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The presence of missing data is a challenging issue in processing real-world datasets. It is
necessary to improve the data quality by imputing the missing values so that effective
learning from data can be achieved. Recently, deep learning has become the most powerful
type of machine learning techniques, which can be used for discovering the hidden knowl-
edge that exists in a large dataset to make accurate predictions. In this paper, we propose
an imputation method that involves using a convolutional neural network to impute the
missing values. The missing value of each instance is imputed essentially by using a trained
kernel. The weights of the kernel are determined by learning from the given data that are
arranged spatially in the data matrix. The kernel carries out a weighted sum of neighboring
elements in an array for imputing the missing values. In addition, in the absence of the true
values with which the missing values are expected to be replaced, a loss function is
designed without the need to know the true value. Our method is evaluated on UCI data-
sets in comparison with state-of-the-art methods. The experimental results show that the
proposed approach performs closely to or better than other methods.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

In the current era, in different domains, a vast amount of data is generated gradually and the rapid increase in the data
size has shown the recognition of the significance of big data analysis. It is necessary to make sure collected data are trust-
able and valuable because poor quality data cannot be used to produce reliable models. In practice, the existence of missing
values in the collected data set is a common and unavoidable issue that can lead to ambiguity in data analysis. The presence
of missing data can occur in various domains, such as gene expression [18], traffic control [3], industrial informatics [22],
image processing [48], and software project [42]. Data analysis made without addressing the above-mentioned issue may
produce misleading results. Therefore, it is necessary to improve the data quality by effectively handling missing values.

The traditional methods of missing data handling can be summarized into two categories. The first one is deletion, which
is designed to eliminate all those instances that have some features with missing values. The second approach is imputation,
which aims to replace the missing values with some reasonable values. There have also been different machine learning
based imputation methods, e.g., k-nearest neighbors (KNN) [9], recurrent neural networks (RNN) [9,17,34,16], and genera-
tive adversarial imputation networks (GAIN) [47,14,44,29]. Also, in [25], a machine learning based missing data imputation
approach has recently been proposed in which the missing value of each sample is imputed by selecting a shorter interval
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(i.e., the interval is actually selected by taking a sub-interval of the domain of the corresponding feature) and then taking the
average of the feature values that fall in this interval. This approach shows good performance of imputation but it does not
take into account the feature correlation which can be used to improve further the imputation accuracy and robustness.

For instance, in [11,32], the concept of feature correlation was used to enhance the imputation performance. It is inter-
esting to know that the proposed approach was designed in [32] to impute the missing values just by exploiting the feature
correlation and some other useful patterns that exist in data and the imputation effectiveness can be improved by consid-
ering only those features that have high correlation in the setting of deep learning. In our proposed approach, to improve the
imputation accuracy, we propose to identify the correlation that exists in the data matrix and make use of the correlation
information to achieve an improvement of the prediction performance. Therefore, in this paper, we pay a special attention
on the data sets that hold the non-linearity and spatial relationship. Here the term ‘‘spatial relationship” refers to the spatial
arrangement of the data in the data matrix. In the above-mentioned data arrangement, the kernel can be learned more effec-
tively by exploiting the correlation information that exists in the given data. Otherwise, the kernel may not be constructed
sufficiently well. Furthermore, the true value with which the missing value is expected to be replaced is likely to be unknown
in real life. Therefore, it is necessary to explore how to design a loss function without the need to know the true value.

In addition, in the last few years, deep learning has been extensively used in different fields, including missing data impu-
tation, which has led to a significant improvement of the imputation performance through using a large amount of training
data. Therefore, due to the remarkable success of generative adversarial network (GAN), a great attention has been paid
towards applying them for missing value imputation. In [47], a GAN based imputation method was proposed but it requires
hyper-parameters setting to adjust the effect of the MSE loss term as well as the rate of discriminator hint vectors. In [28],
generator and discriminator networks are used separately to learn the structure and distribution of the missing data.
Although these GAN based methods show state-of-the-art performance, it should be noted that the presence of additional
loss terms may often bias the generated samples toward the mode of the distribution being modeled. Also, these methods
are often too complicated to be applied in practical setups.

The objective of this paper is to impute the missing value and measure how robust our imputation approach is. It is also
highly desirable to measure how the imputation impacts the classification accuracy. In this paper, we propose a convolu-
tional neural network imputation (CNNI) approach to handle the missing values to improve the data quality. In particular,
the relevant issues are addressed by developing new models and strategies for effective recovery of missing data in the set-
ting of deep learning. The proposed approach (CNNI) is considered not only useful for handling large datasets but also helpful
for generating reasonable values for the imputation of missing values.

The main findings of this paper include:

� A new imputation approach based on a well-known deep convolutional neural network architecture is proposed.
� The proposed approach is capable of improving the effectiveness of missing value imputation through training a convo-
lutional kernel by exploiting the useful information that exists in the given data, such as the spatial relationships and the
non-linearity.

� It is validated experimentally and statistically that the proposed CNNI shows improved performance on 7 datasets from
the UCI repository [19], as compared to other state-of-the-art imputation methods.

The rest of the paper is organized as follows: Section 2 briefly reviews the related work on machine learning based impu-
tation methods. The proposed approach is presented in Section 3. Section 4 presents the experimental setup, results and
empirical analysis of the proposed approach. Finally, the concluding remarks and future work are presented in Section 5.
2. Related work

This section reviews some representative works that focus on the missing data handling methods. Since the presence of
missing data is a common problem in many data-driven applications, many studies have been conducted to handle this
problem. In particular, the imputation of the missing values generally requires specific assumptions about the data distribu-
tion, i.e., any inappropriate assumptions can bias the estimations of the imputed values. However, traditional approaches of
missing data imputation can be categorized into two types - statistical methods and machine learning based ones. In many
fields, to handle the missing data problem, different imputation techniques have been proposed, e.g., a class center based
approach [41], KNN [13], fuzzy clustering [25], a bagging based method [2], auto-encoder neural networks [27,15], similarity
rules [37], multiple imputation by chained equations (MICE) [46] and random forests [39]. In [41], a class center based miss-
ing value imputation approach was proposed to achieve more effective replacement of missing values, and it was considered
a modified form of mean imputation. In this approach, the distance between each of data points within a class and the center
of the class is calculated, and the threshold for the later imputation is defined by using the other observed data.

