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To adapt to the reality of limited computing resources of various terminal devices in industrial ap-
plications, a randomized neural network called stochastic configuration network (SCN), which can
conduct effective training without GPU, was proposed. SCN uses a supervisory random mechanism
to assign its input weights and hidden biases, which makes it more stable than other randomized algo-
rithms but also leads to time-consuming model training. To alleviate this problem, we propose a novel
bidirectional SCN algorithm (BSCN) in this paper, which divides the way of adding hidden nodes into

two modes: forward learning and backward learning. In the forward learning mode, BSCN still uses
the supervisory mechanism to configure the parameters of the newly added nodes, which is the same
as SCN. In the backward learning mode, BSCN calculates the parameters at one time based on the
residual error feedback of the current model. The two learning modes are performed iteratively until
the prediction error of the model reaches an acceptable level or the number of hidden nodes reaches its
maximum value. This semi-random learning mechanism greatly speeds up the training efficiency of
the BSCN model and significantly improves the quality of the hidden nodes. Extensive experiments
on ten benchmark regression problems, two real-life air pollution prediction problems, and a classical
image processing problem show that BSCN can achieve faster training speed, higher stability, and
better generalization ability than SCN.

1. Introduction

Randomized neural networks are a special type of feed-
forward neural networks and its representative algorithms in-
clude the random vector functional link network (RVFL) [17],
the neural network with random weights (NNRW) [22], etc.
The most notable feature of this type of neural networks is
that their input weights (i.e., the weights between the input
layer and the hidden layer) and hidden biases (i.e., the thresh-
olds of hidden nodes) are assigned randomly according to
certain rules and remain unchanged throughout the training
process of the model, while the output weights are obtained
analytically. This non-iterative training mechanism enables
them to train faster than traditional neural networks such as
the back-propagation algorithm (BP) [21] and work better on
many platforms with limited hardware resources (e.g., vari-
ous IoT terminals [31]), so it has been widely concerned and
applied in many scenarios in recent years [32].

However, most of the existing randomized neural net-
works suffer from two notorious weaknesses, that is, (a) the
quality of the random parameters (i.e., the input weights and
hidden biases) is hard to be guaranteed and (b) the number
of hidden nodes is difficult to be determined before model-
ing. For the former problem, several empirical guidelines
are given in [10], but they can only work in some specific
scenarios. There are also some existing solutions targeting
at the latter problem, which can be divided into two cate-
gories: constructive strategy and pruning strategy. The basic
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idea of the constructive strategy is to start the model with a
simple network structure and then gradually increase the hid-
den nodes until the performance of the model reaches the
preset conditions. Incremental RVFL (I-RVFL) is one of
the representative algorithms using this strategy [10]. The
pruning strategy starts the model with a very large network
structure and then deletes the unimportant hidden nodes ac-
cording to certain criteria. For example, in [5], the author
sorted the importance of hidden nodes according to the out-
put weights and the coefficient of variation of the hidden
matrix, and then removed the relatively unimportant nodes.
These two strategies have effectively reduced the labor of
parameter tuning, but rarely consider the quality of the input
parameters, which cannot guarantee the generalization abil-
ity of the corresponding models. Therefore, the above two
problems still hinder the extensive application of random-
ized models in practice.

To alleviate the above problems, Wang DH et al. [26]
proposed a constructive randomized algorithm called stochas-
tic configuration network (SCN) in 2017. Compared with
other randomized neural networks, SCN uses a supervisory
random mechanism to assign the input weights and hidden
biases of hidden nodes, which enables it to have better stabil-
ity and generalization ability. Moreover, SCN can automat-
ically search for the number of hidden nodes that can make
the model achieve an expected accuracy, which greatly re-
duces the workload of parameter tuning. These advantages
have made SCN quickly attracted extensive attention, and
various variants have been proposed. Some notable work
based on SCN include: In [26], Wang DH et al. theoretically
proved that the method of generating random parameters us-
ing the supervisory mechanism can guarantee the universal
approximation ability of the randomized algorithms, which
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lays a theoretical foundation for SCN. Later, they proposed
a hybrid method by combing SCN with kernel density es-
timation (KDE) [28] and applied it to solve the uncertain
data modeling problems. Moreover, they proposed an en-
semble learning algorithm based on SCN from the perspec-
tive of heterogeneous features fusion, and adopted the nega-
tive correlation learning strategy (NCL) to evaluate its out-
put weights [25]. The new algorithm effectively improves
the robustness of the model. To further improve the mod-
eling performance of SCN, Wang DH et al. [27] proposed
a deep SCN with a multi-hidden layer network structure.
Some interesting properties and improved modeling perfor-
mance can be observed from Deep SCN. Li M et al. [11] ex-
tended the original SCN framework with two dimensional
inputs for image data informatics, showing good potential
for fast image processing. In [18], the authors improved the
original SCN to make it have the ability to deal with data
stream learning problems. On this basis, they used the stack-
ing strategy to expand it to a deep architecture to handle com-
plex and non-stationary data stream scenarios. In [8], Huang
CQ et al. designed an adaptive power storage replica man-
agement system based on SCN to evaluate and analyze the
traffic state of power data networks. In addition, SCN is ap-
plied to the data modeling in process industries [4], workload
forecasting in geo-distributed cloud data centers [2], carbon
residual prediction of crude oil [13], prediction of key vari-
ables in industrial process [14], component concentrations
forecasting in sodium aluminate liquor [29], and the interval
prediction in the industrial process [15].

