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Fusion of Multi-RSMOTE With Fuzzy Integral to
Classify Bug Reports With an

Imbalanced Distribution
Rong Chen , Member, IEEE, Shi-Kai Guo , Xi-Zhao Wang , Fellow, IEEE, and Tian-Lun Zhang

Abstract—With the help of automated classification, severe bugs
can be rapidly identified so that the latent damage to software
projects can be minimized. However, bug report datasets com-
monly suffer from disproportionate number of category samples.
When presented with the situation of class imbalance, most stan-
dard classification learning approaches fail to properly learn the
distributive characteristics of the samples and tend to result in
unfavorable performance to predict class label. In this case, im-
balanced learning becomes critical to advance classification algo-
rithms. In this paper, we propose an improved synthetic minority
oversampling technique to avoid the degraded performance caused
by class imbalance in bug report datasets. Moreover, to lessen the
chance of occasionalities in random sampling process, we propose
a repeated sampling technique to train different, but related clas-
sifiers. Finally, an ensemble algorithm based on Choquet fuzzy
integral is employed to combine the wisdom of crowds and make
better decisions. We conduct comprehensive experiments on sev-
eral bug report datasets from real-world bug repositories. The
results demonstrate that the proposed method boosts the classi-
fication performance across the classes of the data. Specifically,
compared with various ensemble learning techniques, the Choquet
fuzzy integral achieves outstanding results on integrating multiple
random oversampling techniques.

Index Terms—Bug report identification, class imbalance, fuzzy
integral, software quality.

I. INTRODUCTION

IN RECENT years, because of the rapid increment of soft-
ware development, software systems have become larger and
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more complex, which directly causes numerous bugs to appear
during software development [1], [36]. To insure the reliability
of software systems, accurate recognition of bug reports has
become increasingly prominent. In bug triaging systems (e.g.,
Bugzilla [19], JIRA [49], and Mantis [50]), the information of
bug reports could help developers reproduce and repair the bugs,
and effectively solve problems of software reliability. The bug
report with severe label tends to indicate that the correspond-
ing bug should be fixed as soon as possible, in this case, the
damage caused by severe bugs could be reduced and mitigated,
greatly. With the increasing amount of information about bugs
encountered in triaging system, some forms of automation in
identifying the severity of bug reports become an overwhelm-
ing research [2].

In fact, bug report datasets are always characterized by im-
balanced distributions, whereas most classification approaches
expect equal misclassifying costs or balanced class distribu-
tion. As a result, such imbalanced bug report data tend to cause
degradation of performance in classification learning [2]–[4],
[45]. To solve this problem, Lamkanfi et al. [3] manually se-
lected a small dataset with a balanced distribution from original
bug reports to insure that the classification approaches were not
hindered by the class imbalance. However, the bug reports se-
lected manually from imbalanced datasets could tend to result in
missing some critical information. To achieve robust methods,
Yang et al. [2] employed four imbalanced learning strategies
(ILS) [i.e., random undersampling (RUS), random oversampling
(ROS), synthetic minority over sampling technique (SMOTE),
and cost-matrix adjuster (CMA)] to recognize the high-impact
bug reports with class imbalance. Although some promising
benefits have been shown in [2], there exist inherent drawbacks
in these imbalanced learnings. CMA is sensitive to noise data
[61]; RUS tends to miss some potentially crucial data and lead to
underfitting issues; ROS often causes overfitting because some
redundant data may be selected to augment original dataset
[7], [8], [21], [60]; in addition, SMOTE suffers from a poor
generalization ability due to its simple linear sampling space
[28]. Moreover, random sampling can produce uncertainty, and
some sampling results will not be in agreement with real dataset
distributions.

To solve these problems, an approach to fuse multiple-
improved SMOTE with the Choquet fuzzy integral is pro-
posed to recognize the severity of bug reports characterized by
imbalanced distribution. First, the improved SMOTE, i.e., rect-

1063-6706 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 30,2021 at 04:48:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5848-6398
https://orcid.org/0000-0002-8554-6365
https://orcid.org/0000-0001-6036-4728
mailto:shikai.guo@dlmu.edu.cn
mailto:rchen@dlmu.edu.cn
mailto:tlzhang@dlmu.edu.cn
mailto:tlzhang@dlmu.edu.cn
mailto:xizhaowang@ieee.org
mailto:xizhaowang@ieee.org


CHEN et al.: FUSION OF MULTI-RSMOTE WITH FUZZY INTEGRAL 2407

angle SMOTE (RSMOTE) approach, is used to weaken the im-
balance ratio by generating minority-class samples, which are
randomly synthesized in a multidimensional rectangle sample
space. In addition, with two proposed constraints, the synthetic
minority-class bug reports can be generated in a robust way.
Second, to avoid the uncertainty caused by random sampling,
a repeated sampling technique is proposed to obtain multiple
balanced datasets by using RSMOTE. Then, several different
classifiers are built on these balanced datasets. At last, an en-
semble method based on Choquet fuzzy integral is employed to
integrate these trained classifiers to recognize the severity of bug
reports [62]. Comprehensive experiments are conducted on three
bug repositories, i.e., Eclipse [16], Mozilla [17], and GNOME
[18]. These experimental results indicate that RSMOTE could
effectively weaken the imbalanced distribution of datasets and
improve the generalization capabilities of classifiers. In addi-
tion, fusion of multiple RSMOTE could effectively weaken the
uncertainty caused by random sampling, and boost the perfor-
mance of predicting the class label of bug reports.

Our contributions can be summarized as follows.
1) We consider the imbalance phenomenon of bug reports

and propose an improved random sampling approach,
named RSMOTE. RSMOTE is a random sampling mech-
anism used to generate minority-class points from high-
dimensional sampling space, which is the main omission
in SMOTE [28]. The generalization abilities of several dif-
ferent classification learning approaches are significantly
improved by the proposed method. In addition, two con-
straints are applied to provide a robust way to generate new
synthetic samples, i.e., scaling the random sampling scope
to a reasonable area and distinguishing the majority-class
points in a critical region.