In [8], various machine learning based predictive models, such as KNN, support vector machines (SVM) and decision trees,
have been used to impute the missing values by formulating the imputation problem as an optimization one. K-nearest
neighbor imputation (KNNI) is considered one of the most popular techniques due to its simplicity and effectiveness com-
pared to other approaches. In [13], purity k nearest neighbors imputation (PkNNI) was proposed as an extension of the tra-
ditional KNNI method, which is based on purity training and imputation. In this method, the purity of a record is computed
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by aggregating the votes of records that are selected as their nearest neighbours. However, for a huge dataset, NNI can be
computationally expensive, since it needs to go through all the instances in order to impute each incomplete record in a data
set. As a result, the performance of NNI is limited in the presence of a large amount of missing data [35]. Moreover, finding
the nearest neighbours and identifying the exact distance function could be a difficult task [4]. Furthermore, a random forest
based imputation approach was proposed in [39] and it was revealed that the performance and robustness of random forest
imputation could be improved with increasing feature correlation.

In MIAEC [46], the chain approach was used to mine all evidence of missing values which are relevant and set up the fur-
ther estimation of the missing values. In addition, Tian et al. [40] applied the fuzzy c-mean (FCM) clustering technique to
group the observed data for training the gray theory based classifier to impute the missing values. An iterative approach
named ‘‘incremental attribute regression imputation” was proposed in [43], which aims to build a sequence of regression
models to impute the missing values iteratively. In addition, the class label of each sample is used as a predictor variable
in the setting of incremental attribute regression imputation. The traditional missing data imputation approaches mainly
focus on using different probabilistic models or regression methods to impute the missing values, and they only take limited
information as inputs. Thus, they cannot perform very accurate imputation especially for data with a high ratio of missing
values. However, in the case of very large datasets, machine learning based imputation approaches (e.g., KNN, MICE and
fuzzy clustering) require much computation time, which makes these approaches less practical in the task of imputing a
large amount of missing data.

In recent years, with the increase in the size of data, deep learning has shown great potential in different areas including
biology [45], image reconstruction [50,6], biomedical imaging [12] and genomics studies [10]. Also, some deep learning
methods have also been proposed to specifically solve the missing data imputation problem in various contexts leading
to promising results [5,24]. For instance, in [36], the multi-layer perceptron (MLP) network was used to impute the missing
values and was investigated in terms of the impacts of different learning rules and model parameters on the final perfor-
mance. In [27,15], the auto-encoder architecture was used for missing value imputation, which involves learning how to
reconstruct the original input value by minimizing the reconstruction error. In [47], the GAN network was used to impute
the missing values. For GAN based approaches, it is quite costly to train the model due to the requirement of high perfor-
mance computing resources. A hybrid approach based on neural networks and genetic algorithm is used in [1] to impute
the missing values for medical IoT implementations. The method benefits from the effectiveness of deep learning in imput-
ing the missing data and the usefulness of genetic algorithm in optimizing the weights of the neural network. In [27], an
imputation model was proposed by using the auto-encoder based architecture that reduces the complexity of the data. In
addition, in MIDA, [23] proposed a model based on a complete deep denoising auto-encoder that can handle different types
of data, missingness patterns and missingness proportions.

In [20], a deep learning based missing value imputation approach was proposed for handling traffic data. The deep learn-
ing based approach is capable of discovering the correlations present in the data by a layer-wise pre-training and can
improve the imputation performance by conducting a fine tuning afterward. In [9], a deep model was used for imputing
the missing values present in time series data, where the model captured the long term temporal dependencies of time series
observations and utilized the missing patterns for improving the prediction performance by incorporating masking and time
interval in a deep model. Moreover, in [49], a novel local similarity imputation method was proposed to estimate the values
to impute the missing data based on fast clustering and top knearest neighbors. In particular, a two-layer stacked auto-
encoder combined with distinctive imputation was applied to locate the principal features of a dataset for the clustering part.

The above methods aim at predicting the values to impute the missing data one by one and directly by clustering, regres-
sion or neural networks. In Section 3, we present a new approach, which involves the use of CNN to extract deep features by
exploiting the spatial correlation that exists in the arranged data matrix, and imputation is achieved by using a kernel that is
produced by learning the non-linearity that exists in the given data. To the best of our knowledge, this is the first time a CNN
approach has been applied to impute missing data.

3. Methodology

In this section, we will discuss the proposed method of missing value imputation, which is designed in the setting of CNN.
The basic idea of the proposed approach is to impute the missing values essentially by using a trained CNN kernel, whereas
the weights of the kernel are determined by learning the non-linearity and spatial property that exist in the given data. In the
proposed approach, first of all, we find the correlation between the features so that the most correlated features can lie close
to each other. In this way, the kernel can be learned more effectively by exploiting the correlation information that exists in
the given data. Otherwise, the kernel may not be constructed sufficiently well. Secondly, the FCM algorithm is applied to
organize instances into various clusters. Later on, the instances are sorted in an ascending order on the basis of the mem-
bership values to which these instances belong to a cluster. Finally, the proposed CNNI approach is applied to impute the
missing values present in the well-organized data. This study focuses on imputing the missing values present in data that
carry non-linearity and spatial relationships. The detailed description of the proposed approach is provided in the following
subsection.
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Algorithm1: Training of the proposed CNNI method
281
3.1. Problem formulation

