6126 0.6561 0.9072
Breast Cancer 0.6128 0.8055 0.6391 0.5981 0.8929
Car Evaluation 0.9459 0.9311 0.9711 0.9740 0.9843
Machine CPU 0.1270 0.6699 0.6890 0.7033 0.8011
Parkinson’s Disease 0.4052 0.8631 0.5589 0.5161 0.9639
Q Bankruptcy 0.9867 0.9060 0.5128 0.9561 0.9960
WDG40 0.6981 0.8039 0.5991 0.6672 0.9192
Wine 0.7162 0.7930 0.7121 0.6493 0.8673
Australian 0.6682 0.8007 0.7659 0.7033 0.8892
Pima 0.5581 0.7996 0.7238 0.6900 0.8513
Vowel 0.6821 0.8601 0.8003 0.6338 0.9428
Wine-red 0.5162 0.7991 0.7290 0.5990 0.9001
Wisconsin 0.7653 0.9678 0.9649 0.9653 0.9707
Balance 0.1658 0.8896 0.8624 0.9307 0.9864
ERA 0.1933 0.1730 0.1990 0.2420 0.7351
ESL 0.6781 0.6783 0.6332 0.7036 0.8095
LEV 0.5287 0.6020 0.4630 0.6377 0.8693
SWD 0.5667 0.5350 0.5200 0.5807 0.7416
Artiset 0.8058 0.9339 0.9199 0.9653 0.9815

cases. The reason is that both of the two models don’t take
the monotonicity constraints into account. Besides, MKNN
doesn’t show any advantage on the prediction accuracy. M-
FKNN can provide satisfactory prediction accuracies on most
of the datasets, however, our proposed FMKNN achieves the
highest classification accuracy on almosgt all the datasets. The
advantage of FMKNN over MFKNN is significant, especially
on the datasets with high proportion of incomparable instance
pairs and noises, such as Arcene, Boston Housing, Parkinson’s
Disease, WDG40, Wine, Australian, Pima, Vowel, Wine-red,
ERA and SWD.

Tables IV and V comprehensively reflect the monotonicity
maintenance abilities of the five KNN-based models. Similar
to the results presented in Table III, the traditional KNN
and FKNN perform poorly on most of the datasets. MKNN
only shows its effectiveness on datasets which are purely
monotonic, such as Machine CPU, Q Bankruptcy and Artiset,
which confirms the strong sensitivity of MKNN to noise
data. In comparison with MFKNN, FMKNN shows obvious
advantage on maintaining the monotonicity of predictions,
especially on the datasets polluted badly by noises.

According to the results presented in Tables III-V, for
each metric, we calculate the average improvement degree of
FMKNN in terms of other KNN-based classifiers with the best
result on all the datasets, and discover that FMKNN improves
the ACCU, MAE and NMI by 28%, 4% and 29%, respectively.

Moreover, in order to test whether our proposed FMKNN
has significant advantage over the other four models sta-
tistically, the results are statistically analyzed by using the
Friedman test [52], [53] and its corresponding post-hoc test
(the Nemenyi test) [54], which can make statistical comparison
of multiple classifiers over numerous datasets. The comparison
results are presented in the form of Friedman test figure where
the less overlap the two algorithms have, the more significant
the difference is. The Friedman test figures of KNN-based
classifiers on ACCU, MAE and NMI are shown in Fig. 5 with
the confidence level α = 0.05. As shown in Fig. 5, in terms
of ACCU, FMKNN outperforms the other four algorithms
significantly, while MFKNN performs worse than FMKNN

