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A B S T R A C T

As a commonly used ensemble method, AdaBoost has drawn much consideration in the field of machine
learning. However, AdaBoost is highly sensitive to outliers. The performance of AdaBoost may be greatly
deteriorated when the training samples are polluted by outliers. For binary and multi-class classifications,
there have emerged many approaches to improving the robustness of AdaBoost against outliers. Unfortunately,
there are too few researches on enhancing the robustness of AdaBoost against outliers in the case of one-
class classification. In this study, the exponential loss function of AdaBoost is replaced by a more robust one
to improve the anti-outlier ability of the conventional AdaBoost based ensemble of one-class support vector
machines (OCSVMs). Furthermore, based on the redesigned loss function, the update formulae for the weights
of base classifiers and the probability distribution of training samples are reformulated towards the AdaBoost
ensemble of OCSVMs. The empirical error upper bound is derived from the theoretical viewpoint. Experimental
outcomes upon the artificial and benchmark data sets show that the presented ensemble approach is more
robust against outliers than its related methods.
1. Introduction

Different from binary or multi-class classification, one-class classi-
fication utilizes the samples taken from only the target class to learn
a decision boundary in the training phase. In the testing phase, test-
ing samples can be identified as target or non-target. Therefore, the
binary or multi-class classifier cannot be used to solve the problem
of one-class classification. So far, there are many one-class classifi-
cation approaches, among which one-class support vector machine
(OCSVM) [1] and support vector data description (SVDD) [2] are the
most popular. When certain conditions are satisfied, OCSVM and SVDD
are equivalent [2]. In our work, we only consider OCSVM.

To enhance the classification ability of one-class classifiers, Tax and
Duin [3] proposed to combine one-class classifiers. They experimentally
compared seven one-class classifiers integrated by five one-class com-
bination rules and declared that combining Parzen density estimators
constructed on different feature subsets by the product rule may get
the best outcomes for tackling a handwritten digit recognition problem.
Seguí et al. [4] combined minimum spanning tree class descriptors
by two bagging based ensemble approaches. In comparison with the
single descriptor, both ensemble methods obtained higher and similar
performances upon the low dimensional and high dimensional data
sets, respectively. Casale et al. [5] constructed approximate polytope
ensemble of one-class classifiers. They built the boundary of the target
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class by convex hull. For the non-convex structures, they designed a till-
ing strategy. Krawczyk and Woźniak [6] combined weighted OCSVMs
by a weighted bagging strategy that allocates weights for all the train-
ing samples. Therefore, the degree of importance for each training
sample can be considered to construct the classification boundary. Liu
et al. [7] proposed a two-round clustering based structural ensem-
ble of one-class classifiers. In comparison with pertinent structural or
clustering based one-class classifiers, their proposed ensemble method
demonstrates better performance and faster training speed. Through the
divide-and-conquer strategy, Krawczyk et al. [8] decomposed a difficult
problem of multi-class classification into several subproblems of one-
class classification. They introduced an ensemble approach based on
dynamic ensemble selection to prevent non-competent classifiers and
proposed a threshold-based pruning method to get rid of the redundant
classifiers in the final ensemble. Although the above-mentioned ensem-
ble approaches can improve the performances of their corresponding
one-class classifiers, the adverse effect of outliers on the generalization
performance of these ensemble methods has not been considered.

As is well known, bagging and boosting are two most commonly
used approaches to construct an ensemble. Bagging is regarded as a
variance reduction method [9]. However, combining one-class clas-
sifiers by bagging may marginally enhance the generalization ability
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of these one-class classifiers. Moreover, the performance improvement
produced by bagging on one-class classifiers is statistically insignifi-
cant [4]. By contrast, boosting may concurrently decrease bias and
variance [10]. Nevertheless, the traditional boosting methods are unfit
for tackling outliers because these methods put more emphasis upon
outliers. As a representative of boosting algorithm, AdaBoost [11] is
prone to be adversely affected by class-label noise and outliers [12,
13]. So far, there are many methods to enhance the performance of
AdaBoost against class-label noise. Among these methods, replacing
the exponential loss function of AdaBoost with a more robust one is
regarded as a commonly used method to reduce the negative effect
of class-label noise. Towards binary classification, Cao et al. [14] pro-
posed a revised exponential loss function for AdaBoost by considering
different types of samples with respect to noise and class label decision.
They utilized k-NN and EM based noise identification functions to
construct the noise-detection criterion. Moreover, a new regeneration
condition to control the generalization error bound of the proposed
method was developed. Thereafter, Sun et al. [15] generalized noise-
detection based AdaBoost from the binary classification scenario to
the multi-class classification scenario. They designed a noise-detection
based multi-class loss function and proposed a new weight updating
scheme to alleviate the negative effect of noise. To improve the anti-
noise ability of AdaBoost, Miao et al. [16] designed two algorithms
named as RBoost1 and RBoost2, which optimize a non-convex loss
function of the classification margin and demonstrate higher anti-noise
performance in comparison with the conventional AdaBoost. Sabze-
vari et al. [17] determined the weights of the training samples for
vote-boosting by considering the disagreement rate among the base
classifiers in the ensemble. Moreover, they validated their method by
utilizing the beta distribution as the emphasis function of vote-boosting
on the benchmark data sets. Gu and Angelov [18] combined AdaBoost
and zero-order fuzzy inference systems (FIS) together, then proposed a
multi-class fuzzily weighted AdaBoost (FWAdaBoost)-based ensemble
system with a self-organizing FIS (SOFIS). Moreover, FWAdaBoost uses
the confidence scores generated by the SOFIS in both sample weight
updating and ensemble output generation.