We have a dataset which is represented in the form of a m� n matrix, where m is the number of instances and n is the
number of features. The original data set X is splitted into two parts, i.e., the training data (Xt

obs 2 Rm�n) and the testing data

(Xt0
obs 2 Rm0�n), as shown in Fig. 1.
After data partitioning to obtain the training and test sets, we artificially created the missing values in Xt

obs 2 Rm�n and

Xt0
obs 2 Rm0�n, where these missing values are initially filled with zeros. After creating the missingness, we get new versions

of training data and testing data, i.e., Xt
miss 2 Rm�n and Xt0

miss 2 Rm0�n, respectively. Furthermore, the FCM algorithm is applied

on Xt
miss 2 Rm�n and Xt0

miss 2 Rm0�n to divide the data into different clusters (as shown in Fig. 1). Our objective is to impute the
missing values by exploiting the spatial relationships and the non-linearity information that exist in the data matrix. There-
fore, the instances are arranged in an ascending order on the basis of the membership values to which these instances belong
to a cluster so that instances with closer membership values can lie close to each other and vice versa. The objective of sort-
ing the data is to achieve more effective learning of the non-linearity pattern from given data.

The FCM algorithm can effectively organize n instances X ¼ x1; . . . ; xnf g into a number of fuzzy clusters. For a given set of
data, FCM returns k cluster centroids C ¼ c1; . . . ; ckf g and a partition matrix W, respectively, where each element li;j of W
represents the degree to which instance xi belongs to the j-th cluster and here we set the number of clusters k = 3. The objec-
tive of FCM is to minimize an objective function as shown in Eq. (1):
J ¼
Xn

i¼1

Xk

j¼1

ðlijÞmkxi � cjk2; ð1Þ
where kxi � cjk is the Euclidean distance between the i-th instance and the j-th cluster centroid and m 2 R denotes the fuzzi-
fication coefficient, i.e., the fuzzifierm determines how fuzzy the cluster will be, while m P 1. However, a greater value of m



Fig. 1. Block diagram of the proposed CNNI imputation approach. One block represents model training and the other one shows the model testing.
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results in a smaller membership value. In this study, we set its value m = 2. Furthermore, the membership degree to which
instance xi belongs to the j-th cluster is calculated by using Eq. (2).
lij ¼
1

Xk

j0¼1

kxi�cjk
kxi�cj0k

� � 2
m�1

; ð2Þ
where cj is the j-th cluster centroid and k is the number of clusters. Since identifying the centroid of a cluster is an iterative
process, it continues until the termination condition is met.
cj ¼

Xn

i¼1

ðlijÞmxi
Xn

i¼1

ðlijÞm
;8j ¼ 1;2; . . . ; k; ð3Þ
In general, singularity is not caused in the denominator of Eq. (2) unless instance xi is equal to the centroid of a cluster.
According to Eq.(3), for the j-th cluster, instance xi could be equal to centroid cj when li;j=1 and 8 i0– i: li0;j=0. However, this
case is unlikely in real applications. Therefore, there is very little possibility to obtain zero in the denominator of Eq. (2) caus-
ing singularity.

We can see in Fig. 1 that one block represents the model training while the other one is used to show the model testing. In
the training block, we have the clean training data (Xt

obs 2 Rm�n) on which we artificially created the missing values, and these
missing values are initially filled with zeros. After creating missingness, we get the polluted training data set which is
282
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denoted as Xt
miss 2 Rm�n, the Fuzzy c mean algorithm is applied on Xt

miss 2 Rm�n. As can be seen in Fig. 1, where c1; c2, and c3
represent the centroids of three clusters that contain instances with missing data, these clusters are passed to the CNNmodel
to impute the missing values (see Algorithm1).

On the other hand, in the testing phase, to create the missingness for the clean test data Xt0
obs 2 Rm0�n, the same training

procedure is repeated and we get the polluted test data Xt0
miss 2 Rm0�n. After training the CNN model (see Algorithm1), it is

evaluated on Xt0
miss 2 Rm0�n to impute the missing values as shown in Fig. 1 and Algorithm2. The missing values in Xt0

miss 2
Rm0�n can be imputed in the way illustrated in Eqs. (4) and (5).
Fig. 2.
betwee
colors a
xij ¼ f nðxt
0
missÞ; ð4Þ
f n ¼ f ð
X
i

wixi þ bÞ; ð5Þ
where f n(.) is the CNN network function that convolves over the data, xi is the i-th instance, wi is the weight vector of xi; b is
the bias term, and f is the activation function. We can notice that when the convolution operation is performed on the data it
changes all the values of data. Similarly, in our case, after completing the imputation process, we get a new matrix of data in
which all the values are changed due to the convolution operation. Therefore, to extract the imputed values, masking is

applied on the newly generated data matrix as shown in Fig. 1. Later on, these masked values are merged with Xt0
miss 2

Rm0�n to obtain finally imputed data. At the last, after masking, we get a complete matrix with finally imputed values as
shown in Fig. 1.

Furthermore, Fig. 2 represents an example of how a single value can be imputed by using a kernel for m� n input data. In
the pre-processing stage, first, we identify the correlation that exists in the data matrix so that the most correlated feature
values can lie close to each other. Fig. 2(a) represents the original data arrangement before identifying the spatial relation-
ship between feature values, while we can see in Fig. 2(b) that different colors are used to show different extents to which
different parts of these known values are spatially related to the missing value, after the data has been rearranged spatially
through identifying the relationship between feature values. In the above rearrangement of data, the kernel can be learned
more effectively by exploiting the correlation information that exists in the given data.