2) An approach to fuse multi-RSMOTE with Choquet fuzzy
integral is used to solve the uncertainty caused by ran-
dom sampling. Several different, but related datasets are
produced by a repeated sampling process. An ensemble
method based on Choquet fuzzy integral is used to in-
tegrate the multiclassifiers trained over these balanced
datasets. To the best of our knowledge, this is the first
endeavor of such technique for exploring the fusion of
multiple RSMOTE with Choquet fuzzy integral to clas-
sify bug reports.

3) Two evaluation criteria are used in experimental part to
evaluate the proposed approach. The results on 16 compo-
nents show that Choquet fuzzy integral ensemble learning
outperforms other popular ensemble methods, such as ma-
jority voting, bagging, and Adaboost.

II. BACKGROUND KNOWLEDGE AND MOTIVATION

In Sections II-A and II-B, we introduce the automatic bug re-
port classification in software engineering and the propaedeutic
of the fuzzy integral, respectively. The motivation of proposing
the fusion of classifiers with a fuzzy integral method to recog-
nize the severity of bug reports characterized by an imbalanced
distribution is introduced in Section II-C.

A. Automatic Bug Report Classification in Software
Engineering

Automatic bug reports classification technique can reduce the
latent damage to software projects.

Antoniol et al. [30] used three classifiers [Naive Bayes clas-
sifier (NB), decision trees (J48), and logistic regression (LR)] to
classify the bug report and they analyzed the important features
that have a greater impact on the classification. Menzies et al.
[25] used standard text mining methods to classify the severity
of NASA bug reports. In order to improve the performance iden-
tifying high-impact bug reports, Yang et al. [2] combined four
widely used ILS with four classification approaches. In order to
recognize the severity of Android bug reports with limited class
label, Guo et al. [31] proposed a knowledge transferring ap-
proach; the knowledge acquired from different software projects
(Eclipse, Mozilla, and GNOME) is used to classify the sever-
ity of Android bug reports. Xia et al. [37] proposed a method,
namely ELBlocker, to identify the blocking bug reports with
imbalanced distribution. ELBlocker first trains the classifiers
over multiple disjoint datasets. Then, ELBlocker uses estimate
threshold approach to estimate the weight of each classifier.
Finally, all classification results are integrated to identify the
blocking bugs.

Xuan et al. [32] proposed a ranking approach to recom-
mend appropriate commenters to repair the bugs. This method
is based on analyzing the relationship between commenters and
bug comments. Anvik and Murphy [33] proposed an automated
method to simplify the development process, which could as-
sist the triagers to recommend the component of bug reports
and developers. Tian et al. [34] performed feature extraction on
bug reports, and employed multifactors (“temporal,” “related re-
port,” “severity,” “textual,” “author,” and “product”) to identify
the priority of bug reports. Zhang et al. [36] proposed a more
accurate approach to perform automatic severity prediction and
fixer recommendation. The top k historical bug reports which
are similar to a new one are searched by using K-nearest neigh-
bor and REP. The features of these reports then are extracted for
prediction and recommendation algorithms.

Feng et al. [10] proposed three strategies to find bugs as
early as possible. The three strategies are diversity strategy, risk
strategy, and compound strategy (DivRisk). For mobile crowd-
sourcing testing, bug reports are often composed of screenshots
and text descriptions. Feng et al. [55] used multiobjective to
prioritize bug reports. One is to use spatial pyramid matching
approach to analyze similar screenshots, and the other one is
to use natural language processing techniques to measure the
distance between bug reports. To overcome the local bias of bug
reports, Wang et al. [57] proposed a cluster-based method to
cluster the similar bug reports and trained the classifiers with
most similar bug reports, respectively. Then, they used ensemble
approach to predict the true fault bug reports. In their follow-up
work, Wang et al. [56] proposed an approach called local-based
active classification to predict the true fault bug reports, which
solves the local bias problem and lacking of labeled bug reports
problem.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 30,2021 at 04:48:25 UTC from IEEE Xplore.  Restrictions apply. 



2408 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 12, DECEMBER 2019

B. Propaedeutic of Fuzzy Integral

Bug report processing in our paper is transferred to a fusion
problem of multiple classifiers. The training set for each classi-
fier is generated by a synthetic mechanism of oversampling with
respect to minority class, i.e., for each time, adding a number
of new synthetic samples as minority and keeping the majority
unchanged. This synthetic process obviously indicates an inter-
action existing among the multiple classifiers. As a fusion tool,
fuzzy integral has the advantages of modeling and handling in-
teractions (such as the subadditivity and superadditivity) among
the classifiers in comparison with other fusion schemes [5], [11],
[27], [47], [48]. Therefore, we select the fuzzy integral as a fu-
sion tool, which is confirmed experimentally to be successful in
following sections.

Definition 1: Given a nonempty set X, let Ω be the σ algebra
consisting of a group of subset of X, the fuzzy measure on Ω is
a set function g : Ω → [0, 1].