For binary and multi-class classification, there are many approaches
to alleviate the negative impact of outliers upon the performance of
AdaBoost. Takenouchi and Eguchi [13] utilized the linear combination
of exponential loss function and naive error loss function to substi-
tute the exponential loss function of AdaBoost. Hence, the impact of
forgetfulness is introduced into AdaBoost. To avoid the overfitting
problem caused by outliers, Sun et al. [19] devised a regularized
AdaBoost algorithm with its corresponding optimization problem is
transformed to a linear programming problem by the stabilized col-
umn generation technique. To improve the anti-outlier performance of
AdaBoost, Kanamori et al. [20] presented a transformation formula of
loss functions. Moreover, they designed a robust eta-boost algorithm
which is robust against outliers. To make AdaBoost possess adaptabil-
ity for the changing network environment, Hu et al. [21] designed
two online AdaBoost-based intrusion detection algorithms. One uses
decision stumps as weak classifiers, while the other utilizes online
Gaussian mixture models as weak classifiers. Experimental outcomes
on the outliers polluted network data demonstrate that both algorithms
are superior to their related methods. Wang [22] proposed several
robust boosting algorithms based on the majorization–minimization
framework and the truncated loss functions. Furthermore, robust Ad-
aBoost based on the truncated exponential loss function was proposed
to alleviate the impact of outliers. Wang et al. [23] introduced the
idea of self-paced learning into AdaBoost and designed a new robust
AdaBoost algorithm. Moreover, they validate the robustness of their
proposed algorithm against outliers through theoretical analysis and
experimental investigation.

Although AdaBoost and its robust versions are extensively used in
the scenarios of binary classification and multi-class classification, they
2

are rarely utilized to tackle one-class classification problems. For the
existing AdaBoost based one-class classifiers, OCSVM is usually used as
their base classifier. In order to make AdaBoost suitable for integrating
OCSVMs, Chen et al. [24] redesigned the update formulae of combina-
tion weights for base classifiers and probability distribution of training
samples. After discussed the relation between support vector machine
and boosting, Rätsch et al. [25] proposed a novel leveraging algorithm
for one-class classification. The proposed algorithm benefits from both
𝜈-Arc and column-generation algorithms. Moreover, its correspond-
ing optimization problem can be solved by the barrier-optimization
technique. Tao et al. [26] derived a linear programming problem for
linear one-class classifier. To obtain nonlinear one-class classifier, they
utilized boosting to combine linear base classifiers. Moreover, they
analyzed the generalization error of their proposed linear one-class
classifier in terms of margin and covering number. Recently, Xing
and Liu [27] used the mixture of the modified exponential loss and
the squared loss functions to replace the exponential loss function of
AdaBoost, then constructed the robust AdaBoost based ensemble of
OCSVMs.

In this paper, we present a bounded exponential loss function
and apply it to construct the AdaBoost ensemble of OCSVMs. The
contributions of our study can be summarized as follows:

• The bounded exponential loss function is used to replace the
conventional exponential loss function of AdaBoost to decrease
the negative impact of outliers. Furthermore, the properties of the
bounded exponential loss function are introduced.

• The Newton–Raphson method is designed to update the combina-
tion weights of OCSVMs in the bounded exponential loss function
based AdaBoost ensemble. Moreover, the update formula for the
probability distribution of training samples is deduced for our
proposed ensemble method.

• The empirical error upper bound of the bounded exponential loss
function based AdaBoost ensemble is established.

The remainder of this paper is structured as follows. Section 2
briefly introduces OCSVM and AdaBoost. Section 3 describes in detail
the proposed bounded exponential loss function based AdaBoost en-
semble of OCSVMs. In Section 4, empirical studies on the artificial and
benchmark data sets validate the presented ensemble. Finally, Section 5
concludes this paper.

2. Preliminaries

In the following, the original and dual optimization problems of
OCSVM are surveyed, while the algorithmic description of AdaBoost
is provided.