Although SCN and its variants have played significant
roles in many applications, they still suffer from a common
weakness, that is, they spend too much time searching for
candidate input parameters during the model training pro-
cess. Specifically, when adding a new hidden node, they
need to prepare multiple candidates that meet the preset con-
ditions through the above-mentioned supervisory mechanism,
and then select the one that can reduce the current residual
error greatest as the new node. This training mechanism en-
sures that the error of the model is monotonically decreasing,
but causes the training process to be very time-consuming,
especially when the number of candidates is large or the
residual error becomes small. Note that if the number of
candidates were set too small, the quality of some hidden
nodes may be poor, which would reduce the convergence rate
of the model and could not get a compact architecture with
good generalization ability.

To solve the above problem, we have optimized the pro-
cess of adding hidden nodes in SCN and proposed a novel

lates its input parameters at one time according to the current
residual error feedback (called backward learning). During
training, these two learning modes proceed in turn. The for-
ward learning naturally inherits the advantages of the orig-
inal SCN, that is, the supervisory method can improve the
quality of hidden nodes to a certain extent and guarantee the
universal approximation ability of the model [26]; and the
backward learning can avoid the problem of excessive time
consumption caused by finding a large number of candidates,
and the hidden nodes obtained in each step can minimize
the residual error at that time. Therefore, this bidirectional
learning mechanism enables BSCN to have the following ad-
vantages:

(1) Naturally inherits the universal approximation ability
possessed by the SCN model;

(2) Greatly accelerates the training efficiency of the model;

(3) The quality of hidden nodes is effectively improved,
which in turn makes the trained model better in gener-
alization ability and more compact in network struc-
ture.

We verified the effectiveness of BSCN on ten bench-
mark regression problems, two real-life air pollution pre-
diction problems, and a classical problem of age estimation
from a single face image. Experimental results show that,
compared with SCN, BSCN has not only much faster train-
ing speed but also better generalization ability and stability.
Moreover, compared with other typical constructive neural
networks such as I-RVFL and constructive BP (C-BP), the
experimental results show that the generalization ability and
stability of the BSCN model are significantly better than them.

The remainder of this paper is organized as follows. In
Sec. 2, we briefly review the training mechanism of SCN,
[-RVFL, and C-BP. The details of our proposed BSCN al-
gorithm and its pseudocode are given in Sec. 3. In Sec. 4,
we introduce the experimental data, parameter settings, and
experimental results. In Sec. 5, we conclude this paper.

2. Preliminaries

In this section, we briefly review the training mechanism
of SCN. SCN is a constructive feed-forward neural network
with a single hidden layer. Take the SCN model for regres-
sion problems as an example, whose network structure is
shown in Fig. 1, where w refers to the input weights between
the input layer and the hidden layer, b refers to the thresholds
of hidden nodes (a.k.a., hidden biases), f refers to the out-
put weights between the hidden layer and the output layer,

semi-random constructive algorithm called bidirectional stochas-4 is the dimension of the input data, L,,,, is the maximum

tic configuration network (BSCN), which includes two learn-
ing modes: forward learning for the odd nodes and backward
learning for the even nodes. Specifically, when a new hid-
den node is ready to be added, if its order is odd (e.g., the
first node), BSCN uses a supervisory mechanism to find ap-
propriate input parameters for it (called forward learning),
which is exactly the same as SCN; otherwise (i.e., the or-
der is even, such as the second hidden node), BSCN calcu-

number of hidden nodes.

Given a training data set { X, Y} € RUT™XN where d is
the dimension of the input data, N is the number of samples,
and m is the class number for classification problems and
the constant one for regression problems. The SCN model
with L hidden nodes and an activation function g(-) can be
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Input layer Output layer

Hidden layer

Figure 1: The network structure of the SCN model.

represented as

L
L0 =) Bglw, - X +b) (1)

i=1

where w; = [w;, Wy, =+, Wyl and f; = [B;1, Bins ++ » Bim]-
Suppose that the target function is f : R? — R™, the
current residual error can be represented as

ep =f—fr=ler.err - .epul @3

If the residual error has not reached to an acceptable
level, then add a new hidden node, and the current SCN
model is

fraX)=fr+Prpgwpyy - X +bryy) 3)

where w1, by .| and B, . are the input weights, the hid-
den bias, and the output weights of the newly added node,
respectively.

For SCN, the values of w; , and b; ,, are randomly as-
signed but required to meet the following criteria (i.e., the
so-called supervisory random mechanism)

m

2
> (erjgrn)’ 2 llgrall* @)
j=1

where

811 =8Wpyy - X +bpyy),

opp=U—-r—pupy) ”eL“2’

and py . = i;+r1’0< r<l.

The output weights of the newly added node are calcu-
lated by using the following equation:

<3Lj7gL+1> .
Brony =~~~ =12 .m 5)
gzl
Then update the current residual error: e; | = e; —

Pri18(wypy - X +byp ). Repeat (2)-(5) until the prediction
error of the model reaches the threshold or the number of
hidden nodes reaches the maximum L,,,,.

Strictly speaking, the above training process belongs to
the SC-I algorithm in the SCN family, which is character-
ized by only solving the output weights of the newly added

node each time and the output weights of the existing nodes
remain unchanged. To further improve the convergence rate
of the SC-I, Wang DH et al. proposed the SC-II and SC-
III algorithms [26]. The difference between them lies in
the way of solving the output weights of the newly added
node. Specifically, SC-II updates the output weights of the
latest hidden nodes within a given time window each time;
while SC-III updates the output weights of all existing hid-
den nodes each time. The universal approximation property
of the SC-1, SC-II, and SC-III models has been theoretically
proved in [26]. Generally, the convergence rate of the SC-III
is faster than that of the SC-II and SC-I, and the generaliza-
tion ability and stability of the SC-III model are also better
than the other two algorithms. The BSCN algorithm pro-
posed in this paper is designed based on the SC-III. For sim-
plicity and without loss of generality, the SCN mentioned
below refers to SC-III.