1) g(∅) = 0, g(X) = 1.
2) ∀A,B ⊆ Ω, if A ⊂ B, then g(A) ≤ g(B).
3) If {An} ⊂ Ω, A1 ⊂ A2 ⊂ · · ·An, and

⋃∞
n=1 An ∈ Ω,

then limn→∞ g(An ) = g(
⋃∞

n=1 An ).
4) If {An} ⊂ Ω, A1 ⊃ A2 ⊃ · · · ⊃ An, g(A1) < ∞, and⋂∞

n=1 An ∈ Ω, then limn→∞ g(An ) = g(
⋂∞

n=1 An ).
According to Definition 1, fuzzy measure does not re-

quire additivity, when g(A ∪ B) < g(A) + g(B), A ∩ B = ∅
holds well, the fuzzy measure is called subadditivity, while
g(A ∪ B) > g(A) + g(B), A ∩ B = ∅ holds well, the fuzzy
measure is called superadditivity. For a finite state space X, the
power set of X is usually used as the σ algebra Ω in Definition
1; in this case, a set function satisfying the first two conditions
of Definition 1 is defined as fuzzy measure. In ensemble learn-
ing, the set of classifiers is finite, therefore, the fuzzy measure
and fuzzy integral in our study are defined over finite set. For a
generalization of probability measure, the monotonicity could
replace the additivity of probability measures, as shown in (1).
Regarding a nonadditivitive g, the sum of all individual classi-
fier contribution may be more or less than the contribution of
integrated classifiers, as shown in (2) and (3)

g (A ∪ B) = g (A) + g (B) ,∀A,B ⊂ p (X) , A ∩ B = ∅ (1)

g (A ∪ B) ≥ g (A) + g (B) ,∀A,B ⊂ p (X) , A ∩ B = ∅ (2)

g (A ∪ B) ≤ g (A) + g (B) ,∀A,B ⊂ p (X) , A ∩ B = ∅. (3)

Moreover, in this paper, we always suppose that let the fuzzy
measure be normal, i.e., g(∅) = 0, g(X) = 1. We will focus on
the special type of fuzzy measures, i.e., λ-fuzzy measure which
has been widely used in ensemble learnings [5], [9], [38], [39],
[47], [48].

Definition 2: For arbitrary A,B ⊂ Ω, and A ∩ B = ∅, g is
called a λ-fuzzy measure, if g satisfies

g (A ∪ B) = g (A) + g (B) + λ × g (A) × g (B) (4)

where λ > −1 and λ /= 0. The value of λ can be computed by
the following equation.

Property 1: Suppose that g is a fuzzy measure, Ai ∩ Aj = ∅,
(i /= j, 1 ≤ i, j ≤ m). Then

g

(
m⋃

i=1

Ai

)
=

{ 1
λ

(
∏m

i=1 (1 + λ × g (Ai)) − 1) , λ /= 0
∑m

i=1 g (Ai) , λ. = 0.
(5)

Property 2: Let X = {x1 , x2 , . . . , xn}, if a λ-fuzzy measure
g is greater than zero at least two individual point, i.e., there exist
{x∗

1}, {x∗
2} ⊂ X , such that g({x∗

1}) > 0, g({x∗
2}) > 0.

Then λ can be solved by the following:

λ + 1 =
n∏

i=1

(1 + λ × g ({xi})). (6)

It is easy to see the following.
1) If

∑n
i=1 g({xi}) < 1, then λ > 0.

2) If
∑n

i=1 g({xi}) = 1, then λ = 0.
3) If

∑n
i=1 g({xi}) > 1, then −1 < λ < 0.

Definition 3: Suppose that f is a function X → [0,∞), and
g is the λ-fuzzy measure. Then Choquet fuzzy integral with
respects to g is defined as

(C)
∫

fdg =
∫ ∞

0
g (Ωα )dα (7)

where Ωα = {x|f(x) > α, x ∈ X} and α ∈ [0,∞).

C. Motivation

With the continuous expansion of bugs in software develop-
ment, bug reports play a very important role to insure the reli-
ability of software [36], [59]. Bug reports can not only contain
the necessary information to reproduce and fix the problem, but
also contain statistical information to evaluate software quality
during software development. The severity label of a bug report
is used to determine how soon the bug needs to be fixed, which
can help to greatly reduce or mitigate the damage caused by
severe bugs.

Due to the huge amount of information about bugs reported
by bug tracking systems, there is an increasing need to introduce
some form of automation in identifying the severity of bug re-
ports [2], [12], [13], [24]. However, original bug report datasets
are often characterized by imbalanced distributions, which hin-
der traditional classification learning. Moreover, the abilities of
most imbalanced learning are limited by their inherent draw-
backs, e.g., missing crucial data and replicated redundant data.
In this case, we propose an improved oversampling approach
to address these issues in a robust manner [3], [4], [14], [15].
In addition, to integrate several different, but related classifiers
trained by a multiple sampling technique, an ensemble approach
based on Choquet fuzzy integral is introduced in our method.

III. METHODOLOGY

In this section, we present the proposed model to predict the
severity label of bug reports.
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Fig. 1. Entire framework of our approach to address imbalanced issues in bug reports recognition.

A. Model Description

Based on the motivation described in Section II-C, we propose
an approach to fuse multi-RSMOTE with the Choquet fuzzy
integral to recognize bug reports with class imbalance. As Fig. 1
shows, the framework is composed of two phases: the balance-
sample phase and the identification phase. In the balance-sample
phase, we first convert bug reports into uniform textual features
by using text preprocessing [31]. Then, RSMOTE is used to
weaken the imbalanced ratio of bug reports (see Section IV-
B). To lessen the uncertainty caused by random sampling, in
identification phase, we use the RSMOTE approach to generate
multiple balanced datasets. Then, Choquet fuzzy integral is used
to fuse multiclassifiers trained by multiple balanced datasets,
respectively (see Subsection IV.D). Our approach can not only
enhance the generalization ability of oversampling method, but
also improve the performance of predicting the class label of
bug reports.

B. RSMOTE Approach

In this section, we will introduce the improved random sam-
pling approach in detail. As can be seen in Fig. 2(a), the new
synthetic minority-class sample is randomly generated by lin-
ear interpolation between two minority-class samples via the
SMOTE approach. Instead of a simple linear sampling space,
the new synthetic minority-class samples are randomly gen-
erated in a multidimensional rectangle area in RSMOTE ap-
proach. Finally, two constrains in RSMOTE determine whether
the new synthetic minority-class samples can be used to augment
the original datasets. The first constraint is scaling the random
oversampling scope to a reasonable area. The other constraint
is distinguishing the majority-class points in a critical region.
Thus, the new synthetic samples can be generated in a robust

Algorithm 1 RSMOTE Algorithm.
Input:

Input the original bug reports (DT), the nonsevere bug
reports (T), the equilibrium number (N), the number of
features (n), and the number of nearest neighbors (k).