TABLE IV
COMPARISON RESULTS WITH KNN-BASED CLASSIFIERS IN MAE

Dataset KNN FKNN MKNN MFKNN FMKNN

Arcene 6.3639 4.8929 0.8957 3.3062 0.1396
Boston Housing 2.7303 0.3241 0.4901 0.3972 0.1500
Breast Cancer 3.3852 2.6139 1.2531 2.0394 0.5627
Car Evaluation 0.0637 0.0793 0.0359 0.0295 0.0137
Machine CPU 3.7778 0.3589 0.3301 0.1667 0.1055
Parkinson’s Disease 9.1015 6.3120 0.9015 5.3007 0.6203
Q Bankruptcy 0.0133 0.5040 0.0040 0.0032 0.0029
WDG40 2.9591 3.2218 0.5261 1.9036 0.1938
Wine 6.5136 4.6813 1.9203 2.8125 0.0931
Australian 4.2316 5.0634 2.3901 4.0032 0.5163
Pima 3.6152 2.5178 1.5638 2.0614 0.9623
Vowel 5.9128 4.9003 1.0926 2.0821 0.3333
Wine-red 2.6901 2.0351 0.6203 1.8823 0.6037
Wisconsin 0.0311 0.0322 0.0337 0.0347 0.0293
Balance 1.3262 0.1424 0.1504 0.0853 0.0318
ERA 1.5033 1.6660 1.4270 1.2813 0.0862
ESL 0.3630 0.3484 0.3791 0.3149 0.2855
LEV 0.4333 0.4330 0.5740 0.3927 0.1672
SWD 0.4700 0.5180 0.4840 0.4370 0.2100
Artiset 0.1375 0.0661 0.0771 0.0691 0.0395

TABLE V
COMPARISON RESULTS WITH KNN-BASED CLASSIFIERS IN NMI

Dataset KNN FKNN MKNN MFKNN FMKNN

Arcene 0.2063 0.1900 0.2104 0.1064 0.0573
Boston Housing 0.3003 0.0004 0.0000 0.0001 0.0000
Breast Cancer 0.0951 0.0630 0.1066 0.0088 0.0032
Car Evaluation 0.2021 0.0002 0.0000 0.0000 0.0000
Machine CPU 0.0825 0.0058 0.0000 0.0017 0.0000
Parkinson’s Disease 0.1938 0.0851 0.0659 0.0091 0.0051
Q Bankruptcy 0.1350 0.3000 0.1089 0.0600 0.0330
WDG40 0.2008 0.1654 0.1132 0.0805 0.0634
Wine 0.1229 0.0960 0.0815 0.0837 0.0209
Australian 0.1006 0.0991 0.0617 0.0723 0.0097
Pima 0.3004 0.2098 0.2007 0.1615 0.0859
Vowel 0.2934 0.3000 0.2187 0.1520 0.0674
Wine-red 0.1867 0.1532 0.1020 0.0806 0.0032
Wisconsin 0.3033 0.0000 0.0000 0.0000 0.0000
Balance 0.0868 0.0000 0.0001 0.0001 0.0000
ERA 0.0069 0.0141 0.0056 0.0052 0.0007
ESL 0.0310 0.0014 0.0012 0.0004 0.0002
LEV 0.0123 0.0010 0.0036 0.0009 0.0005
SWD 0.2004 0.0027 0.0005 0.0007 0.0002
Artiset 0.1431 0.0000 0.0000 0.0000 0.0000

and FKNN, and there is no significant differences among
MFKNN, MKNN and KNN; in terms of MAE, FMKNN has
obvious advantage over MFKNN, FKNN and KNN and slight
advantage over MKNN, while MFKNN performs worse than
FMKNN and MKNN, and doesn’t show prominent advantage
over FKNN and KNN; in terms of NMI, FMKNN outperforms
all the other algorithms significantly, while MFKNN performs
worse than FMKNN and doesn’t have obvious advantage over
MKNN, FKNN and KNN.

Additionally, in order to compare MFKNN and FMKNN
in improving the anti-noise performance of MKNN, we im-
plemented the three models on five datasets which include
Arcene, Machine CPU, Parkinson’s Disease, WDG40 and
Artiset, by gradually increasing the ratio of noises artificially.
Figs. 6-8 show the average impact of noise ratio on ACCU,
MAE and NMI, respectively.

From Figs. 6-8 we can see that, as the ratio of noise data
increases, the performances of all three models decreases. The
downturns of the ACCU polylines are obvious, besides the
MAE and NMI polylines show upward trends. The difference
among the three models in the results is that the rise or fall
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Fig. 5. Friedman test figure of KNN-based classifiers.