I-RVFL [10] is also a constructive randomized neural
network. Unlike SCN, I-RVFL uses a completely random
way to assign the input parameters for the hidden nodes.
Specifically, the input weights and hidden bias of the newly
added node in I-RVFL are randomly generated from [-1, 1]
according to a uniform distribution, while the corresponding
output weights are obtained analytically like SCN. C-BP [9]
is a traditional constructive neural network, which uses the
gradient descent-based method to calculate the parameters
of the model iteratively. The termination conditions of the
model training are the same as those of SCN and I-RVFL.

3. Bidirectional stochastic configuration
network (BSCN)

In this section, we introduce the details of the proposed
BSCN algorithm and present its pseudo-code.

3.1. Algorithm description

Similar to SCN, BSCN employs a constructive random-
ized neural network, that is, the number of hidden nodes
gradually increases until that the model accuracy reaches the
expected threshold. To alleviate the low training efficiency
of SCN that is mentioned in Section 1, BSCN divides the
process of adding hidden nodes into two categories: forward
learning and backward learning, depending on the orders
of the hidden nodes to be added. Let L represent the cur-
rent number of hidden nodes, that is to say, the newly added
node is the L-th one. Specifically, considering a newly added
node, if its order is odd, thatis, L € {2n+ 1,n € Z} , then
its input parameters are generated by the same supervisory
mechanism as SCN (referred to as forward learning); other-
wise (i.e., L € {2n,n € Z}), its input parameters are calcu-
lated according to the residual error feedback of the current
model (referred to as backward learning).

Given a training data set {X,Y}e RU+MWXN the ex-
pected model error €, the maximum number of hidden nodes
L. - the maximum times of random configurations 7,,,,,,
and a BSCN model with L — 1 hidden nodes(L—-1 < L,,,,)
and the activation function g(-). The current residual error
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is represented as

e 1(X)=lep_11(X), ep_12(X), -+ ep (X)) € RNXm
and suppose it does not satisfy |le; _;(X)|| < &. So in this
situation, we need to add the L-th hidden node.

If L € {2n+ 1,n € Z}, we perform forward learn-
ing on the newly added node. In detail, we randomly gener-
ate T,,,, pairs of input weights and hidden bias (w;, b;),i =
1,2,-,T,,, from a symmetric interval [—4, A], 4 > O ac-
cording to the inequality (4) and calculate the corresponding
output weights based on (5). Then, we pick out the pair that
can reduce the current residual error greatest as the input pa-
rameters of the newly added node. After that, we will update
the current residual error: e; (X) = ey _((X)—frg(wy - X+
by). If ||ley(x)|| < €or L > L,,,, we complete the model
training; otherwise, we continue to add new hidden nodes.

Otherwise (i.e., L € {2n,n € Z}), we perform back-
ward learning instead. Specifically, we first calculate the in-
put weights and hidden bias of the newly added node accord-
ing to the following equations:

H{=ep i (B! (6)
wp =g wH)) - X! )
by = \/mse(g~ W(H)) = wy, - X1) (8)

where Hj is the current error feedback function sequence,
g7'e) represents the reverse function of the activation func-
tion, and u(+) is a normalized function u : R — (0, 1].

Next, we compute the output weights of the new node
using the following equations:

Hp =u'(gwy - X +bp)) 9)
— '9H
L’j=<eL"—/2L> i=1,2, 10 (10)
[HL

where u~!1(-) is the reverse function of u(-).

Finally, the same as forward learning, we update the resid-

ual error and determine the termination of model training.
The above learning process is shown in Fig. 2.
Theorem 1. Given a constructive randomized neural

network with a single hidden layer, and a bounded non-constant

piecewise continuous function as its activation function. If
the input parameters (w, b) of the odd hidden nodes (i.e., L €
{2n+1,n € Z) are assigned according to (4) and their output
weights f are calculated by (5); while the input parameters
(w, b) of the even hidden nodes (i.e., L € {2n,n € Z}) are
calculated by (6)-(8) and their output weights f are calcu-
lated by (9)-(10); then for any continuous target function f,
we have

limn—>+oo ”f - (f2n—l + H2n : ﬁZn + H2n+l : ﬂ2n+l)” =0,

Initialization: Given a training data set {X, ¥} € R“*")
expected learning error €, the maximum number of hidden
nodes Lmgayx, the maximum times of random configurations
Timax» set the initial number of hidden modes to L=0.

L=L+1 [-

v
] Le{2n+lneZ} | |
Forwardllearning

3
Le2nneZ} ‘
Backwardllcarning

Randomly configure Tonqx pairs
(,b)and require their values to
satisfy (4), and then pick out
(@',b") that can reduce the
residual error the most. L
} |
Calculate the output weights Calculate the output weights of
of new node according to (5). new node according to (9)-(10).

Calculate (»,,b,) according
10 (6)=(8).

‘ Calculate the current residual error e

N - el o 1o

Figure 2: The learning pipeline of BSCN.

where H,, and H,, , are the outputs of the (2n)-th and the
(2n + 1)-th hidden nodes, respectively.
Proof: Since €1 = €y — H2n+] . ﬂ2n+1, let A =

Hez,,”2 — |lezns1 ||2 then we have

A= ||‘32n||2 = |lean = Hopi1 * Ponsi ||2
= 2ﬂ2n+l <e2n’ H2n+l> - ||H2n+l ”2 : ﬁ§n+|

— ||H2n+1 ||2 (2ﬁ2n+1<€2”, FI;H+1>
| Hope |

= || Hans1 |” @Banss « Bonir = By

= ”I{2n+ll|2 ’ ﬂ22n+l 20

~ B (D

Thus, we have ||e32,,||2 > |legnt1 ||2 According to Theo-
rem 6 in [26], Wang DH et al. have proved that

leanll” = ¢+ p2) leanes||* < 0 (12)

where 0 <r < 1land y,, <1-r.