Output:
S = DT ∪ P ′ (virtual non-severe samples).

1: Initialize the virtual samples P ′;
2: For each Xi in T, generate the virtual nonsevere

samples to P ′;
(a) Calculate the Euclidean distances (R) between Xi

and all other nonsevere samples;
(b) Randomly select Y SN = {Y1 , . . . , Yj , . . . , YN }

from the k nearest neighbor samples based on the R
values;

(c) For each Yj ∈ Y SN , randomly generate a new
nonsevere sample X ′

j from an n-dimensional
rectangle area with Xi and Yj as the diagonal;

3: Judge whether X ′
j satisfies constraints C1 and C2

specified below;
(a) If the constraints are satisfied, add X ′

j to P ′;
(b) If not, GOTO Step 2 (c) to regenerate X ′

j ;
4: return S = DT ∪ P ′.

way. Compared with SMOTE, the generalization ability of over-
sampling is significantly improved by using RSMOTE due to
reasonable constraints. In addition, one can easily note that ROS
and SMOTE are the special cases of RSMOTE.

We will introduce the RSMOTE approach and the ap-
proach fusing multi-RSMOTE with Choquet fuzzy integral in
Sections III-B and III-D, respectively.
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Fig. 2. Diagrams of (a) SMOTE and (b) RSMOTE. Blue triangle represents
original major-class samples, green dots represent original minority-class sam-
ples, red dots represent new synthetic minority-class samples. Lines and rect-
angles represent the sampling space of the SMOTE and RSMOTE approaches,
respectively.

In Step 1, the set P ′ is initialized. In Step 2, we gen-
erate the new synthetic bug reports to P ′. The number
of remaining samples is m, and the attributes of each Xi

can be represented as (xi1 , . . . xit , . . . xin ), where i ∈ [1,m]
and t ∈ [1, n]. Similarly, the attributes of each Yj can be
represented as {yj1 , . . . yjt , . . . , yjn}, where j ∈ [1, N ] and
t ∈ [1, n]. After sufficient iterations, the RSMOTE approach
generates a new virtual sample set, which can be represented
as {X ′

1 , . . . , X
′
j , . . . X

′
N }, where the attributes of each X ′

j can
be represented as {x′

j1 , . . . , x
′
j t , . . . x

′
jn}, where j ∈ [1, N ] and

t ∈ [1, n].
In the RSMOTE approach, each x′

j t is generated between
(z1

j t , z
2
j t), which can be calculated as follows:

z1
j t = xjt −

1
2
× |yjt − xjt | (8)

z2
j t = xjt +

1
2
× |yjt − xjt | (9)

where j ∈ [1, N ], t ∈ [1, n], and |yjt − xjt | represents the ab-
solute value of the difference in attribute values between yjt and
the sample xjt .

The attributes of the newly generated X ′
j can be calculated as

follows:

x′
j t = xjt + random(0, 1) ×

(
z2
j t − z1

j t

)
(10)

where j ∈ [1, N ], t ∈ [1, n], random(0, 1) represents the gener-
ation of an arbitrary number between 0 and 1.

In Step 3, we judge whether X ′
j satisfies the two constraints

specified below. When both of these constraints are satisfied,
X ′

j is added to P ′. Otherwise, X ′
j is regenerated.

Constraint C1: Let Dis(X ′
jXi) denote the Euclidean distance

between X ′
j and Xi , and let Dis(YjXi) denote the Euclidean

distance between Yj and Xi . When Dis(YjXi) is greater than
Dis(X ′

jXi), this constraint is satisfied

Dis
(
X ′

jXi

)
=
∥∥X ′

j − Xi

∥∥ (11)

Dis (YjXi) = ‖Yj − Xi‖ . (12)

Constraint C2: We calculate the Euclidean distances (R) be-
tween X ′ and all other original bug reports (DT). Then, we find
the nearest-neighbor bug report sample M. When the severity of
M is nonsevere, this constraint is satisfied.

In Step 4, the RSMOTE approach returns the balanced set of
bug reports S = DT ∪ P ′.

C. Case Study of RSMOTE

From Fig. 2, we can see that the RSMOTE approach for gen-
erating new synthetic samples can be more flexible and have a
wider range. It can make the distribution of the new synthetic
minority-class samples be more uniform and reasonable in sam-
ple space, thereby improving the generalization capability of the
classifiers.

To more intuitively represent the improvement of the
RSMOTE approach over other ILS [RUS, ROS, and SMOTE),
we take the dataset (Core-XPConnect (Mozilla)] in Table I as
an example. We use the truncated singular value decomposition
(TSVD) approach to reduce the dimensionality to give visual
comparison. TSVD is a matrix factorization technique, which
is a variant of singular value decomposition (SVD) [51]–[53].
Unlike traditional SVD, TSVD only calculates the first k largest
singular values, and other singular values are set to 0.

First, we use the RSMOTE, SMOTE, RUS, and ROS ap-
proaches to remedy the imbalanced distributions characterizing
Core-XPConnect (Mozilla). Then, we use the TSVD approach
to reduce the multidimensional samples into three-dimensional
samples. As shown in Fig. 3, Original represents the original dis-
tribution of bug reports, and RSMOTE, RUS, ROS, and SMOTE
represent the distributions of bug reports balanced by ILS. Green
dots indicate minority-class samples, and yellow dots indicate
majority-class samples. From Fig. 3, we can see that the dataset
balanced by the RSMOTE approach achieves better distribution
in sample space, comparing with Original, SMOTE, RUS, and
ROS. RUS removes some majority-class samples from original
dataset; in this way, RUS tends to result in shrinking size of
training dataset and missing crucial samples. In addition, ROS
adds the duplicate of some minority-class samples into the orig-
inal dataset, however some noise and redundant samples may
be augmented to hinder the classification learning.