2.1. OCSVM

The aim of OCSVM is to find a separating hyperplane with the
maximum margin between the images of training samples and the
origin in the high-dimensional feature space. It should be mentioned
here that the training samples are all target (or positive-class) samples.
Moreover, the origin is utilized as the representative of non-target (or
negative-class) samples. The hyperplane of OCSVM is given by

𝐰𝑇𝛷(𝐱) − 𝜌 = 0, (1)

where 𝐰 denotes the weight vector, the superscript 𝑇 is the transpose of
a vector or a matrix, 𝛷(⋅) is a nonlinear transformation, and 𝜌 denotes
he bias term.

The quadratic programming problem of OCSVM is as follows.

min
𝐰,𝜌,𝝃

1
2
‖𝐰‖2 − 𝜌 + 1

𝜈𝑁

𝑁
∑

𝑖=1
𝜉𝑖

𝑠.𝑡. 𝐰𝑇𝛷(𝐱𝑖) ≥ 𝜌 − 𝜉𝑖
𝜉 ≥ 0, 𝑖 = 1, 2,… , 𝑁, (2)
𝑖
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where 𝝃 = (𝜉1, 𝜉2,… , 𝜉𝑁 )𝑇 with its elements are slack variables, ‖ ⋅ ‖
epresents the 𝓁2-norm, and 0 < 𝜈 ≤ 1 controls the rate of outliers
mong the training samples.

According to the Lagrange multiplier approach, the following dual
ptimization problem for OCSVM can be obtained.

min
𝜷

1
2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝛽𝑖𝛽𝑗𝐾(𝐱𝑖, 𝐱𝑗 )

𝑠.𝑡.
𝑁
∑

𝑖=1
𝛽𝑖 = 1

0 ≤ 𝛽𝑖 ≤
1
𝜈𝑁

, 𝑖 = 1, 2,… , 𝑁, (3)

here 𝜷 = (𝛽1, 𝛽2,… , 𝛽𝑁 )𝑇 with its elements are Lagrange multipliers,
hile 𝐾(⋅, ⋅) indicates the kernel function with 𝐾(𝐱, 𝐲) = 𝛷(𝐱)𝑇𝛷(𝐲). The
eight vector 𝐰 can be represented as

=
𝑁
∑

𝑖=1
𝛽𝑖𝛷(𝐱𝑖). (4)

The bias term 𝜌 can be calculated by utilizing any 𝐱𝑖 whose Lagrange
ultiplier meets 0 < 𝛽𝑖 <

1
𝜈𝑁 , i.e.,

=
𝑁
∑

𝑗=1
𝛽𝑗𝐾(𝐱𝑗 , 𝐱𝑖). (5)

In addition, the decision function is given by

(𝐱) =
𝑁
∑

𝑖=1
𝛽𝑖𝐾(𝐱𝑖, 𝐱) − 𝜌. (6)

urthermore, the class label of 𝐱 is given by

𝑦̂ = sign(𝑓 (𝐱)), (7)

here sign(⋅) indicates the sign function.

.2. AdaBoost

AdaBoost is regarded as an outstanding representative of all boost-
ng algorithms. It can construct a strong classifier from weak classifiers.
n the training phase of AdaBoost, the weights of base classifiers and the
robability distribution of training samples are calculated on the basis
f training error rates. In the beginning, the probabilities of training
amples are assigned with the same values, i.e., 1

𝑁 . Thereafter, the first
base classifier is trained with the samples chosen according to their
probability distribution while its weight is determined according to
its training error rate. The probability distribution of training samples
is thus updated. In the subsequent iterations, the weights of base
classifiers are determined and the probability distributions of training
samples are adjusted.

Towards binary classification, we are given 𝑁 training samples
{(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1 with 𝑦𝑖 ∈ {−1, 1}. The linear combination of 𝑇 base clas-
sifiers is given by

𝑓𝑇 (𝐱) =
𝑇
∑

𝑡=1
𝛼𝑡ℎ𝑡(𝐱), (8)

where 𝛼𝑡 is the weight of the 𝑡th base classifier ℎ𝑡. The training process
of AdaBoost is shown in Algorithm 1.

3. Bounded exponential loss function based AdaBoost ensemble of
OCSVMs

In this section, the bounded exponential loss function is first intro-
duced and its four properties are explored. Then, the update formulae
for the weights of base classifiers and the probability distribution of
training samples are reformulated towards the bounded exponential
loss function based AdaBoost ensemble of OCSVMs. Finally, the empir-
ical error upper bound of the proposed ensemble method is formulated
and proved.
3

Algorithm 1 AdaBoost

Input: Training set 𝐷 = {(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1, weak classifier L, number of base
classifiers 𝑇 .

utput: Boosted classifier 𝐻(𝐱) = sign
(

∑𝑇
𝑡=1 𝛼𝑡ℎ𝑡(𝐱)

)

.
1: Initialization: Probability distribution of training samples 1(𝐱𝑖) =

1
𝑁 (𝑖 = 1, 2,… , 𝑁).