From (12), we can get ||e2,,||2 < ||e2,,_1||2 . Thus, we
have ||e,, ||2 < ||e2,,||2 < |lean-1 ||2 So far we have proved
that as the number of hidden nodes increases, the residual
error of the model will decrease monotonically.

Wang DH et al. [26] have proved that as long as the input
parameters (w, b) of hidden nodes are assigned according to
(4) and their output weights g are calculated by (5), then
lim; ||/ — fc|]| = 0. In BSCN, the input parameters
and output weights of hidden nodes in the forward learn-
ing mode are assigned in this way, and the above proof also
shows that the residual error of the model is decreasing mono-
tonically, therefore, it is easy to verify thatlim; . ||e. || =
gandlimn—>+oo If = (et + Hop * Bon + Hopgy - Prns )| =

W.P. Cao et al.: Preprint submitted to Elsevier

Page 4 of 12



Bidirectional Stochastic Configuration Network for Regression Problems

Algorithm 1 BSCN algorithm

Input: Given a training data set {X,Y} € RE+mMXN the
expected learning error ¢, the maximum number of hidden
nodes L,,,., the maximum times of random configurations
T,,ax- the number of hidden modes L, the activation function
g(+), and the residual error e.
Output: The

ters.

1: Initialization: Set L =0ande =Y.

2: While |le|| >e& L< L,,, do

3: Increase the number of hidden nodes: L = L + 1.

4: If Le{2n+1,n€ Z} then

5 Under the premise of satisfying (4), randomly
generate T, pairs (w;, b;),i = 1,2,---,T,,,. as candi-
date input weights and hidden biases for the new hidden
node;

6: Select the pair (w*, b*) that can reduce the current
residual error the most from the above candidates as the
(wp, by ) of the new hidden node;

model parame-

7: Calculate the output weights of the new node ac-

cording to (5).
end if

8: If L € {2n,n € Z} then

9: Calculate the (wy, by ) of the new node according
to (6)-(8);

10: Calculate the output weights of the new node ac-
cording to (9)-(10);

11: end if

12: Update the current residual error:
e=e—frglwy - X +bp).

13: end while

Return the parameters of the model, including the in-
put weights and hidden biases of hidden nodes, and the
corresponding output weights.

3.2. Pseudo-code for BSCN
The pseudo-code for BSCN is given in algorithm 1.

4. Experimental setting and results

In this section, we evaluate the performance of the pro-
posed BSCN on ten benchmark regression problems from
the UCI machine learning repository !, two real-world air
pollution prediction problems, and a classical problem of age
estimation from a single face image. We also compare the
performance of BSCN with SCN [26], [-RVFL [10], and C-
BP [9] on these problems.

4.1. The details of experimental setting and
benchmarks
The details of the ten regression data sets and the division
of the training set and testing set are shown in Table 1. Note
that we used ten-fold cross validation scheme to select the
optimal model for each algorithm.

'UCI Repository: http://archive.ics.uci.edu/ml/index.php

Table 1
Details of regression data sets
Data-set No. of No. of No. of at-
training testing tributes
samples samples
GT _turbine 6000 5934 16
Airfoil Self-noise | 750 753 5
GT_compressor | 6000 5934 16
Housing 250 256 13
parkinsons__motor 3000 2875 16
Concrete 500 530 8
compressive
strength
Yacht 150 158 6
White wine | 2000 2898 11
quality
Solar_C 700 689 10
Red wine quality | 800 799 11

In our experiments, we chose the most commonly used
root mean square error (RMSE), testing standard deviation
(SD), and training time in regression problems as indicators
to evaluate the performance of different algorithms. Among
them, RMSE and SD can be calculated as follows:

RMSE = (13)

/ S (o _73)2
SD = Z:j=;(ez+ez)’ (14)

where

t; is the prediction value of the i-th instance,

y; 1s the real value of the i-th instance,

N is the number of samples,

S is the number of independent experiments for each
case,

e; is the prediction error of the model in the j-th experi-
ment,

and e is the average prediction error of .S experiments.

Note that RMSE can effectively reflect the prediction
ability of the model, the smaller the value, the better the pre-
diction ability of the model; SD can reflect the stability of
the model, the smaller the value, the better the stability of
the model.

For SCN, I-RVFL, and BSCN, the initial number and the
maximum number of hidden nodes (i.e., L and L,,, ) were
set to 0 and 30, respectively. For SCN and BSCN, the max-
imum times of random configurations 7,,,, was set to 100,
the expected learning error € was set to 0.001, the boundary
value A of the symmetric interval was set to [0.5, 1, 5, 10,
30, 50, 100, 150, 200, 250] respectively, and the range of
the regularization parameter r was set to [0.9, 0.99, 0.999,
0.9999, 0.99999, 0.999999] respectively. For I-RVFL, the
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input weights and hidden biases of hidden nodes were as-
signed from [-1, 1] under a uniform distribution. For C-
BP, the number of epochs and the learning rate were set
to 100 and 0.01, respectively. The Sigmoid function (i.e.,
g(w, X,b) = m) was selected as the activation
function of all algorithms. All experiments were conducted
under Windows 10 X64 OS with Intel Core i5-5300U CPU
2.29 GHz, and our simulation software is MATLAB with the
R2014a version.