Let us have a kernel of sizeM � N (whereM is the number of rows and N is the number of columns) and the value of a unit
xij in the feature map is missing. The value of xij is calculated as a weighted sum of the inputs contained in a patch of size
M � N as shown in Fig. 2(b). The weights of the kernel are learnable parameters that are estimated by exploiting the non-
linearity information from the given data. Once the weights are optimized at the training stage, then they can be utilized
for missing data imputation at the testing phase. Eq. (6) shows how a filter convolves over the data and imputes the missing
value xij.
xij ¼ ðW � XÞði; jÞ ¼
XM
m¼1

XN
n¼1

Xi�m;j�nWmn; ð6Þ
where the symbol � represents the convolution operation, m and n are used to represent the indexes of the row and column,
respectively, i.e., m = 1 to M and n = 1 to N. In addition, i and j represent the indexes of the row and column in which the
missing value is located. However, after completing the testing phase, we get a new matrix of data in which all the values
are changed due to the CNN operation. The imputed data are taken out by applying the mask of missing parts on the final
imputed data as shown in Fig. 1. Later on, these masked values are merged with the missing ones due to the case that miss-
ing values are replaced with newly imputed data and the rest of the data remain unchanged (see Fig. 1).
An example of the process for missing value imputation. Fig. 2(a) represents the original data arrangement before identifying the spatial relationship
n feature values. Fig. 2(b) shows the spatial arrangement of the data after identifying the spatial relationship between feature values, where different
re used to show different extents to which different parts of these known values are spatially related to th.e missing value.
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Algorithm2: Imputation and testing procedure
284
3.2. Network architecture

The proposed method comprises of a particular family of neural network architectures known as CNN. Fig. 3 summarizes
the architecture of our network and we can see the designed architecture consists of a dense convolutional neural network
with a residual connection (CNN-DR). As the designed architecture carries a simple connectivity pattern, it aims to make sure
that maximum information can flow between layers in the network. Therefore, we densely connected all layers directly to
each other. However, to preserve the feed-forward nature, each layer obtains additional inputs from all its preceding layers
and passes on its feature maps to all subsequent layers. In the dense connection, the concatenation is used to receive the
collective knowledge from all preceding layers. A dense network is a type of convolutional neural networks, which utilizes
the dense connection between the layers, where each layer is directly connected to every other layer in a feed-forward fash-
ion. In contrast, in the traditional convolutional network, each layer is only connected to its subsequent layer, e.g., L layers
have L sets of connections. The advantage of using this dense connection is that it solves the vanishing-gradient problem,
strengthens the feature propagation, and encourages the feature re-usability property.

The dense and residual connections perform different operations, i.e., in a dense connection, we combine all the preceding
feature maps through concatenation. On the other hand, in a residual connection, we combine feature maps through sum-
mation before they are passed into a specific layer. The advantage of having these two (residual and dense connection) net-
works is that we can use only one preceding feature map in a residual connection, whereas features obtained from all the
preceding convolutional blocks can be used in a dense connection.

As can be seen in Fig. 3(a), the proposed CNN-DR architecture has six 2D Conv. layers with an increasing progressive num-
ber of filters that carry one residual connection. In Fig. 3(a), the solid line, which carries the input layer to the addition oper-
ator, is known as a residual connection. In particular, in the best-case scenario, including additional layers of the deep neural
network can perform better than using the shallower counterpart network and also reduce the error by a significant margin.
Therefore, we have included a residual block to achieve better performance than the one of the simple deep neural networks.
The block is represented as shown in Eq. (7).



Fig. 3. CNNI architecture for missing data imputation is shown in Fig. 3(a). The layer structure of CNNI is shown in Fig. 3(b), which represents how each
kernel (in the form of a 3� 3 matrix) convolves on the input (in the form of a m� n matrix) and then a feature map (in the form of a m� n� j tensor) is
obtained as an output, where the symbol � represents the convolution operation.
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xiþ1 ¼ xi þ Fðxi;WiÞ; ð7Þ

HðxÞ ¼ FðxÞ þ x; ð8Þ

FðxÞ ¼ reluðw2 � ðreluðw1xþ bÞÞÞ; ð9Þ

where in Eq. (7), xiþ1 and xi are the output and input units of the network, F is a residual function, and Wi represents the
parameters of the block, while Eq. (8) shows the feature transformation function where x is the input and FðxÞ is the residual
function. Similarly, Eq. (9) shows the residual function where relu is the activation function,w1 andw2 represent the weights
in the first and second layers and b is used to represent the bias term. We use the residual block within the simple network
because setting a skip connection in the residual network solves the vanishing gradient problem. In particular, this problem
is resolved by allowing the alternate shortcut (via residual block) path for the gradient to flow through. The other way that
this connection helps the model is to ensure that the higher layers will perform at least as good as the lower layers. With a
residual block, the input can forward-propagate faster through the residual connection across layers.

We can see in Fig. 3(a) that the input data matrix has some randomly created missing values and there is a corresponding
complete data matrix at the output. In order to avoid information loss and keep the data size consistent, padding is adopted
to achieve that the output size of data remains the same as the input one. Moreover, in the designed architecture, the kernels
have some weights which are the learnable parameters and the weight values form their surrounding which lies under a
kernel. In addition, rectified linear unit (ReLU) is used as the activation function due to its effectiveness and popular appli-
cations in practice. The trainable parameters in a convolutional layer are estimated by Eq. (10).
ðKh � Kh � Fi�1 þ 1Þ � Fi; ð10Þ

where Kh � Kh is the convolutional kernel size, Fi�1 represents the number of feature maps in the previous and current layers
and + 1 shows a bias is added. Furthermore, Fig. 3(a) shows the imputation of a randomly missing value of a data sample
going through a trained model. Once the model is trained, it is capable of imputing the missing values through the trained
kernel.

3.3. Loss function

Our proposed CNNI approach is considered as an end-to-end joint learning scheme, where missing data imputation and
classification are undertaken simultaneously. In other words, the proposed approach does not only focus on the imputation
of missing values, considering that the main objective is to improve the classification performance and the imputed data are
expected to be helpful in improving the effectiveness of classifier learning as pointed out in [21,25]. Also, due to the case that
the true value with which the missing value is expected to be replaced is likely to be unknown in real life [30], a loss function
285
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is designed without the need to know the true value, in order to measure how effectively the missing values are imputed in
terms of promoting performance improvements in classification tasks.