Fig. 6. Impact of noise ratio on ACCU.

Fig. 7. Impact of noise ratio on MAE.

amplitude of the polylines in terms of ACCU, MAE and NMI
of MKNN is larger than those of MFKNN and FMKNN,
especially when the proportion becomes bigger. The larger

Fig. 8. Impact of noise ratio on NMI.

TABLE VI
COMPARISON RESULTS WITH NON-KNN-BASED CLASSIFIERS IN ACCU

Dataset OSDL OLM MonMLP MID RDMT PMDT MFKNN FMKNN

Arcene 0.6729 0.7068 0.8120 0.5563 0.8412 0.7982 0.8331 0.9320
Boston Housing 0.2787 0.5277 0.3979 0.6739 0.6304 0.6739 0.6561 0.9072
Breast Cancer 0.0720 0.6984 0.8001 0.8201 0.6937 0.7925 0.8066 0.8924
Car Evaluation 0.9549 0.9543 0.8474 0.8027 0.7297 0.9682 0.9740 0.9881
Machine CPU 0.3146 0.7003 0.6973 0.7033 0.6670 0.6923 0.6628 0.8372
Parkinson’s Disease 0.7714 0.7268 0.6258 0.5986 0.6649 0.7259 0.7992 0.8561
Q Bankruptcy 0.8957 0.9758 0.5944 0.9118 0.9192 0.9549 0.9960 0.9978
WDG40 0.7001 0.6301 0.7256 0.8045 0.8842 0.9002 0.8264 0.9153
Wine 0.8056 0.8416 0.5979 0.5694 0.8468 0.5976 0.8009 0.9156
Australian 0.6816 0.8130 0.6941 0.5684 0.6568 0.7618 0.8894 0.9513
Pima 0.5618 0.6545 0.6894 0.7564 0.5949 0.8492 0.7165 0.8956
Vowel 0.6498 0.5768 0.8741 0.5448 0.6746 0.8746 0.7741 0.9041
Wine-red 0.5741 0.6549 0.5498 0.7225 0.8613 0.8564 0.8741 0.9421
Wisconsin 0.9311 0.8679 0.8900 0.9001 0.9087 0.9653 0.9130 0.9708
Balance 0.6352 0.8320 0.9131 0.7808 0.7216 0.7792 0.9307 0.9864
ERA 0.2320 0.1690 0.2380 0.2760 0.2390 0.2430 0.2420 0.7351
ESL 0.6721 0.5738 0.7234 0.6414 0.5635 0.6598 0.7036 0.8995
LEV 0.6400 0.4250 0.6167 0.6070 0.5210 0.6370 0.6377 0.8693
SWD 0.5840 0.4160 0.5063 0.5540 0.5180 0.5830 0.5807 0.8416
Artiset 0.1952 0.7948 0.9463 0.7237 0.8749 0.8539 0.9309 0.9767

changing amplitude of MKNN illustrates that it is more sensi-
tive to noises compared with MFKNN and FMKNN. From the
figures, we can also notice that MFKNN and FMKNN perform
basically the same when the proportion of noises increases.

The results presented in Figs. 6-8 confirm that when dealing
with monotonic classification problems, MKNN is quite sen-
sitive to noises that violate monotonicity constraints, because
its performances on prediction accuracy, MAE and NMI
deteriorate significantly with the increasing of the proportion
of noises. On the contrary, both MFKNN and FMKNN are
affected by noises gently, which illustrates that MFKNN and
FMKNN have much stronger robustness than the original
MKNN.

B. Experimental Results and Discussions on non-KNN-based
Classifiers

Table VI shows the prediction accuracies of six non-
KNN-based monotonic classifiers and those of MFKNN and
FMKNN. We can clearly see that FMKNN and MFKNN
can provide much higher prediction accuracy than the other
six classifiers in most cases. Moreover, we can also see that
FMKNN outperforms MFKNN on most of the datasets.

Table VII shows the mean absolute error between the out-
puts of the eight classifiers and the real class levels of samples
on each dataset. According to the principle that the smaller the
error, the stronger the approximation ability of a classifier, we
can see that FMKNN shows stronger approximation ability
than the other classifiers including MFKNN.