4.2. Experimental results and analysis on the
benchmarks

Each experiment was independently conducted twenty
times, and the experimental results we show here are the
average of the results corresponding to these twenty inde-
pendent experiments. The training time, RMSE, and SD
of SCN, I-RVFL, C-BP, and BSCN on these ten regression
problems are shown in Table 2. Note that the best results are
in bold.

It can be observed from Table 2 that the testing RMSE
of the BSCN model is smaller than that of the SCN, I-RVFL,
and C-BP models on all the data sets, which means that the
BSCN model has better generalization ability than the SCN,
I-RVFL, and C-BP models. Moreover, one can observe that
the testing standard deviation of the BSCN model is always
smaller than that of the SCN, I-RVFL, and C-BP models,
which implies that the BSCN model has better stability than
them.

In terms of training time, one can observe that the train-
ing times of the randomized algorithms (i.e., SCN, I-RVFL,
and BSCN) are much shorter than that of the C-BP on all the
data sets, which verifies that the non-iterative training mech-
anism adopted by the randomized algorithms has higher train-
ing efficiency than that of the gradient descent-based training
mechanism adopted by the C-BP algorithm.

Moreover, the training times of the BSCN on some data
sets such as GT_turbine and GT_compressor are shorter than
that of the SCN, I-RVFL, and C-BP; but on other data sets
such as Airfoil self-noise, the I-RVFL is the fastest one. For
this phenomenon, here we give an empirical explanation:
when modeling the GT_turbine and GT_compressor prob-
lems, BSCN and SCN complete the training process before
the number of hidden nodes grows to the preset maximum,
that is, when the prediction error of the model is lower than
the expected error, L is still smaller than L, ; but for I-
RVEFL, it cannot terminate the training process until the num-
ber of hidden nodes reaches L,,,.. As for C-BP, although it
can also complete model training before the number of hid-
den nodes increases to L,,, .. its training speed is slower be-
cause it uses the iterative training mechanism. Therefore, the
training times of the [-RVFL and C-BP models on these two
problems are longer than that of the BSCN and SCN models.
For other data sets, none of the three constructive algorithms
can make their model errors lower than the threshold before
the number of hidden nodes reaches L,,,,, so they all must
increase L, hidden nodes to terminate their training pro-
cess. When adding hidden nodes, I-RVFL uses a one-time

completely random method to assign input parameters for
the new nodes, while SCN and BSCN both generate the in-
put parameters through a supervisory mechanism, which is
more time-consuming than the former method, so the train-
ing times of the SCN and BSCN are longer than that of the I-
RVFL. For C-BP, the iterative training mechanism makes its
training speed much slower than the randomized algorithms
using the non-iterative training mechanism.

To compare the training efficiency of BSCN and SCN
more intuitively, we visually represent their model training
times on the above regression problems in Fig. 3:

It can be observed from Fig. 3 that the training time of
BSCN is much shorter than that of SCN on all problems,
which means that the training efficiency of BSCN is sig-
nificantly higher than that of SCN. This experimental phe-
nomenon implies that using the bidirectional learning mech-
anism to add hidden nodes is effective and efficient.

In addition, we recorded the learning error changes of the
SCN, I-RVFL, C-BP, and BSCN models during their train-
ing process. The experimental results show that the trends
of the learning errors of these models are consistent on the
above regression problems. Therefore, here we take the Air-
foil self-noise data set as an example to analyze the corre-
sponding experimental phenomenon (as shown in Fig. 4).

It can be observed from Fig. 4 that as the number of hid-
den nodes increases, the learning errors of the SCN, I-RVFL,
C-BP, and BSCN models all become smaller, but the error
reduction speed of the BSCN and SCN models is signifi-
cantly faster than that of the I-RVFL and C-BP models. This
phenomenon implies that the quality of newly added nodes
generated by the BSCN and SCN is much better than that
of the I-RVFL and C-BP. Furthermore, one can observe that
the error reduction speed of the BSCN is faster than that of
the SCN, which verifies the efficiency of the BSCN again.

Moreover, one can observe that when the first hidden
node is added, the error gap between the BSCN and SCN
models is not obvious, this is because they use the same
method to generate the parameters of the first hidden node.
After the second hidden node is added, there is a clear gap
between the errors of the two models. Specifically, the learn-
ing error of the BSCN model is significantly lower than that
of the SCN model. This phenomenon implies that the qual-
ity of the second hidden node generated by the BSCN is
higher than that of the SCN. As the number of hidden nodes
increases, the error gap between the BSCN model and the
SCN model begins to slow down, which indicates that the
two models are gradually close to the learning error bound-
ary of the problem.

From the experimental phenomenon in Fig. 4, one can
infer that BSCN can achieve a faster convergence rate than
SCN, I-RVFL, and C-BP. Given the same expected error,
BSCN can approach the threshold faster than the others, so
the network structure of the BSCN model is expected to be
more compact.
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Table 2

The training time, standard deviation, training RMSE, and testing RMSE of the SCN,
I-RVFL, C-BP, and BSCN on the benchmark data sets

Data-set Algorithm Training Standard Training Testing
time(s) deviation RMSE RMSE

C-BP 2.6586 0.0003 0.0007 0.0009

GT turbine SCN 0.2461 0.0003 0.0005 0.0005
- I-RVFL 1.0930 0.0733 0.0718 0.0735
BSCN 0.1148 0.0002 0.0003 0.0003

C-BP 14.3766 0.0597 0.2224 0.2379

Airfoil self-noise SCN 6.2906 0.1102 0.0517 0.1463
I-RVFL 0.8938 0.0305 0.2923 0.2769