2: for 𝑡 = 1 → 𝑇 do
3: ℎ𝑡 ← L(𝐷,𝑡).
4: 𝜖𝑡 ←

∑

𝑖,𝑦𝑖≠ℎ𝑡(𝐱𝑖) 𝑡(𝐱𝑖).
5: if 𝜖𝑡 > 0.5 then
6: 𝑇 ← 𝑡 − 1.
7: break.
8: end if
9: 𝛼𝑡 =

1
2 ln

(

1−𝜖𝑡
𝜖𝑡

)

.

10: 𝑡+1(𝐱𝑖) = 𝑡(𝐱𝑖) exp{−𝛼𝑡ℎ𝑡(𝐱𝑖)𝑦𝑖}
𝑍𝑡

(𝑖 = 1, 2,… , 𝑁), where 𝑍𝑡 is a

normalization constant to ensure that ∑𝑁
𝑖=1 𝑡+1(𝐱𝑖) = 1.

11: end for

Fig. 1. Curves of the bounded exponential loss function for different values of the
scale factor 𝜂.

3.1. Bounded exponential loss function

To make AdaBoost suitable for combining OCSVMs and more ro-
bust against outliers, the bounded exponential loss function is used
to replace its exponential loss function. The bounded exponential loss
function of margin 𝑢 is defined as

𝓁𝑏𝑒𝑥𝑝(𝑢) = 𝜉
[

1 − exp
(

−𝜂𝓁𝑒𝑥𝑝(𝑢)
)

]

, (9)

where 𝜂 > 0 is a multiplicative scale factor, while 𝜉 = 1
1−exp(−𝜂) is

normalizing constant to ensure that 𝓁𝑏𝑒𝑥𝑝(0) = 1. Fig. 1 illustrates
he bounded exponential loss functions with different 𝜂 values. One

can observe from Fig. 1 that the bounded exponential loss function is
bounded, smooth, and nonconvex. Moreover, the shape of the bounded
exponential loss function gets more gentle as the value of 𝜂 grows
larger. The left tails of the bounded exponential loss are comparatively
lower than that of the traditional exponential loss. Therefore, using the
bounded exponential loss to replace the conventional exponential loss
in AdaBoost can alleviate the adverse impact of outliers.

In the following, the four properties of the bounded exponential loss
function, including generalized form of the exponential loss function,
insensitivity to outliers, equivalence with 𝓁0-norm and Fisher consis-
tency, are stated in their corresponding propositions. Moreover, the
correctness proof of these propositions is given in detail.

First, the relation between the exponential and the bounded expo-
nential loss functions is included in Proposition 1.

Proposition 1. For arbitrary margin 𝑢, lim𝜂→0 𝓁𝑏𝑒𝑥𝑝(𝑢) = 𝓁𝑒𝑥𝑝(𝑢) holds.
That is to say, the traditional exponential loss function can be considered
as a special form of the proposed bounded exponential loss function.
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Fig. 2. The derivatives of the bounded exponential loss function (dotted lines) for
ifferent values of the scale factor 𝜂. The derivative of the exponential loss function
solid blue line) is also included.

roof. The Taylor expansion of the bounded exponential loss function
s given by

𝑏𝑒𝑥𝑝(𝑢) =
∞
∑

𝑖=1

𝜉𝜂𝑖(−1)𝑖+1𝓁𝑖
𝑒𝑥𝑝(𝑢)

𝑖!
. (10)

ccording to L’Hospital rule, we obtain

lim
→0

𝜉𝜂𝑖 = lim
𝜂→0

𝜂𝑖

1 − exp(−𝜂)
=
{

1, if 𝑖 = 1,
0, if 𝑖 ≥ 2.

(11)

Utilizing the above two results, one can easily infer that lim𝜂→0 𝓁𝑏𝑒𝑥𝑝(𝑢) =
𝓁𝑒𝑥𝑝(𝑢). □

Second, the insensitivity of the bounded exponential loss function
o outliers is presented in Proposition 2.

roposition 2. For appropriately selected values of the scale factor 𝜂, the
ounded exponential loss function is less sensitive to outliers in comparison
ith the conventional exponential loss function.

roof. The sensitivity of the bounded exponential loss function with
espect to margin can be evaluated by the following derivative:

𝜕𝓁𝑏𝑒𝑥𝑝(𝑢)
𝜕𝑢

= 𝜕
𝜕𝑢

𝜉
[

1 − exp (−𝜂 exp(−𝑢))
]

= −
𝜂 exp (−𝜂 exp(−𝑢))

1 − exp(−𝜂)
exp(−𝑢).

(12)

Fig. 2 demonstrates the sensitivity (12) with respect to 𝑢 for different
values of the scale factor 𝜂. As is well known, outliers usually produce
large negative values of margin. Hence, one can observe from Fig. 2
that the sensitivities produced by the bounded exponential loss function
with different values of 𝜂 are relatively smaller than the sensitiv-
ity generated by the conventional exponential loss function upon the
outliers. □

Third, the behavior of the empirical risk achieved by utilizing the
bounded exponential loss function is included in Proposition 3.