SMOTE tends to lead the occurrence of overlapping between
categories because SMOTE generates new instances for each
original minority sample without considering neighboring sam-
ples. Moreover, in SMOTE algorithm, the synthetic instance is
created along a linear space, which causes the problem of under
generalization for high-dimensional instance space. To gener-
ate samples in robust manner, the proposed RSMOTE conducts
two improvements. One is that RSMOTE breaks the ties intro-
duced by simple linear sampling space and therefore the new
synthetic samples generated by our proposed method have a rea-
sonable distribution in feature space of minority class instances,
as shown in Fig. 3. The other is that synthetic majority class
instances are eliminated in RSMOTE; in this way, a classifier
could properly learn the distributive characteristics of minority
class instances from the dataset balanced by RSOMTE.

From the above-mentioned description, it can be observed
that the RSMOTE algorithm has the following advantages.

1) After oversampling by the RSMOTE algorithm, new syn-
thetic examples are randomly generated in the minority-
class space of the original dataset. Compared with
SMOTE, RSMOTE eliminates the limitation imposed by
the linear interpolation between the minority-class sam-
ples, which makes the RSMOTE be more scientific and
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TABLE I
DATASET OBTAINED FROM THE BUG REPOSITORIES

Fig. 3. Three-dimensional distribution of Core-XPConnect by using different ILS.

practical. In addition, the process of RSMOTE consists of
two constraints that can provide a robust way to generate
new synthetic samples.

2) Compared with RUS, the RSMOTE approach is applica-
ble for data-driven classification learning, due to the over-
sampling technique keeping the size of majority class and
increasing minority-class samples. Moreover, RSMOTE
gets rid of the overfitting risk which often leads ROS to
correspond too closely to a particular set of data.

D. Fusion of Multi-RSMOTE With Fuzzy Integral (FMR-FI)

Analogously to most of data-level approaches in imbalanced
learning [6], [7], [21], [26], some occasionalities encountered in

the proposed RSMOTE algorithm tend to hinder the classifica-
tion learning, e.g., the replicated data from noise or redundant
instances. To lessen the chance of occasionalities in synthetic
sampling process of RSMOTE, a multiple sampling technique
will be proposed in this section. Concretely, multiple sampling
processes of RSMOTE are run on an imbalanced dataset, then
different balanced datasets are generated and employed to train
classifiers. Finally, an ensemble-based algorithm combines the
wisdom of crowds (i.e., the trained classifiers) to make better
decisions. Due to a strong interaction existing among the in-
dividual classifiers, we choose the Choquet fuzzy integral to
integrate these trained classifiers.

To ease the presentation, some of notations will be es-
tablished here. Given a training dataset Tr and a testing
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dataset Te, we define that Tr = {x|x ∈ Rm} and
Te = {x|x ∈ Rm}, where x is an example in the m-
dimensional feature space, and La = {La1 , . . . , Laj , . . . LaC }
is a set with C-class labels. Furthermore, we define a set of
classifiers E = {E1 , . . . , Ei, . . . EL} in which each classifier
is trained over a Tri ∈ subTrs = {Tr1 , . . . , T ri, . . . , T rL}, L
is the number of training datasets processed by RSMOTE. A
class label from La is assigned to x by Ei whose output can
be considered as a C-dimensional vector of support degree for
each category, i.e.,

Ei (x) = (ei1 (x) , ei2 (x) , . . . , eij (x) , . . . , eiC (x)) (13)

where eij (x) ∈ [0, 1] (1 ≤ i ≤ L, 1 ≤ j ≤ C) denotes the sup-
port degree assigned by classifier Ei that x belongs to class Laj .
In this paper, eij (x) is the posterior probability p(Laj |x) that
has the following properties, for all j = 1, . . . , C:

eij (x) ≥ 0,
C∑

j=1

eij (x) = 1. (14)

Afterward, some of related definitions will be presented as
follows.

Definition 4: Given E ={E1 , . . . , Ei, . . . EL}, La={La1 ,
. . . , Laj , . . . LaC }, and Te = {x|x ∈ Rm}, for each x ∈ Te,
the decision profile matrix is

DP (x) =





e11 (x) · · · e1j (x) · · · e1C (x)
...

...
...

...
...

ei1 (x) · · · eij (x) · · · eiC (x)
...

...
...

...
...

eL1 (x) · · · eLj (x) · · · eLC (x)





(15)

where the ith row of DP represents the support degree as men-
tioned above, and the jth column of DP represents the support
degree estimated by E for class Laj .

Definition 5: Given E = {E1 , . . . , Ei, . . . , EL}, the power
set of E is represented as P (E). The fuzzy measure on E can be
represented as a set function g: P (E) → [0, 1], which is shown
as follows:

g (∅) = 0, g (E) = 1.

For ∀A,B ⊆ E, if A ⊂ B, then g (A) ≤ g (B) .
(16)

Definition 6: Given E = {E1 , . . . , Ei, . . . , EL}, ∀Ei ∈ E,
i ∈ [1, L], let gi = g({Ei}). gi represents the fuzzy density of
classifier Ei . We use the following to compute gi :

gi =
p (Ei)∑L

k=1 p (Ek )
× dsum (17)

where p(Ei) represents the validation accuracy of Ei and dsum

is the desired sum of fuzzy densities.
Definition 7: Given E = {E1 , . . . , Ei, . . . , EL}, Ak = {E1 ,

E2 , . . . , Ek} ⊂ E (1 ≤ k ≤ L). λ-fuzzy measure g defined on

Ak could be calculated by the following formulas:

g (A1) = g ({E1}) = g1

g ({Ek}) = gk

g (Ak ) = gk + g (Ak−1) + λ × gk × g (Ak−1)

(18)

where λ > −1 and λ /= 0. The value of λ can be computed by
the following:

λ + 1 =
L∏

i=1

(
1 + λ × gi

)
. (19)

Definition 8: Given E = {E1 , . . . , Ei, . . . EL}, g is the
fuzzy measure on E, the Choquet fuzzy integral of function
f : E → [0, 1] with respect to g is defined as follows [62]:

(C)
∫

fdg =
L∑

i=1

(f (Ei) − f (Ei−1)) × g (Ai−1) (20)

where 0 ≤ f(E1) ≤ f(E2) ≤ · · · ≤ f(EL ) ≤ 1, f(E0)
= 0.