BSCN 3.4023 0.0039 0.0458 0.0652

C-BP 2.5883 0.0003 0.0004 0.0005

GT compressor SCN 0.2359 0.0002 0.0006 0.0006
- I-RVFL 1.0852 0.0511 0.0764 0.0766
BSCN 0.1148 0.0002 0.0003 0.0003

C-BP 12.3391 0.0930 0.1699 0.1716

Housing SCN 2.6234 0.0020 0.0175 0.0208
I-RVFL 0.8672 0.0423 0.0884 0.0904

BSCN 1.7852 0.0016 0.0159 0.0181

C-BP 17.0148 0.1404 0.4601 0.4616

Parkinsons motor SCN 8.1742 0.4136 0.2918 0.5050
I-RVFL 0.9203 0.2272 0.4161 0.4287

BSCN 4.1547 0.1127 0.2956 0.3493

C-BP 12.4609 0.0797 0.1424 0.1430

Concrete compressive | SCN 2.6570 0.0034 0.0141 0.0219
strength I-RVFL 0.8945 0.0396 0.0893 0.0898
BSCN 1.7453 0.0021 0.0149 0.0190

C-BP 11.4938 0.0581 0.4471 0.4975

Yacht SCN 3.0070 0.0199 0.1051 0.1420
I-RVFL 0.3531 0.0258 0.3910 0.5028

BSCN 1.8125 0.0104 0.0981 0.1281

C-BP 15.5469 0.0247 0.0648 0.0657

White wine quality SCN 5.3578 0.0739 0.0123 0.0878
I-RVFL 0.9406 0.0443 0.0699 0.0724

BSCN 3.0563 0.0230 0.0124 0.0321

C-BP 13.7445 0.0603 0.4989 0.5276

Solar C SCN 1.7078 0.0053 0.3215 0.3574
- I-RVFL 0.8008 0.0118 0.3897 0.4388
BSCN 1.2773 0.0049 0.3274 0.3566

C-BP 13.1758 0.0902 0.2267 0.2322

Red wine quality SCN 2.7242 0.1546 0.0533 0.1504
I-RVFL 0.8563 0.0756 0.1374 0.1461

BSCN 1.7805 0.0721 0.0546 0.0849

4.3. Application of BSCN in real-life air pollution
prediction

Particulate matter 2.5 (PM 2.5) and particulate matter
10 (PM10) consist of airborne particles with aerodynamic
diameters of less than 2.5 ym and 10 um, respectively. The
concentration of PM 2.5 and PM 10 in the air is an impor-
tant part of the Air Quality Index (AQI) and is currently the
most important reference index used by many countries to
evaluate their air pollution status. Accurately predicting the
concentration of PM 2.5 and PM 10 in the air is crucial for
governments to issue air pollution warnings in time. In this
section, we evaluate the performance of BSCN on PM 2.5
and PM 10 concentration prediction problems.

We collected the air quality monitoring data published
by Beijing and Oslo governments: Beijing PM2.5 [12] and
Oslo PM10 data sets 2. For the Beijing PM2.5 data set,
there are 43824 samples with twelve attributes, and eleven
of which are key factors affecting PM2.5 concentration in
the air, such as temperature, pressure, dew point, and ac-
cumulated hours of rain. The remaining dimension is row
number, which has nothing to do with PM2.5 concentration,
so we deleted this column in the experiment. Because the
original data set contains some missing values and symbolic
values, we first preprocessed the data set. Specifically, we
deleted the samples containing missing values and replaced

20slo PM10: http://lib.stat.cmu.edu/datasets/
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Figure 3: The training time (s) comparison of BSCN and SCN.
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Figure 4: The learning error changes of the SCN, I-RVFL,
C-BP, and BSCN models.
Table 3
The details of air pollution data sets
Data-set Training data  Testing data  Attributes
Beijing PM 2.5 21757 20000 11
Oslo PM 10 250 250 7

the symbolic values with Arabic numerals. For example,
for the attribute "Combined wind direction", which contains
four symbolic values: CV, NE, NW, and SE, we replaced
them with 1, 2, 3, and 4, respectively. The Oslo PM10 data
set was originally collected by the Norwegian Public Roads
Administration, which includes 500 samples and each sam-
ple contains seven attribute values, such as the logarithm of
the number of cars per hour, wind speed, and temperature.
These attributes are important factors that affect the concen-
tration of PM10 in the air. We also used the above method
to perform a simple preprocessing on this data set.

After data preprocessing, we divided them into training
set and testing set in the manner shown in Table 3.

The environment of this experiment and the parameter

settings of BSCN, SCN, I-RVFL, and C-BP algorithms are
the same as those in the above benchmark experiments. We
evaluated the performance of these three algorithms on Bei-
jing PM2.5 and Oslo PM10 data sets. The details of the ex-
perimental results are shown in Table 4.

From Table 4, one can observe that the testing RMSE
and testing standard deviation of the BSCN model are smaller
than those of the SCN, I-RVFL, and C-BP models, which
means that the BSCN model can predict the concentration of
PM2.5 and PM10 more accurately and stably. At the same
time, it can be seen from Table 4 that the training time of
BSCN is also significantly shorter than that of SCN, which
implies that the training efficiency of BSCN is higher than
that of SCN.