Table VIII shows the NMI values of the eight classifiers. We
can see that FMKNN outperforms the other seven classifiers
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TABLE VII
COMPARISON RESULTS WITH NON-KNN-BASED CLASSIFIERS IN MAE

Dataset OSDL OLM MonMLP MID RDMT PMDT MFKNN FMKNN

Arcene 2.0135 1.8923 2.0643 3.0445 0.9231 0.8167 0.7124 0.1235
Boston Housing 0.9368 0.5988 0.7655 0.3893 0.4249 0.3676 0.3972 0.3005
Breast Cancer 1.5912 2.0451 1.5331 1.6710 2.0541 2.4681 1.2611 1.2098
Car Evaluation 0.0475 0.0538 0.1599 0.2506 0.3079 0.0365 0.0295 0.0019
Machine CPU 0.8980 0.3622 0.3603 0.4109 0.3600 0.3533 0.3158 0.1055
Parkinson’s Disease 3.0156 3.8213 4.2613 2.1968 3.2364 1.3513 2.6568 0.7156
Q Bankruptcy 0.0905 0.0194 0.3682 0.0155 0.0157 0.0078 0.0040 0.0029
WDG40 5.2684 5.6231 4.5816 5.0279 3.6484 4.0561 3.2340 2.0010
Wine 0.9264 1.0256 1.3618 2.0125 0.8264 1.0546 0.8843 0.3158
Australian 6.2315 4.2658 5.2687 5.2698 3.2985 2.0645 4.2982 1.0234
Pima 2.2131 2.5469 2.9751 3.1246 2.1664 1.0524 3.1657 0.4599
Vowel 2.4568 3.5084 2.4575 3.0645 1.9546 2.0004 1.6549 0.8814
Wine-red 8.4316 8.1034 9.0213 7.1546 6.1349 4.1245 7.4618 1.4565
Wisconsin 0.0410 0.1127 0.1396 0.0483 0.0498 0.0439 0.0347 0.0211
Balance 0.4912 0.1920 0.0992 0.3360 0.3840 0.2560 0.0853 0.0318
ERA 1.2850 2.1500 1.2317 1.2970 1.30660 1.2870 1.2813 0.0862
ESL 0.3607 0.4734 0.2910 0.3934 0.4918 0.3750 0.3149 0.3855
LEV 0.3920 0.6680 0.4170 0.4290 0.5430 0.3940 0.3927 0.1672
SWD 0.4000 0.7630 0.5167 0.4750 0.4990 0.4340 0.4370 0.2100
Artiset 1.6897 0.2082 0.0638 0.3123 0.1251 0.1471 0.0691 0.0537

TABLE VIII
COMPARISON RESULTS WITH NON-KNN-BASED CLASSIFIERS IN NMI

Dataset OSDL OLM MonMLP MID RDMT PMDT MFKNN FMKNN

Arcene 0.3201 0.2659 0.2579 0.3065 0.0935 0.2216 0.1026 0.0529
Boston Housing 0.0000 0.0003 0.0007 0.0022 0.0010 0.0010 0.0000 0.0000
Breast Cancer 0.4282 0.4002 0.3551 0.2586 0.1026 0.3599 0.1546 0.0249
Car Evaluation 0.0000 0.0000 0.0001 0.0046 0.0002 0.0000 0.0000 0.0000
Machine CPU 0.0000 0.0014 0.0001 0.0037 0.0047 0.0028 0.0002 0.0000
Parkinson’s Disease 0.2151 0.3265 0.1057 0.1546 0.3021 0.0541 0.1235 0.0301
Q Bankruptcy 0.1265 0.4871 0.2351 0.1055 0.0656 0.2416 0.0216 0.0054
WDG40 0.4657 0.0513 0.2154 0.3468 0.4531 0.3508 0.2549 0.0023
Wine 0.2653 0.3216 0.0847 0.3152 0.2156 0.1245 0.1569 0.0315
Australian 0.3165 0.2549 0.5976 0.3591 0.0426 0.3254 0.2167 0.0254
Pima 0.1544 0.1024 0.2005 0.2533 0.2548 0.0961 0.1354 0.0364
Vowel 0.2259 0.2589 0.2359 0.1369 0.2005 0.1950 0.0715 0.1058
Wine-red 0.2358 0.0345 0.2154 0.1698 0.2354 0.1852 0.1548 0.0026
Wisconsin 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
Balance 0.0006 0.0000 0.0000 0.0017 0.0029 0.0010 0.0000 0.0000
ERA 0.0049 0.0063 0.0026 0.0082 0.0085 0.0058 0.0052 0.0007
ESL 0.0006 0.0025 0.0003 0.0021 0.0066 0.0032 0.0004 0.0002
LEV 0.0004 0.0043 0.0008 0.0018 0.0086 0.0006 0.0004 0.0001
SWD 0.0009 0.0015 0.0004 0.0020 0.0000 0.0010 0.0007 0.0001
Artiset 0.0000 0.0000 0.0000 0.0039 0.0000 0.0001 0.0000 0.0000