The FMR-FI algorithm is composed of two phases: Training
phase and integrated phase, which are described in detail as
follows.

Algorithm 2 FMR-FI Algorithm.
Input:

Training set Tr, x ∈ Te, The number of balanced
datasets (L)

Output:
The class label of x.

1: Training phase:
1) Use the RSMOTE algorithm to generate subTr by

Tr;
2) Train the classifiers by subTr, respectively;
3) Calculate the fuzzy density gi of the classifier Ei ;
4) Calculate the λ value.

2: Integrated phase:
1) For ∀x ∈ Te, calculate the decision profile DP(x);
2) Each column of DP is sorted in ascending order

to obtain a new decision profile matrix DP′;
3) Calculate the fuzzy measure g(Ai) based on DP′;
4) Calculate uj (x) using (20).

3: return the class label of x.

In Step 1, we train the classifiers and calculate the
fuzzy densities based on the classification results of each
classifier.

1) We use the RSMOTE to generate L training subsets from
Tr, denoted by subTrs = {Tr1 , . . . , T ri, . . . T rL}.

2) Then, we train a classifier Ei (i = 1, 2, . . . , L) on each
Tri in subTrs to obtain a set of trained classifiers
Eb = {E1 , E2 , . . . , EL}.

3) We calculate the fuzzy density gi of each classifier using
(17).

4) Finally, we calculate the value of λ using (19).
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Fig. 4. Workflow of bug report processing.

In Step 2, we calculate the class label of each x in Te using
fuzzy integrals.

1) For each x in Te, we can get a decision profile DP(x) using
(15).

2) We sort each column of DP in ascending order to obtain
a new decision profile matrix DP′. Then, the kth column
of DP′ is [ez1 k , ez2 k , . . . , ezL k ]T , where ezL k is the high-
est support degree and ez1 k is the lowest support degree.
The fuzzy densities of the corresponding classifiers are
denoted by (gz1 , gz2 , . . . , gzL ).

3) Then, we let g(A1) = gz1 and iteratively calculate g(Ai)
using (18), where i = 1, 2, . . . , L.

4) By calculating uj (x) using (20), we obtain {u1(x),
u2(x), . . . , uj (x), . . . , uC (x)}, where j = 1, 2, . . . , C.

In Step 3, we compute the category label j∗ of each x based
on the following:

j∗ = arg max
1≤j≤C

{uj (x)} . (21)

IV. EXPERIMENTAL DESIGN

Several experiments are conducted to validate the perfor-
mance of FMR-FI, and the experimental design is described in
this section.

A. Experimental Design

We verify the performance of FMR-FI on Eclipse, Mozilla,
and GNOME, which all use the same bug tracking system
(Bugzilla [19]). In this study, 16 datasets are selected from 3
bug repositories to validate the FMR-FI approach, as presented
in Table I. The datasets are different from each other in the ap-
plication domain. According to the results of [3] and [59], the
summaries of bug reports contain not only useful information,
but also a small amount of noise. Thus, we select the summaries
as the features of bug reports. The average imbalance degrees
of Eclipse, Mozilla, and GNOME are 2.66, 4.32, and 6.00, re-
spectively. Especially for the terminal-general of GNOME, the
imbalance degree is as high as 12.67.

In the bug repositories (Eclipse, Mozilla and GNOME), the
severity level of bug reports is designated as trivial, minor,
normal, major, critical, and blocker. As Lamkanfi et al. argued
in [36], the normal severity status is a default option, thus this
status tends to be ignored in related works. In our experiment,
the setting of the severity level is as the same as [36], [54], and
[59], in which the nonsevere class includes trivial and minor,
and the severe class includes major, critical, and blocker.

In our study, the text preprocessing of bug reports can be sum-
marized as the following five steps, i.e., tokenization, stop-word
removal, stemming, keyword dictionary, and keyword vector,
which is clearly shown in Fig. 4.

B. Experimental Setup

In our experiment, we use four well-known ILS (RUS, ROS,
SMOTE, and CMA) [2] as baseline algorithms to compare with
RSMOTE. In addition, we use Weka [58] to implement four
popular classification algorithms [NB, KNN, J48, and Random
Tree (RT)].

There are two integration approaches for the FMR-FI. One
is to integrate the same classifiers, another is to fuse different
classifiers. In both ways, the winners in SubTrs are selected as
the objects to be integrated and we will present that the proposed
method can further improve the performance of these selected
classifiers. Moreover, we compare the ensemble performance of
the FMR-FI approach with three well-known standard ensemble
methods: Majority voting, bagging, and AdaBoost [40]–[44].

Stratified three-fold cross validation is applied in our exper-
iment, which could keep the distributive characteristics during
each training iteration [22], [23]. In experimental part, k rep-
resents the number of nearest neighbor minority-class samples
for each sampling center point. Due to lacking approach to op-
timize this value, as most related work [2], k is an empirical
value. In our study, k is set to 5. In addition, N is used to control
the number of new synthetic minority-class samples. N is cal-
culated by the imbalance degree (M), which can be expressed
as N=round(M)-1, where round(M) denotes an approximate
integer to M and the M of each dataset is shown in Table I.
RSMOTE runs oversampling process N times to balance the
class distribution.

C. Evaluation Metrics

In our study, four evaluation metrics (accuracy, precision,
recall, and the F-measure) is used to evaluate the performance
of FMR-FI [25]. The four evaluation metrics can be computed
by the confusion matrix, as presented in Table II.