Proposition 3. For 𝜂 → ∞, the empirical risk utilizing the bounded
exponential loss function, i.e., 𝑅̂𝑏𝑒𝑥𝑝(𝑓 ) = 𝐸[𝓁𝑏𝑒𝑥𝑝(𝑢)] behaves like the
𝓁0-norm.

Proof.

𝑅̂𝑏𝑒𝑥𝑝(𝑓 ) = 𝜉

[

1 − 1
𝑛

𝑛
∑

𝑖=1
exp

(

−𝜂 exp(−𝑢𝑖)
)

]

=
1 − 1

𝑛
∑𝑛

𝑖=1 exp
(

−𝜂 exp(−𝑢𝑖)
)

1 − exp(−𝜂)
. (13)

herefore,

lim 𝑅̂𝑏𝑒𝑥𝑝(𝑓 ) = lim
1 − 1

𝑛
∑𝑛

𝑖=1 exp
(

−𝜂 exp(−𝑢𝑖)
)

4

𝜂→∞ 𝜂→∞ 1 − exp(−𝜂)
= 1 − 1
𝑛

𝑛
∑

𝑖=1
lim
𝜂→∞

exp
(

−𝜂 exp(−𝑢𝑖)
)

=
{

0, if 𝑢𝑖 → ∞,
1, if |𝑢𝑖| < ∞.

(14)

ence, the limit in (14) is fundamentally a count of the number of non-
ero margins, or the 𝓁0-norm of the margin vector 𝐮 = (𝑢1, 𝑢2,… , 𝑢𝑛)𝑇

ith 𝑢𝑖 = 𝑦𝑖𝑓 (𝐱𝑖), i.e.,

lim
→∞

𝑅̂𝑏𝑒𝑥𝑝(𝑓 ) = ‖𝐮‖0. □ (15)

As is well known, the Bayes decision is regarded as the optimal
decision for classification problems. Moreover, Fisher consistency [28]
is considered as an important concept to check whether the minimizer
of a margin-based loss function leads to the Bayes optimal. To verify
Fisher consistency of margin-based loss functions, Lin [28] established
a theorem containing two assumptions. We restate the theorem as the
following lemma.

Lemma 1 ([28]). Let 𝑔(⋅) be a margin-based loss function. If 𝑔(⋅) satisfies
the following two assumptions:

1. For ∀𝑢 > 0, 𝑔(𝑢) < 𝑔(−𝑢);
2. 𝑔′(0) ≠ 0 exists;

where 𝑢 = 𝑦𝑓 (𝐱) denotes the margin. Furthermore, if 𝐸[𝑔(𝑦𝑓 (𝐱))|𝐱] has a
global minimizer 𝑓 ∗(𝐱), then the loss function 𝑔(⋅) is Fisher consistent, which
leads to 𝑠𝑖𝑔𝑛[𝑓 ∗(𝐱)] = 𝑠𝑖𝑔𝑛[𝑝(𝐱) − 1

2 ] with the condition 𝑝(𝐱) ≠ 1
2 , where

𝑝(𝐱) = 𝑃 (𝑦 = +1|𝐱).

In Lemma 1, the first assumption guarantees that the sign of the
minimizer 𝑓 ∗(𝐱) for 𝐸[𝑔(𝑦𝑓 (𝐱))|𝐱] is the same with 𝑠𝑖𝑔𝑛[𝑝(𝐱) − 1

2 ].
Moreover, the second assumption is used to ensure that 𝑓 ∗(𝐱) ≠ 0.

Fourth and finally, the Fisher consistency of the proposed bounded
xponential loss function is introduced in Proposition 4. The proof is
eferred to A.

roposition 4. If the conditions 𝑝(𝐱) ≠ 1 and exp(−𝑓 (𝐱)) + exp(𝑓 (𝐱)) <
2
𝜂 are satisfied, the bounded exponential loss function 𝓁𝑏𝑒𝑥𝑝(𝑢) is Fisher
consistent.

3.2. Update formulae

Similar to the traditional AdaBoost, an additive model 𝑓𝑇 (𝐱) can
also be expressed as a linear combination of 𝑇 base classifiers for the
ensemble of OCSVMs, i.e.,

𝑓𝑇 (𝐱) =
𝑇
∑

𝑡=1
𝛼𝑡ℎ𝑡(𝐱). (16)

The first base classifier ℎ1 is generated by learning an OCSVM upon
the training samples satisfying the probability distribution 1. In the 𝑡th
iteration, the 𝑡th base classifier ℎ𝑡 is constructed by learning an OCSVM
upon the training samples satisfying the probability distribution 𝑡. The
weight of ℎ𝑡 is also indicated by 𝛼𝑡. Moreover, the weight 𝛼𝑡 is obtained
by minimizing the bounded exponential loss function below.