Moreover, one can observe that I-RVFL can achieve the
least training time on these two problems. The reason for this
phenomenon is the same as the explanation in the benchmark
experiments. That is, for the above air pollution prediction
problems, these three algorithms can only terminate their
training process by increasing the number of hidden nodes to
L,,..- Inthe process of adding hidden nodes, I-RVFL uses a
one-time completely random method to assign input param-
eters for the new nodes, while SCN and BSCN both gener-
ate the input parameters through a supervisory mechanism,
which is more time-consuming than the former method, so
the training times of the SCN and BSCN are longer than that
of the I-RVFL. As for C-BP, the iterative training mechanism
causes its training speed to be much slower than these ran-
domized algorithms. Moreover, since the input parameters
of new nodes in the backward learning mode of BSCN are
calculated based on the residual error feedback of the model,
the training efficiency of this method is much higher than the
supervisory mechanism, so the training time of the BSCN
model is much less than that of the SCN model.

4.4. Application of BSCN in the age estimation
problem
In this section, we evaluate the performance of BSCN on
the age estimation from a single face image without the use
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Table 4

The training time, standard deviation, training RMSE, and testing RMSE of the SCN,
I-RVFL, C-BP, and BSCN on the air pollution data sets

Data-set Algorithm Training Standard Training Testing
time(s) deviation RMSE RMSE

C-BP 54.3820 0.0421 0.1904 0.1916

Beijing PM 2.5 SCN 37.7930 0.0005 0.0746 0.0761
I-RVFL 1.9711 0.0024 0.0891 0.0893

BSCN 21.0047 0.0003 0.0742 0.0755

C-BP 13.2422 0.1049 0.1613 0.1629

SCN 2.8063 0.0017 0.0081 0.0125

Oslo PM 10 I-RVFL 0.7383 0.0433 0.0999 0.1030
BSCN 1.8055 0.0010 0.0079 0.0114

of facial landmarks. Different from the existing works such
as [20], which poses the age estimation problem as a clas-
sification problem, we regard this problem as a regression
problem. We chose MORPH?2 [19] as the experimental data
set, which is one of the most popular data sets in age estima-
tion studies. MORPH?2 contains a large number of images
from diverse subjects over many years. Taking Fig. 5 as an
example, it shows a group of facial images of a man at his 45,
46, and 47 years old, respectively. In this study, we expect
that the model can accurately predict the corresponding age
based on the input facial image.

052179_00M45

052179_00M46.

052179_00M47

Figure 5: Examples of the MORPH2 data set [19].

Data preprocessing: we first scaled the RGB facial im-
ages in MORPH2 to a size of 224 * 224 uniformly, and then
randomly selected 10000, 20000, and 30000 samples from
them to form the corresponding three data sets. We divided
each data set into the corresponding training set and testing
set according to 8: 2.

In this experiment, we used the ResNet-101 model [7]
pre-trained on MORPH?2 as the feature extractor, and SCN, I-
RVEFL, C-BP, and BSCN as learners to mine the mapping re-
lationship between visual features and age labels. The max-
imum of the hidden nodes in these learners was set to 300.
The setting of other parameters is the same as the bench-
mark experiment. The experimental results on the above
three data sets are shown in Table 5.

It can be observed from Table 5 that our BSCN model
surpasses other algorithms in terms of prediction accuracy
and stability, which means that giving BSCN the same data
features as other algorithms, it can better mine the intrinsic
relationship between these features and the corresponding
labels. Moreover, one can observe that the model training

time of randomized neural networks (i.e., BSCN, SCN, and
I-RVFL) is significantly shorter than that of traditional neu-
ral networks (i.e., C-BP).

This experimental phenomenon inspires us that if a high-
quality pre-trained model can be obtained in advance as the
feature extractor of the model, it may be a promising ap-
proach to choose a randomized neural network, especially
BSCN, to replace the traditional fully connected network as
the final decision layers. This method is expected to not only
exert the feature extraction ability of the deep model, but also
the fast learning ability and good generalization ability of the
randomized algorithms.

Remark 1. In the backward learning mode of BSCN,
it can find the most suitable parameters for the newly added
nodes according to the residual errors. Further, the improve-
ment of the quality of hidden nodes makes the generalization
ability and stability of the BSCN model outperform the SCN
and I-RVFL models. Moreover, this method is done in one
g0, so it can achieve much higher training efficiency than the
supervisory random search method used in the existing SCN
algorithms.

Therefore, one can briefly summarize the advantages of
BSCN: it possesses the universal approximation ability in
theory and is superior to other randomized algorithms such
as SCN and I-RVFL in generalization and stability. More-
over, the training mechanism of BSCN can achieve much
higher learning efficiency than the original SCN both the-
oretically and practically. However, one of the disadvan-
tages of BSCN is its relatively shallow network architecture,
which leads to many difficulties in dealing with large data
sets like ImageNet. In the future, one may consider combin-
ing traditional deep learning architectures such as ResNet to
design deep BSCN algorithms to alleviate this issue.

Remark 2. Randomized neural networks vs traditional
neural networks. The former assumes that not all parame-
ters need to be fine-tuned, so these algorithms randomly as-
sign some parameters (e.g., the input weights and hidden bi-
ases) and keep them unchanged throughout the model train-
ing process, and the remaining parameters are obtained an-
alytically (e.g., least square method). This training mecha-
nism has been empirically proved in many cases that it can
make the model have extremely fast training speed and good
generalization ability. However, these successful cases have
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Table 5

The training time, standard deviation, training RMSE, and testing RMSE of the SCN,
I-RVFL, C-BP, and BSCN on the age estimation data sets