1) Accuracy: The accuracy represents the proportion of bug
reports correctly classified to the total number of bug re-
ports

Accuracy =
TP + TN

TP + FP + TN + FN
. (22)
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TABLE II
CONFUSION MATRIX, WHICH CAN BE USED TO CALCULATE THE

EVALUATION METRICS

2) Precision: The precision represents the proportion of all
bug reports that are predicted to be either nonsevere or
severe and are actually nonsevere or severe, respectively,

Precision =
TP

TP + FP
. (23)

3) Recall: The recall represents the proportion of all bug
reports that are actually nonsevere or severe and are cor-
rectly predicted to be nonsevere or severe, respectively,

Recall =
TP

TP + FN
. (24)

4) F-measure: F-measure represents the balance and dis-
crepancy between precision and recall, which can be com-
puted using the precision and recall. The F-measure has
a property whereby if either the precision or recall is low,
the F-measure also decreases

F − measure =
2 × Precision × Recall

Precision + Recall
. (25)

V. EXPERIMENTAL RESULTS

In this section, we discuss the the specific research questions
based on the experimental results.

RQ1: Which strategy is the best? We compare RSMOTE with
the other ILS in terms of the severity prediction performance
for bug reports with an imbalanced severity distribution.

In this experiment, we compared the results of RSMOTE ap-
proach with the original bug reports and the results of RUS, ROS,
SMOTE, and CMA, as shown in Tables III, IV, S-I–S-IV (see
Supplement). Afterward, for original datasets and each dataset
balanced by ILS (RUS, ROS, CMA, SMOTE, and RSMOTE),
we used four classifiers (NB, KNN, FT, and J48) to predict the
severity of bug reports and evaluated their performances. Alto-
gether, the six ILS and four classification algorithms considered
here yielded a total of 24 variants (i.e., combinations of one
of the ILS and one of the classification algorithms). Therefore,
to address this first research question, we wished to investi-
gate which variant has the best performance for identifying the
severity of bug reports. We used the accuracy and F-measure
as evaluation metrics to compare all 24 variants. The detailed
results of Eclipse and GNOME (i.e., accuracy and F-measure
values) are shown in “supplementary.pdf,”1 where we retain the
original number and name of the tables. From all results in these
tables, we can draw several conclusions in the following.

1https://github.com/swordlin/FMR-FI

In Tables III, S-I, S-II, we compare the accuracy of classi-
fying the severity of bug reports characterized by imbalanced
distributions. With RSMOTE, the classifiers can achieve the
highest maximum accuracy in predicting the severity of bug
reports. As shown in Table III, the maximum accuracies of
RSMOTE for four Mozilla components are 86.85%, 91.67%,
73.44%, and 84.54%. Besides, the maximum classification ac-
curacy achieved with RSMOTE for Mozilla is higher than those
achieved with the others, i.e., Original, RUS, ROS, CMA, and
SMOTE, the increments are 5.01%, 13.90%, 3.36%, 2.41%, and
3.57%, respectively. As shown in the AV G ACC columns in
Tables III, S-I, S-II, the RSMOTE approach can also yield a bet-
ter average accuracy than the other ILS. In Table III, the average
accuracy of RSMOTE is also higher than original dataset and
other ILS (RUS, ROS, CMA, and SMOTE), the increments are
4.51%, 26.72%, 8.14%, 3.10%, and 3.96%, respectively.

When classifying bug reports characterized by an imbalanced
distribution, a classification algorithm may be prone to the ma-
jority category. Therefore, its classification performance can-
not be objectively reflected by the classification accuracy [26].
In this experiment, we compared the classification effect (F-
measure) achieved in bug report severity prediction for each
component from the Eclipse, Mozilla, and GNOME projects, as
shown in Tables IV, S-III, S-IV (see Supplement).

In Tables IV, S-III, S-IV, we compare the performance of the
RSMOTE approach with the performances of other ILS when
predicting the severity of bug reports following imbalanced dis-
tributions. As shown in the MAX F columns of Table IV, the
maximum F-measures produced by RSMOTE are higher than
that of other ILS (RUS, ROS, CMA, and SMOTE). For ex-
ample, in Table III, the average F-measure of RSMOTE is in
excess of those of Original, RUS, ROS, CMA, and SMOTE, and
the increments are 5.32%, 20.13%, 6.95%, 3.31%, and 3.92%,
respectively.

These experiments suggest that the RSMOTE approach can
effectively balance bug report datasets, thereby improving the
performance of classifiers for bug report severity prediction.
We also observe that the performance predicting the severity
of Mozilla bug reports is higher than that for Eclipse bug re-
ports, while the performance on GNOME bug reports is the
best. In regard to the average classification performance for
predicting the severity of bug reports, the NB classifier with
the RSMOTE approach is the most suitable for predicting the
severity of bug reports from Eclipse and Mozilla, whereas the
KNN classifier with the RSMOTE approach is the most suit-
able for predicting the severity of bug reports for the GNOME
bug repository. In general, for individual software components,
different classification variants achieve different performances
in predicting the severity of bug reports. Thus, in the follow-
ing experimental part, we use the variant with the best perfor-
mance as a baseline to compare the performance of our proposed
approach.

RQ2: Can the fuzzy integral approach improve the stability
of RSMOTE when predicting the severity of bug reports char-
acterized by an imbalanced distribution?

As discussed in RQ1, RSMOTE can effectively alter the size
of the bug report datasets and provide the same proportion of
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TABLE III
ACCURACY OF RSMOTE TO PREDICT THE SEVERITY OF Mozilla

TABLE IV
F-measure OF RSMOTE TO PREDICT THE SEVERITY OF Mozilla
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Fig. 5. Performance of predicting the severity of Eclipse bug reports. (a) Accuracy (b) F-measure.

Fig. 6. Performance of predicting the severity of Mozilla bug reports. (a) Accuracy (b) F-measure.