In terms of the design of the proposed loss function, we adopt fully connected layers to undertake classification of the
imputed data, where the softmax activation function is used to output a vector of class probabilities for each of the imputed
instances. In this setting, the true labels (XL

true 2 Rm�n) and the predicted labels (Xpred 2 Rm�n) are passed to a loss function to
compute the loss, where the true labels are converted into one-hot vectors that can be directly compared with the predicted
probability distributions. Specifically, the difference between XL

true 2 Rm�n and XL
pred 2 Rm�n is calculated by using categorical

cross entropy shown in Eq. (11). To reduce the cross-entropy loss, the weights of the CNN kernal are changed towards reduc-
ing the difference between the predicted and true labels. This procedure is continued until the loss gets minimized (as shown
in Fig. 1).
Table 1
The sele

Data

Lette
Optd
Segm
Pend
Park
Ozon
Wav
CrossEntropy ¼ �
Xn

i¼1

X
L

trueðiÞ
logð X

L

predðiÞ
Þ; ð11Þ
where n is the total number of classes, X
L

trueðiÞ
is an indicator of whether the i-th class is the ground truth one, and X

L

predðiÞ
is the

probability estimated for i-th class.

4. Experimental results and discussions

4.1. Experimental framework

In this section, we present the experimental performance of our proposed method and measure how the imputation per-
formance superiority of the proposed approach is significant as compared to the performance of others. In particular, 7 data-
sets from the UCI machine learning repository are selected and their details are given in Section 4.2. Initially, random
artificial missingness is created on the clean instances and these missing values are replaced with zeros. Later on, these miss-
ing values are imputed using the proposed CNNI approach and some other imputation techniques are selected for the sake of
comparison, i.e., KNNI [7], MissForest [38], MICE [33], GAIN [47]. Finally, we confirm the stability of the proposed CNNI
approach with the setting of different missing ratios (i.e., 10%, 20%, 30%, 40%, 50%, 60%, 70%). The performance evaluation
of CNNI is undertaken by using five supervised learning algorithms (LR, LDA, KNN, NB and MLP) to train classifiers on
imputed data. On each dataset, the experiment is executed 5 times in the setting of random data paritioning (80% for training
and 20% for testing) and the average classification accuracy alongside the standard deviation is obtained, which is considered
the final score of the imputation performance. Initially, 20% attribute values of all data points from the clean data are arti-
ficially removed. As a result, a dataset with missing values is generated.

4.2. Datasets

Table 1 gives the details of the selected datasets, such as the number of attributes, instances, and classes. We can see that
none of the datasets has missing values, except the Ozone dataset. While in our case for evaluating the effectiveness of miss-
ing values imputation, the datasets should not contain missing values, such that a direct comparison with the performance
obtained on clean data can be achieved. Therefore, during the data pre-processing stage, all the instances (records) that orig-
inally carry the missing values are removed. Instead, we artificially remove some feature values of these clean instances to
create any missing values. Furthermore, we normalized each of the values into the range ½0;1� to avoid the destructive effect
of large scale values in the computation, i.e., normalization is taken to keep the domains of the features more consistent with
each other.

4.3. Experimental setting

The proposed architecture based on CNN is shown in Fig. 3, where the network is composed of six 2D convolutional lay-
ers, which each has a successive number of kernels, i.e., 16, 32, 64, 128 and 256, respectively, with the size of 3� 3, as shown
cted UCI datasets for experimental work.

set No.Rec. No. Attr. Classes Missing data

r Recognition (LR) 20000 16 26 No
igits (OD) 5620 64 10 No
entation (Sg) 2310 19 7 No
igits (PD) 10992 16 10 No
inson(Pk) 5875 26 42 No
e (Oz) 2536 73 2 Yes
eform (WF) 5000 21 3 No
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in Fig. 3. The learning rate [26] is set to 1e�3, and the batch size is set to 4. The Adam optimizer is used with its default
parameter setting to minimize the loss (considering the high efficiency of the optimizer) and a customized loss function
(cross entropy) is used for the loss calculation at the output. In addition, to train the network, the number of epochs should
be specified. Since having too few epochs often leads to under-fitting and a high computational cost and overfitting could
result from having too many epochs, in our experiment, we set to involve 500 epochs. Interestingly, the convolution oper-
ation of CNN reduces the dimensionality of the input data and also there exists some boundary conditions for the elements
that are close to the boundary line. Therefore, to address this problem, we take padding by adding zeros to the end of the
input array and the stride size is set to 1. The advantage of adding this padding is that we ensure the output size to be
the same as the input one. In addition, the ReLU activation function is used for each layer.

4.4. Performance evaluation criteria

In this paper, we selected classification accuracy as the metric to evaluate the proposed CNNI approach. The performance
of imputation is evaluated by using five well known supervised learning algorithms, i.e., LR, LDA, KNN, NB and MLP. Classi-
fication accuracy is measured to specify the effectiveness of missing data imputation on the performance of classification. It
is important to note that the objective of the experiments is to analyse how effectively missing value imputation helps
improve the classification performance. Therefore, it is not a good choice to select the MAE and RMSE for performance eval-
uation, because a lower MAE or RMSE of imputation cannot directly indicates a higher score of classification accuracy. Due to
this reason, we selected different algorithms of classifiers training to evaluate the performance in the absence of missing val-
ues and in the presence of missing values. We consider two aspects to evaluate the performance of the proposed CNNI
approach. First, we want to analyse how good the performance of learning from the imputed data produced by CNNI is,
in comparison with the performance of learning from the clean data. Second, we want to confirm the effectiveness of our
method by comparing it with others. Therefore, for evaluation in these perspectives, the original data set is partitioned into
3 parts, namely, the clean training subset, the training subset with missing values and the testing set (the proportion of divi-
sion is 60%, 20%, 20% respectively). We conduct the whole procedure of performance evaluation in two steps. In the first step,
we use the aforementioned algorithms (LR, LDA, KNN, NB and MLP) to train classifiers on entirely clean data and perform the
evaluation of each classifier on testing data (without missing values). In the second step, we use the same algorithms to train
classifiers on the mixture of the clean instances and the instances with imputed values for evaluation using testing data
(with some missing values). In Table 2, the results obtained through the two steps are shown.