𝓁𝑏𝑒𝑥𝑝(𝛼𝑡ℎ𝑡|𝑡) = E𝐱∼𝑡

{

𝜉
[

1 − 𝑒−𝜂𝑒
−𝛼𝑡ℎ𝑡 (𝐱)

]}

E𝐱∼𝑡

{

𝜉
[

1 − 𝑒−𝜂𝑒
−𝛼𝑡

]

I(ℎ𝑡(𝐱) = 1) + 𝜉
[

1 − 𝑒−𝜂𝑒
𝛼𝑡
]

I(ℎ𝑡(𝐱) = −1)
}

𝜉
[

1 − 𝑒−𝜂𝑒
−𝛼𝑡

]

𝑃𝐱∼𝑡
(ℎ𝑡(𝐱) = 1) + 𝜉

[

1 − 𝑒−𝜂𝑒
𝛼𝑡
]

𝑃𝐱∼𝑡
(ℎ𝑡(𝐱) = −1)

𝜉
{

(1 − 𝜖𝑡)
[

1 − 𝑒−𝜂𝑒
−𝛼𝑡

]

+ 𝜖𝑡
[

1 − 𝑒−𝜂𝑒
𝛼𝑡
]}

. (17)

here 𝜖𝑡 = 𝑃𝐱∼𝑡

(

ℎ𝑡(𝐱) = −1
)

. Note that the term 𝑦 is not included in
17). The reason lies in that the class labels of training samples in the
cenario of one-class classification are all +1.

The partial derivative of (17) with respect to 𝛼𝑡 is given by
𝜕𝓁𝑏𝑒𝑥𝑝(𝛼𝑡ℎ𝑡|𝑡) = 𝜉𝜂

[

−(1 − 𝜖𝑡)𝑒[−𝛼𝑡−𝜂𝑒
−𝛼𝑡 ] + 𝜖𝑡𝑒

[𝛼𝑡−𝜂𝑒𝛼𝑡 ]
]

. (18)

𝜕𝛼𝑡
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Let 𝑠(𝛼𝑡ℎ𝑡|𝑡) =
𝜕𝓁𝑏𝑒𝑥𝑝(𝛼𝑡ℎ𝑡|𝑡)

𝜕𝛼𝑡
. However, the analytic solution 𝛼𝑡 of the

quation 𝑠(𝛼𝑡ℎ𝑡|𝑡) = 0 cannot be deduced directly. Here, 𝑠(𝛼𝑡ℎ𝑡|𝑡) = 0
s solved by the Newton–Raphson approach [29]. Therefore, for the 𝜏th
teration, 𝛼𝜏𝑡 can be iteratively derived by

𝜏
𝑡 = 𝛼𝜏−1𝑡 −

𝑠(𝛼𝜏−1𝑡 ℎ𝑡|𝑡)

𝐻(𝛼𝜏−1𝑡 ℎ𝑡|𝑡)
, (19)

where

𝐻(𝛼𝜏−1𝑡 ℎ𝑡|𝑡) =
𝜕𝑠(𝛼𝑡ℎ𝑡|𝑡)

𝛼𝑡
|𝛼𝑡=𝛼𝜏−1𝑡

= 𝜉𝜂
⎡

⎢

⎢

⎣

(1 − 𝜖𝑡)𝑒

(

−𝛼𝜏−1𝑡 −𝜂𝑒−𝛼
𝜏−1
𝑡

)

(

1 − 𝜂𝑒−𝛼
𝜏−1
𝑡

)

+ 𝜖𝑡𝑒

(

𝛼𝜏−1𝑡 −𝜂𝑒𝛼
𝜏−1
𝑡

)

(

1 − 𝜂𝑒𝛼
𝜏−1
𝑡

)
⎤

⎥

⎥

⎦

. (20)

After 𝑓𝑡−1 has been obtained, the probability distribution of training
samples needs to be updated to make the base classifier ℎ𝑡 rectify some
mistakes of 𝑓𝑡−1 in the next iteration. The perfect base classifier ℎ𝑡 can
correct all the mistakes of 𝑓𝑡−1 by minimizing the loss function below.

𝓁𝑏𝑒𝑥𝑝(𝑓𝑡−1 + ℎ𝑡|) = E𝐱∼

[

𝜉
(

1 − 𝑒−𝜂𝑒
[−𝑓𝑡−1(𝐱)−ℎ𝑡 (𝐱)]

)]

= E𝐱∼

[

𝜉
(

1 − 𝑒−𝜂𝑒
−𝑓𝑡−1(𝐱)𝑒−ℎ𝑡 (𝐱)

)]

, (21)

where  denotes the distribution over the original training samples.
Based on the Taylor expansion, (21) can be approximately expressed
as

𝓁𝑏𝑒𝑥𝑝(𝑓𝑡−1 + ℎ𝑡|) ≃ E𝐱∼

⎡

⎢

⎢

⎢

⎣

𝜉

⎛

⎜

⎜

⎜

⎝

1 − 𝑒
−𝜂𝑒−𝑓𝑡−1(𝐱)

[

1−ℎ𝑡(𝐱)+
ℎ2𝑡 (𝐱)
2

]