Data-set Algorithm Training Standard Training Testing
time(s) deviation RMSE RMSE
C-BP 2646.3323  49.9809 134.3410 134.9013
SCN 141.1305 0.1359 3.1156 4.1095
MORPH?2-10000 I-RVFL 56.5266 2.9360 12.3566 12.5773
BSCN 652.8563 0.0680 2.6903 3.6295
C-BP 4915.4995 75.1322 179.4321 179.6134
SCN 263.1422 0.1251 3.2275 3.6646
MORPH?2-20000 I-RVFL 102.4727 2.9913 12.8385 12.8940
BSCN 1141.2523 0.0446 3.0008 3.4875
C-BP 6964.9189  105.3616 154.9312 155.0126
SCN 389.3328 0.7392 3.2663 3.6514
MORPH2-30000 I-RVFL 152.0188 3.5044 11.8227 12.1760
BSCN 1805.6484 0.0155 3.0964 3.5287

a common feature, that is, the complexity of the data fea-
ture is not very high. For this phenomenon, our speculative
explanation is that in these cases, the original data can be
linearly separated in a high-dimensional space with a high
probability after the non-linear random feature mapping, and
then using analytical methods to calculate the output weights
can make up for the instability caused by random parameters
and guarantee the generalization ability of the model. In fact,
some researchers have explained the rationality of this phe-
nomenon from the theory of learning with similarity func-
tions [1]. The disadvantage of randomized neural networks
is that the complexity of the model is relatively low and it is
difficult to use them directly to deal with complex problems
(e.g., natural language processing). Moreover, the theoreti-
cal analysis of the rationality of random feature mapping is
still an open problem.

For traditional neural networks such as convolution neu-
ral networks [30] and recurrent neural networks [3], all pa-
rameters in the network need to be fine-tuned. These neu-
ral networks usually fine-tune their parameters iteratively by
the gradient descent technique according to the residual er-
ror of the model until the model converges. This training
method is more time-consuming than the non-iterative train-
ing mechanism adopted by the randomized neural networks
and involves many hyper-parameters, whose values are usu-
ally not easy to determine. Therefore, when the data features
of modeling problems are relatively simple, the performance
of traditional neural networks is sometimes inferior to that of
randomized neural networks. However, as the complexity
of modeling problems increases, traditional neural networks
can increase their model complexity by freely increasing the
number of hidden layers and nodes, which can better handle
the complex problems, while randomized neural networks
are difficult to do this. How to better combine the advantages
of these two types of neural networks is a problem worthy of
study.

Remark 3. Since the 1990s, the bidirectional training
mechanism of neural networks has attracted the attention of
researchers [23, 6], and it has become a hot spot in recent

years. Relevant representative algorithms include dynamic
Boltzmann machine with bidirectional training scheme [16],
bidirectional feature pyramid network (BFPN) [33], gated
bidirectional network [24], etc. The common point of these
algorithms is to improve the learner’s ability to perceive and
fuse the spatial and temporal information of data features by
constructing information transmission channels between dif-
ferent layers (or modules). Different from these algorithms,
the bidirectional learning mechanism used in this study refers
to the generation of hidden node parameters, which is di-
vided into the forward learning and the backward learning.
The details of the forward learning and the backward learn-
ing have been given in section 3 and will not be repeated
here.

5. Conclusions

To improve the training efficiency of SCN, this paper
optimized the constructive process of its hidden nodes and
proposed the bidirectional SCN (BSCN), which uses two
learning modes (i.e., the forward learning and the backward
learning) to add the hidden nodes. Specifically, the forward
learning uses the same supervisory mechanism as SCN to as-
sign the input weights and hidden biases for the odd nodes,
which can guarantee the universal approximation ability of
the model; while the backward learning calculates the above
parameters for the even nodes according to the residual error
feedback of the current model, which is able to greatly speed
up the model training.

We have theoretically proved the convergence of BSCN
and experimentally demonstrated that the training efficiency,
generalization ability, and stability of BSCN are much higher
than SCN on ten benchmark regression problems. Com-
pared with I-RVFL and C-BP, BSCN can also achieve much
better generalization ability and stability. Moreover, we ver-
ified the effectiveness of BSCN on two real-world air pol-
lution prediction problems. The experimental results show
that the BSCN model can achieve higher accuracy and stabil-
ity than the SCN, I-RVFL and C-BP models in predicting the
concentration of PM2.5 and PM10 in the air, which provides
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a new solution for real-life air quality assessment problems.
We also evaluated the prediction ability of BSCN and other
algorithms in recognizing the age of a person from a single
face image. The experimental results confirm the above con-
clusion again, that is, BSCN exceeds SCN in both prediction
accuracy and training efficiency.

BSCN provides a stable and fast modeling solution for

platforms with limited computing resources, such as vari-
ous IdT terminals, and is expected to be widely deployed in
various industrial scenarios. In the future, we will expand
BSCN into a multi-hidden layer architecture to enhance its
feature extraction capability and apply it to solve more real-
life problems.
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o In this paper, we proposed a novel bidirectional stochastic configuration network (BSCN) for dealing with regression
problems, which naturally inherits the universal approximation ability possessed by the SCN model;

e BSCN can greatly accelerate the training efficiency of the SCN model and effectively improve the quality of hidden
nodes, which in turn makes the trained model better in generalization ability and more compact in network structure;

o We verified the effectiveness of BSCN on ten benchmark regression problems, two real-life air pollution prediction
problems, and a classical age estimation from a single face image problem. Experimental results show that, compared
with SCN, BSCN has not only much faster training speed but also better generalization ability and stability;

e Moreover, compared with the incremental random vector functional link network (I-RVFL) and theconstructive back-
propagation algorithm (C-BP), the experimental results show that the generalization ability and stability of the BSCN
model are significantly better than them;

e BSCN provides a stable and fast modeling solution for platforms with limited computing resources, such as various
IoT terminals, and is expected to be widely deployed in various industrial scenarios.
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