4.5. Results and discussions

In this section, a detailed description of the comparison of the proposed method with other different imputation methods
is provided. Table 2 shows the classification accuracy obtained using various methods over the randomly generated missing
values. As it is shown in Table 2, there is a significant performance difference between the proposed method and each of the
other ones. This difference can be visualized from Fig. 4, which is a graphical representation of Table 2. In Table 2, the best
scores obtained on each dataset are shown in the bold format in a column and the second highest score is underlined. The
experimental results obtained through varying missing ratios (i.e., 10%, 20%, 30%, 40%, 50%, 60%, 70%) are shown in Table 3
and are visualized in Fig. 5 and Fig. 6, which indicate that our imputation technique shows stable performance. The classi-
fication accuracy does not vary significantly with the change of the missing ratios in the data sets, and the phenomenon indi-
cates that with the increase of the missing ratio in a data set the performance of the proposed approach will not become
obviously worse. In addition, Table 3 shows the effectiveness and feasibility of the proposed CNNI approach while missing
ratios vary. The results obtained on all the datasets show that the imputation based on the spatial relationship in the data
matrix can result in an improvement of the classification performance.

Also, our proposed approach is compared with other state-of-the-art imputation methods. The performance of the pro-
posed CNNI approach is compared with that of four different imputation methods, i.e., GAIN, RandomForest, KNNI, and MICE
imputation approaches. In our experiments, we used the publicly available code in GitHub for implementing the GAIN
approach and other imputation methods were implemented by using the Scikit-learn library [31], where the default param-
eter settings of various methods are used. We performed all our experiments on desktop computer intel(R) core(TM) i5-7400
CPU@3.00 GHz having 64-bit operating system.

We can see in Table 2 that the classification accuracy achieved on the data imputed by CNNI is better than the one
achieved on clean data, which shows that the imputed values help improve the feature representation through using our
proposed CNNI approach. Furthermore, it can be observed from the experimental results that in the majority of the cases
for all the selected classifiers the performance produced by our CNNI approach is better than the one obtained by the other
methods. However, the results indicate that for some classifiers trained on some datasets, the performance of our method
remains marginally worse. For example, we can observe that the average accuracy of KNN and MLP classifiers trained on
the optdigits and waveform data sets with missing value imputation by the GAIN method is a little bit higher than the
one produced by CNNI. In addition, NB classifiers show better performance on pendigits and segmentation datasets, while
using the GAIN method for missing value imputation. Random Forest shows better performance on pendigits and ozone
datasets while using LR classifiers. Similarly, better performance can be obtained on the original (clean) versions of letter
recognition and ozone datasets while using LR and NB classifiers, respectively, and the KNNI method shows better perfor-
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Table 2
Classification accuracy obtained using various imputation approaches and supervised learning algorithms on 7 UCI datasets.

Dataset Classifiers RandomForest MICE KNNI GAIN Clean Data CNNI

Pendigits (PD) LR 92.871 ± 0.077 91.915 ± 0.469 92:700� 0:469 90.807 ± 0.550 91.859 ± 0.000 88.331 ± 0.307
LDA 86.606 ± 0.027 87.174 ± 0.593 87:413� 0:703 87.234 ± 0.609 86.857 ± 0.000 87.788 ± 0.262
KNN 99.488 ± 0.000 99.124 ± 0.253 99.215 ± 0.222 99:359� 0:205 98.908 ± 0.000 99.617 ± 0.018
NB 85.730 ± 0.000 86:344� 0:821 86.048 ± 0.848 86.431 ± 0.915 85.629 ± 0.000 81.473 ± 0.068
MLP 98.215 ± 0.151 98.811 ± 0.105 98.635 ± 0.450 98:975� 0:296 97.772 ± 0.000 98.988 ± 0.231

Optdigits (OD) LR 96.450 ± 0.084 96.733 ± 0.388 – 95.647 ± 1.923 96:797� 0:000 96.838 ± 0.222
LDA 95.063 ± 0.055 94.933 ± 1.138 - 93.867 ± 3.002 95:618� 0:000 95.697 ± 0.267
KNN 98.019 ± 0.042 98.622 ± 0.499 – 99.489 ± 0.625 98.833 ± 0.000 98:843� 0:000
NB 91.290 ± 0.162 91:666� 0:810 – 87.815 ± 4.805 91.459 ± 0.000 91.879 ± 0.297
MLP 98.489 ± 0.116 98.400 ± 0.268 – 100.00 ± 0.000 97.754 ± 0.000 98:884� 0:354

Letter Recognition (LR) LR 71.085 ± 0.040 71:287� 0:684 71.206 ± 0.787 41.205 ± 0.870 70.825 ± 0.000 71.465 ± 0.302
LDA 69:708� 0:014 69.556 ± 0.825 69.625 ± 0.970 41.232 ± 0.735 69.680 ± 0.000 69.975 ± 0.188
KNN 94.684 ± 0.104 94:693� 0:825 94.631 ± 0.253 76.571 ± 1.474 94.225 ± 0.000 94.930 ± 0.131
NB 63.246 ± 0.024 63.081 ± 0.465 63.250 ± 0.455 38.345 ± 0.919 64.025 ± 0.000 63:730� 0:452
MLP 92.882 ± 0.311 92.950 ± 0.341 92.987 ± 0.275 62.923 ± 1.417 92.025 ± 0.000 92:850� 0:369

Segment (SG) LR 92.571 ± 0.246 92.417 ± 1.363 – 92.566 ± 1.518 93:285� 0:000 94.022 ± 0.407
LDA 92.046 ± 0.060 90.494 ± 0.992 – 92:372� 1:298 90.769 ± 0.000 92.406 ± 0.291
KNN 94.274 ± 0.237 94.120 ± 0.788 – 96.378 ± 1.326 92.747 ± 0.000 94:659� 0:107
NB 81:318� 0:000 79.230 ± 2.820 – 81.988 ± 2.581 79.560 ± 0.000 70.769 ± 2.103
MLP 96.035 ± 0.759 95.439 ± 0.788 – 93.257 ± 1.579 94.065 ± 0.000 90.461 ± 2.017