obviously, especially on the datases with more incomparable
instance pairs and noises, such as Boston Housing, ERA, LEV,
SWD and Balance.

According to the results presented in Tables VI-VIII, for
each metric, we calculate the average improvement degree of
FMKNN in terms of other non-KNN-based classifiers with
the best result on all the datasets, and discover that FMKNN
improves the ACCU, MAE and NMI by 24%, 11% and 20%,
respectively.

Additionally, the Friedman statistical test and the Nemenyi
post-hoc test are adopted again to analyze the results from
Tables VI-VIII, and the comparison results are shown in Fig.
9. We can see that FMKNN presents significant advantage
over all the other six non-KNN based classifiers in terms of
ACCU, MAE and NMI, while MFKNN performs worse than
FMKNN in terms of all the metrics and nearly doesn’t show
obvious advantage over all the other algorithms.

Based on the experimental results shown in Fig. 5 and Fig.
9, a conclusion can be drawn that FMKNN has significant
advantage over MFKNN on all the involved datasets.

VIII. CONCLUSION

In this paper, to enhance the robustness of MKNN for
managing monotonic classification problems, we proposed a
new modification model named FMKNN, which makes a first
attempt to construct monotonic classifiers by making use of
the fuzzy dominance relations between instances, especially
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Fig. 9. Friedman test figure of non-KNN-based classifiers.
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Fig. 10. The relations diagram of the five discussed models.

between incomparable instances. Besides, we conducted com-
parative experiments on FMKNN and other models including
KNN-based and non-KNN-based classifiers. In particular, we
made a comprehensive comparison between FMKNN and M-
FKNN theoretically and experimentally. The relations among
KNN, FKNN, MKNN, MFKNN and FMKNN are shown in
Fig. 10 where the work proposed in this paper is marked with
a black box.

Theoretically, the goals and the guiding ideas of MFKNN
and FMKNN are basically the same. Both of them aim to
enhance the resistance capability of MKNN to noises by
making a trade-off between accuracy and the monotonicity
maintanence degree of the predictions. The differences be-
tween the two models are the types of the problems to be
addressed, mechanisms for fuzzifying, methods of resisting
noises, strategies for extraction of the K-nearest neighbors,
and ways to maintain the monotonicity of predictions.

Experimentally, by observing the experimental results on
both KNN-based and non-KNN-based classifiers comprehen-
sively, we can know that the best average improvement degrees
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of FMKNN in terms of the KNN-based and non-KNN-based
classifiers on all the involved datasets arrive at 28%, 11% and
29% with respect to ACCU, MAE and NMI, respectively.
Besides, we can confirm that both FMKNN and MFKNN
have much stronger robustness than the original KNN, FKNN,
and MKNN and the other six non-KNN-based monotonic
classifiers when dealing with monotonic classifications. How-
ever, we found that FMKNN has significant advantage over
MFKNN from the view of Friedman statistical test and the
Nemenyi post-hoc test, particularly on the datasets with much
more noises and incomparable instance pairs.
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