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

= E𝐱∼

[

𝜉
(

1 − 𝑒−𝜂𝑒
−𝑓𝑡−1(𝐱)

[

3
2−ℎ𝑡(𝐱)

])]

= E𝐱∼

[

𝜉
(

1 − 𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)𝑒𝜂ℎ𝑡(𝐱)𝑒
−𝑓𝑡−1(𝐱)

)]

≃ E𝐱∼

[

𝜉
(

1 − 𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)
[

1 + 𝜂ℎ𝑡𝑒
−𝑓𝑡−1(𝐱) +

𝜂2𝑒−2𝑓𝑡−1(𝐱)

2

])]

. (22)

Therefore, the ideal base classifier satisfies

ℎ𝑡(𝐱) = arg min
ℎ

𝓁𝑏𝑒𝑥𝑝(𝑓𝑡−1 + ℎ|)

= arg min
ℎ

E𝐱∼

{

𝜉
[

1 − 𝑒−
3
2
𝜂𝑒−𝑓𝑡−1(𝐱)

(

1 + 𝜂ℎ(𝐱)𝑒−𝑓𝑡−1(𝐱) + 𝜂2𝑒−2𝑓𝑡−1(𝐱)

2

)]}

arg min
ℎ

E𝐱∼

{

𝜉
[

1 − 𝑒−
3
2
𝜂𝑒−𝑓𝑡−1(𝐱) (𝜂ℎ(𝐱)𝑒−𝑓𝑡−1(𝐱)

)

]}

arg min
ℎ

E𝐱∼

[

𝑒
[

− 3
2
𝜂𝑒−𝑓𝑡−1(𝐱)−𝑓𝑡−1(𝐱)

]

ℎ(𝐱)
]

arg min
ℎ

E𝐱∼

⎧

⎪

⎨

⎪

⎩

𝑒
[

− 3
2
𝜂𝑒−𝑓𝑡−1(𝐱)−𝑓𝑡−1(𝐱)

]

ℎ(𝐱)

E𝐱∼𝑒
[

− 3
2
𝜂𝑒−𝑓𝑡−1(𝐱)−𝑓𝑡−1(𝐱)

]

⎫

⎪

⎬

⎪

⎭

. (23)

et 𝑡 denote a probability distribution satisfying

𝑡(𝐱) =
(𝐱) exp

(

− 3
2 𝜂 exp(−𝑓𝑡−1(𝐱)) − 𝑓𝑡−1(𝐱)

)

E𝐱∼

[

exp
(

− 3
2 𝜂 exp(−𝑓𝑡−1(𝐱)) − 𝑓𝑡−1(𝐱)

)] . (24)

According to the definition of mathematical expectation, one can easily
get that

ℎ𝑡(𝐱) = arg max
ℎ

E𝐱∼

⎧

⎪

⎨

⎪

⎩

𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)−𝑓𝑡−1(𝐱)
]

ℎ(𝐱)

E𝐱∼

[

𝑒[−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)−𝑓𝑡−1(𝐱)]
]

⎫

⎪

⎬

⎪

⎭

= arg maxE𝐱∼
[

ℎ(𝐱)
]

. (25)
5

ℎ 𝑡
Because ℎ(𝐱) ∈ {−1,+1}, so we have

ℎ(𝐱) = 1 − 2I(ℎ(𝐱) ≠ +1). (26)

Hence, the ideal base classifier satisfies

ℎ𝑡(𝐱) = arg min
ℎ

E𝐱∼𝑡

[

I(ℎ(𝐱) ≠ +1)
]

. (27)

It can be deduced from (27) that the ideal base classifier ℎ𝑡 over the
probability distribution 𝑡 should minimize the classification error.

Considering the relation between 𝑡 and 𝑡+1, we can obtain

𝑡+1(𝐱) =
(𝐱)𝑒

[

− 3
2 𝜂𝑒

−𝑓𝑡 (𝐱)−𝑓𝑡(𝐱)
]

E𝐱∼

{

𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡 (𝐱)−𝑓𝑡(𝐱)
]}

=
(𝐱)𝑒

{

− 3
2 𝜂𝑒

[−𝑓𝑡−1(𝐱)−𝛼𝑡ℎ𝑡 (𝐱)]−𝑓𝑡(𝐱)
}

E𝐱∼

{

𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡 (𝐱)−𝑓𝑡(𝐱)
]}

= (𝐱)
{

𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)−𝑓𝑡−1(𝐱)
]}

[

𝑒−𝛼𝑡ℎ𝑡 (𝐱)
]

[

𝑒𝑓𝑡−1(𝐱)
]

[

𝑒−𝛼𝑡ℎ𝑡 (𝐱)−1
]

𝑒−𝛼𝑡ℎ𝑡(𝐱)

E𝐱∼

{

𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡 (𝐱)−𝑓𝑡(𝐱)
]}

= (𝐱)𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)−𝑓𝑡−1(𝐱)
]