Parkinson (Pk) LR 61.930 ± 0.084 59.489 ± 0.918 62:383� 1:578 60.471 ± 1.729 52.068 ± 0.000 62.978 ± 0.789
LDA 80.580 ± 0.063 74.680 ± 1.095 79:978� 1:533 70.222 ± 1.850 81.191 ± 0.000 70.127 ± 0.559
KNN 69.481 ± 0.169 68.638 ± 0.827 68.638 ± 0.950 81.947 ± 1.0385 69.702 ± 0.000 69:868� 0:393
NB 51.144 ± 0.045 43.212 ± 0.518 48.255 ± 1.266 58.945 ± 2.466 53:531� 0:000 28.187 ± 0.549
MLP 79.639 ± 0.217 76.170 ± 1.926 80.808 ± 1.071 79.957 ± 0.993 81:276� 0:000 81.863 ± 1.623

Waveform (WF) LR 86.595 ± 0.090 86.925 ± 0.430 86.325 ± 1.406 86.120 ± 0.577 88:400� 0:000 88.920 ± 0.248
LDA 86.018 ± 0.070 86.350 ± 0.532 85.925 ± 1.130 85.780 ± 0.737 88:300� 0:000 88.440 ± 0.372
KNN 81.668 ± 0.144 82.375 ± 0.079 81.850 ± 1.441 87.689 ± 0.671 85.400 ± 0.000 85:421� 0:000
NB 81.224 ± 0.050 81.250 ± 0.684 80.000 ± 1.015 79.690 ± 1.073 81:500� 0:000 81.851 ± 0.080
MLP 81.909 ± 0.746 83.550 ± 0.422 82.875 ± 0.932 93.760 ± 1.475 84.400 ± 0.000 85:860� 0:960

Ozone (Oz) LR 96.538 ± 0.145 96:418� 0:344 96.213 ± 0.311 95.891 ± 2.537 94.594 ± 0.000 94.756 ± 0.366
LDA 96.283 ± 0.000 96.148 ± 0.165 96:451� 0:211 95.891 ± 2.537 94.594 ± 0.000 96.943 ± 0.216
KNN 96.113 ± 0.000 96.283 ± 0.302 96:666� 0:006 95.891 ± 2.537 95.405 ± 0.000 96.880 ± 0.000
NB 71.959 ± 0.000 70.270 ± 1.282 71.556 ± 0.052 72.100 ± 9.997 77.567 ± 0.000 72:621� 0:556
MLP 95.578 ± 0.469 95.743 ± 0.727 95.986 ± 0.631 96:761� 3:008 95.675 ± 0.000 96.897 ± 0.132
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Fig. 4. The performance analysis of four imputation methods for five classifiers is shown. (a) LR classifier (b) LDA classifier (c) KNN classifier (d) NB classifier
(e) MLP classifier. x-axis shows the datasets and y-axis shows the accuracy (%).

Table 3
Varying the ratio of missing values to achieve the stable accuracy.

Data Set Classifiers 10% 20% 30% 40% 50% 60%, 70%

Optdigits LR 96.902 ± 0.142 96.838 ± 0.222 95.998 ± 0.229 95.533 ± 0.330 95.338 ± 0.316 95.444 ± 0.294 95.373 ± 0.186
LDA 95.755 ± 0.035 95.697 ± 0.267 94.933 ± 0.181 94.697 ± 0.090 94.644 ± 0.205 94.519 ± 0.261 94.608 ± 0.191
KNN 98.843 ± 0.000 98.843 ± 0.000 98.833 ± 0.020 98.803 ± 0.100 98.841 ± 0.003 98.811 ± 0.000 98.801 ± 0.000
MLP 98.624 ± 0.118 98.884 ± 0.354 98.669 ± 0.241 97.908 ± 0.342 97.758 ± 0.315 97.864 ± 0.368 97.918 ± 0.215

Waveform LR 88.900 ± 0.451 88.920 ± 0.248 88.520 ± 0.519 87.020 ± 0.331 87.380 ± 0.318 87.300 ± 0.178 88.000 ± 0.792
LDA 88.520 ± 0.097 88.440 ± 0.372 87.900 ± 0.360 87.520 ± 0.453 86.920 ± 0.530 86.840 ± 0.492 87.380 ± 0.430
KNN 85.400 ± 0.000 85.421 ± 0.000 85.380 ± 0.000 85.400 ± 0.000 85.221 ± 0.000 85.400 ± 0.000 85.100 ± 0.000
MLP 84.880 ± 0.722 85.860 ± 0.960 86.040 ± 0.233 85.700 ± 0.855 85.080 ± 0.563 85.500 ± 0.103 85.380 ± 0.847
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mance on letter recognition dataset while using MLP to train the classifiers. The main reason for the good performance of
these classifiers for some specific datasets is probably due to the suitability of some particular learning algorithms for the
datasets. In other words, if the dataset fits well to the model structure of the classifier, then the classifier will perform better.
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Fig. 5. Performance of CNNI at different missing ratios over the optdigits dataset. The x-axis and y-axis show the missing ratio and accuracy (%),
respectively.

Fig. 6. Performance of CNNI at different missing ratio over the waveform dataset. The x-axis and y-axis show the missing ratio and accuracy (%),
respectively.
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According to the experimental results, our method shows significant superiority, where in most of the cases the perfor-
mance of our method is close to or better than the one of the GAIN method. Also, the KNNI approach shows good perfor-
mance but its computational efficiency is low due to the requirement of keeping track of all training instances for finding
the neighbor nodes, whereas CNNI can more efficiently impute the data though using the convolutional kernel by consider-
ing very few parameters.