Fig. 7. Performance of predicting the severity of GNOME bug reports. (a) Accuracy (b) F-measure.

balance. In this research study, the evaluation metrics (namely,
accuracy, and F-measure) are used to verify the stability of the
approach combining fuzzy integral and RSMOTE. As shown in
the experimental results, the fusion method could improve the
stability of RSMOTE in most cases.

As shown in Figs. 5–7, the performances achieved by using
the FMR-FI approach in integrating the different classifiers are
better than those achieved by integrating the same classifiers and
are better than the results achieved by using RSMOTE alone.
In Fig. 5, the average accuracies achieved by using the FMR-

FI approach for integrating different classifiers to classify the
severity of bug reports for six Eclipse components are higher
than those achieved by using RSMOTE alone; the increments are
7.71%, 9.03%, 1.18%, 9.82%, 4.51%, and 8.26%, respectively.
The corresponding improvements of the average F-measure are
6.94%, 7.41%, 2.56%, 12.33%, 5.63%, and 9.46%, respectively.
In Fig. 6, the average accuracies achieved by using the FMR-
FI approach for integrating different classifiers to classify the
severity of bug reports for four Mozilla components are higher
than those achieved by using RSMOTE alone; the increments
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Fig. 8. Performance of predicting the severity of Eclipse bug reports. (a) Accuracy (b) F-measure.

Fig. 9. Performance of predicting the severity of Mozilla bug reports. (a) Accuracy (b) F-measure.

are 1.66%, 0%, 10.06%, and 4.70%, respectively. The corre-
sponding increments of average F-measure are 4.71%, 1.10%,
10.96%, and 3.61%, respectively. In Fig. 7, the average accu-
racies achieved by using the FMR-FI approach for integrating
different classifiers to classify the severity of bug reports for
six GNOME components are higher than those achieved by us-
ing RSMOTE alone; the increments are 3.26%, 1.43%, 0.06%,
10.90%, 1.48%, and 1.42%, respectively. The corresponding
improvements of average F-measure are 2.30%, 1.05%, 0%,
8.24%, 2.41%, and 12.05%, respectively.

Thus, these experiments show that the FMR-FI approach
for integrating different classifiers can provide reliable perfor-
mance in classifying the severity of bug reports in the Eclipse,
Mozilla, and GNOME bug repositories. This improvement in
performance can be attributed to two factors. One factor is that
the fusion of multi-RSMOTE with the fuzzy integral approach
weakens the occasionality caused by random sampling process
and improves the generalization ability of the RSMOTE ap-
proach. The other factor is that the FMR-FI approach for in-
tegrating different classifiers can complement the classification
performance of the classifiers, resulting in a higher overall per-
formance than that of individual classifiers. In addition, the
performance improvement in classifying the severity of bug re-
ports in the Eclipse bug repository using FMI-FI is higher than

that for Mozilla, and the performance improvement for Mozilla
is higher than that for GNOME.

RQ3: Can the FMR-FI approach outperform state-of-the-art
approaches?

In order to demonstrate the superiority of the FMR-FI
approach, in this experimental part, the proposed FMR-FI ap-
proach is compared with three popular classifier ensemble ap-
proaches (namely, voting, bagging, and AdaBoost). Two evalu-
ation indexes (i.e., accuracy and F-measure) are used to evaluate
the performance of fusion of multiclassifiers to predict the class
label of bug reports. The accuracy and F-measure are shown
in Figs. 8–10 and the performance of the FMR-FI is better
than that of voting, bagging, and AdaBoost approaches on all
datasets. Fig. 8 shows the performance in classifying the sever-
ity of Eclipse bug reports. The average accuracies are 8.16%,
10.03%, and 11.04% higher than that of voting, bagging, and
AdaBoost, respectively, and the average F-measure are 7.35%,
10.30%, and 11.57% higher than that of other ensemble meth-
ods, respectively. Fig. 9 shows the performance in classifying
the severity of Mozilla bug reports. The average accuracies are
4.39%, 6.58%, and 6.63% higher than that of voting, bagging,
and AdaBoost, respectively. And the average F-measure are
4.82%, 7.41%, and 8.75% higher than that of other ensemble
methods, respectively. Fig. 10 shows the performance in clas-
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Fig. 10. Performance of predicting the severity of GNOME bug reports. (a) Accuracy (b) F-measure.

sifying the severity of GNOME bug reports. The average accu-
racies are 3.53%, 6.33%, and 6.76% higher than that of voting,
bagging and AdaBoost, respectively and the average F-measure
are 3.65%, 6.29%, and 6.29% higher than that of other ensemble
methods, respectively.

We also could find that the performance of the FMR-FI ap-
proach in classifying the severity of GNOME bug reports is
higher than that for Mozilla bug reports and is higher than that
for Eclipse bug reports. These experiments also show that for
all datasets from the Eclipse, Mozilla, and GNOME bug repos-
itories, the FMR-FI method leads to a better performance than
the three widely used classifier ensemble approaches (namely,
voting, bagging, and AdaBoost). In addition, the classification
performance of the voting approach is generally better than that
of the bagging and AdaBoost approaches for classifying the
severity of the Eclipse, Mozilla, and GNOME bug reports.

VI. CONCLUSION AND FUTURE WORK

In this study, we propose a method to fuse the results of
classifiers via a Choquet fuzzy integral to boost the performance
for predicting the class label of bug reports with class imbalance.
First, we propose an RSMOTE method to alter the size of the bug
report datasets. Then, we build several classifiers over different,
but related training datasets generated via RSMOTE. Finally,
the trained classifiers are integrated by Choquet fuzzy integral
to obtain the ultimate prediction results. Several experiments are
conducted on 16 datasets from Eclipse, Mozilla, and GNOME.
The experimental results statistically demonstrate that FMR-
FI can effectively improve the classification performance for
severity prediction.

In the future work, we plan to apply the FMR-FI approach to
cover more software projects, especially the industrial projects,
so as to demonstrate an even broader applicability of this
method. We also plan to research an improved synthetic sam-
pling approach for imbalanced learning.
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