There are also some limitations of the proposed approach, e.g., in the proposed CNNI approach, those kernel weights are
the learnable parameters which are determined by learning the non-linearity that exists in the given data and are updated
iteratively. In such a case, if no spatial relationship can be discovered from the data, then it might be possible that the learn-
ing of the kernel goes through a wrong direction, leading to ineffective imputation. Since the paper is focusing only on the
numerical datasets but many categorical datasets may also have missing values, it reveals the need to consider how to
extend the proposed approach for handling missing values of categorical features.

4.6. Model analysis

An experiment on model analysis is conducted for the proposed CNNI approach and their results obtained using various
parameter settings are shown in Table 4. We compare each specific parameter setting with the default one and show the
effect of parameters tuning on the performance. Therefore, based on the results shown in Table 4, we finally selected the
default parameters for the proposed CNNI approach as shown in Section 4.3. The model analysis is specifically conducted
on the optdigits dataset, and the classification accuracy is measured by using two learning algorithms, i.e., MLP and LR, with
different parameter settings.
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Table 4
Model analysis. This table reports accuracy (%) in each condition for optdigits
dataset.

Setting LR MLP

Our default setting 96.838 ± 0.222 98.884 ± 0.354
CNN-DR !Plain 2D ConvNet 95.355 ± 0.344 90.782 ± 1.314
CNN-DR ! Residual connection 95.362 ± 0.313 97.998 ± 0.255
CNN-DR ! Dense connection 96.022 ± 0.451 98.352 ± 0.322
6 Conv. 2D layer!5 Conv. 2D layer 96.492 ± 0.745 98.659 ± 0.156
6 Conv. 2D layer!7 Conv. 2D layer 96.805 ± 0.603 98.885 ± 0.711
Epoch 500!300 95.409 ± 0.153 91.270 ± 0.699
Epoch 500!600 96.851 ± 0.337 96.679 ± 0.557
Kernel size 3� 3 ! 5� 5 96.800 ± 0.153 98.199 ± 0.699
ReLU !Leaky ReLU 95.960 ± 0.306 98.590 ± 0.670
ReLU !Tanh 95.213 ± 0.220 87.651 ± 0.661
k = 3 !k = 4 96.851 ± 0.339 98.881 ± 0.318
k = 3 !k = 5 96.813 ± 0.121 98.879 ± 0.361
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In Table 4, the first row represents the accuracy (%) obtained using the default parameter setting of CNNI performing on
optdigits dataset for LR and MLP classifiers. In Table 4, we can see how the setting of a sequence of controlled experiments
can affect the evaluation process to show the impacts of different elements on the mentioned dataset.

Table 4 (the second, third, and fourth rows) represents the results obtained by replacing our default architecture (CNN-
DR) with plain 2D Conv. net, Residual connection net, and CNN Dense net, respectively. In particular, the plain network con-
sists of seven 2D Conv. layers with the Leaky ReLU activation function, the residual connection network carries the simple 2D
Conv. net with a residual connection from the input layer to the output layer, and in the CNN Dense architecture, each layer
is connected to its successive layer and ReLU is used as an activation function. It can be seen that the model trained with
default parameter settings shows better performance as compared to those models trained using other settings of
parameters.

In Table 4, the fifth and sixth rows represent the performance of replacing the 2D Conv. layer where by default we set to
have 6 convolutional layers. However, when we increase the number of 2D Conv. layers from 6 to 8 in our default residual
progressive CNN model, it can be observed that there is no significant effect on the accuracy score, which indicates that add-
ing an extra layer does not significantly improve the accuracy for the selected data set, i.e., 6 layers are enough to achieve
good performance.

The seventh and eighth rows of Table 4 show the effect of the number of epochs on the optdigits dataset. In the proposed
CNNI, by default, we set 500 epochs, but we evaluated the proposed model with a tuned number of epochs. The results indi-
cate that selecting 500 epochs is enough for the proposed CNNI as the increase of the number of epochs does not significantly
impact on the performance but the influence is significant with the decrease of the number of epochs.

The ninth row of Table 4 shows the effect of the filter size on the performance. By default, we selected 3�3 as the kernel
size, but we evaluated the proposed CNNI model by setting different kernel sizes. The results indicate that the increase of the
kernel size makes the performance worse than that obtained by the default setting. Specifically, the results show that the
increase of the kernel size results in an increased impact on determining the neighboring weights of a specific weight in
the kernel and making the imputed value less confident. Therefore, a kernel with a smaller size is suitable for the experiment
as compared to the one with a larger size. Also, we change the activation function from ReLU to Leaky ReLU or Tanh and the
results show that better performance can be obtained using ReLU.

The last two rows of Table 4 show the effect of the number k of clusters on the performance. By default, we selected k = 3,
but we evaluated the proposed CNNI approach by setting different values of k (i.e., k = 4,5). It can be seen in Table 4 that the
accuracy score across all the defined values of k are close to each other, which indicates that the proposed approach is not so
much sensitive to the number of clusters. In the case of having a larger number of clusters, there is no significant effect on the
accuracy, but the computational complexity and execution time will be increased, so we set k = 3 for our experiments.
5. Conclusion

In this paper, we have proposed a CNN based missing data imputation approach, which aims to transform incomplete
data into complete one. In the proposed approach, a CNN kernel is constructed by learning the spatial relationship and
non-linearity that exist in the given data for imputing the missing values. Furthermore, the fuzzy c-mean clustering tech-
nique is applied to partition the data into different clusters, on the basis of their membership values, such that data can
be organized to capture the strong correlation between feature values. The proposed CNNI approach has been compared with
other state-of-the-art methods using different real-world datasets from the UCI respository and the results show the effec-
tiveness of CNNI in the imputation of missing values of numeric features. Furthermore, the proposed approach shows stable
performance while the missing ratio is varied from 10% to 70%. The proposed CNNI approach comes up with a strong alter-
native to traditional methods for imputing missing values in large datasets. In the future, we will explore the strategies of
missing value imputation on more complex datasets such as multi-modal data.
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