[

𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)
]

[

𝑒−𝛼𝑡ℎ𝑡 (𝐱)−1
]

𝑒−𝛼𝑡ℎ𝑡(𝐱)

E𝐱∼

{

𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡 (𝐱)−𝑓𝑡(𝐱)
]}

= 𝑡(𝐱)
[

𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)
]

[

𝑒−𝛼𝑡ℎ𝑡 (𝐱)−1
]

𝑒−𝛼𝑡ℎ𝑡(𝐱)
E𝐱∼

{

𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)−𝑓𝑡−1(𝐱)
]}

E𝐱∼

{

𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡 (𝐱)−𝑓𝑡(𝐱)
]}

=
𝑡(𝐱)

{

𝑒
[

− 3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)
]}

[

𝑒−𝛼𝑡ℎ𝑡 (𝐱)−1
]

𝑒−𝛼𝑡ℎ𝑡(𝐱)

𝑍𝑡
, (28)

where 𝑍𝑡 =
E𝐱∼

[

exp
(

− 3
2 𝜂 exp(−𝑓𝑡(𝐱))−𝑓𝑡(𝐱)

)]

E𝐱∼
[

exp
(

− 3
2 𝜂 exp(−𝑓𝑡−1(𝐱))

)

−𝑓𝑡−1(𝐱)
] is a normalization factor to

ake sure that 𝑡+1 is a probability distribution.

.3. Algorithm description

The training process of the bounded exponential loss function based
daBoost ensemble of OCSVMs is summarized in Algorithm 2. The
omputational cost for constructing an OCSVM is (𝑁3) [30] with 𝑁
enotes the number of training samples. In each loop, the computa-
ional complexities of error rate 𝜖𝑡, weight of base classifier 𝛼𝑡, and

probability distribution 𝑡 are respectively (𝑁), (𝐼), and (𝑁2).
ence, the computational complexity of Algorithm 2 is (𝑇 (𝑁3 +𝑁2 +
+ 𝐼)). Neglecting lower order items, one can eventually know that

he computational cost of the whole algorithm is (𝑇𝑁3).

Algorithm 2 Bounded exponential loss function based AdaBoost
ensemble of OCSVMs
Input: Training set 𝐷 = {𝐱𝑖}𝑁𝑖=1, number of base classifiers 𝑇 , number

of iterations 𝐼 .
utput: Boosted classifier 𝐻(𝐱) = sign

(

∑𝑇
𝑡=1 𝛼𝑡ℎ𝑡(𝐱)

)

.
1: Initialization: Probability distribution of training samples 1(𝐱𝑖) =

1
𝑁 (𝑖 = 1, 2,… , 𝑁).

2: for 𝑡 = 1 → 𝑇 do
3: ℎ𝑡 ← OCSVM(𝐷,𝑡).
4: 𝜖𝑡 ← 𝑃𝐱∼𝑡

(ℎ𝑡(𝐱) = −1).
5: for 𝜏 = 1 → 𝐼 do
6: 𝛼𝜏𝑡 ← 𝛼𝜏−1𝑡 − 𝑠(𝛼𝜏−1𝑡 ℎ𝑡|𝑡)

𝐻(𝛼𝜏−1𝑡 ℎ𝑡|𝑡)
.

7: end for

8: 𝑡+1(𝐱) =
𝑡(𝐱)

[

𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱)
]

[

𝑒−𝛼𝑡ℎ𝑡 (𝐱)−1
]

𝑒−𝛼𝑡ℎ𝑡 (𝐱)

𝑧𝑡
.

9: end for
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3.4. Empirical error upper bound of BELF-AEOCSVMs

For convenience, the bounded exponential loss function based Ad-
aBoost ensemble of OCSVMs is shorten as BELF-AEOCSVMs. There
are several approaches to evaluate the performance of the traditional
AdaBoost, such as error bound estimation [11] and training error
boundary analysis [31]. Inspired by the latter, the empirical error
upper bound of BELF-AEOCSVMs is estimated, which is summarized
in Proposition 5.

Proposition 5. All the base classifiers in the proposed ensemble are
OCSVM. The weighted strategy is utilized to combine the trained base
classifiers in the ensemble. Suppose the error rates of the 𝑇 base classifiers
re 𝜖1, 𝜖2,… , 𝜖𝑇 . Moreover, 1 is the initial probability distribution of
training samples. The empirical error upper bound of the ensemble classifier
𝐻 with respect to 1 is given by

𝑃𝐱𝑖∼1
[𝐻(𝐱𝑖) = −1] <

∏𝑇
𝑡=1[(𝑒

2 − 1)𝜖𝑡 + 1]
𝑒𝑇

. (29)

roof. According to Algorithm 2, 𝑇+1 is defined as

𝑇+1(𝐱𝑖) = 1(𝐱𝑖)

[

𝑒−
3
2 𝜂𝑒

−𝑓0(𝐱𝑖 )
]

[

𝑒−𝛼1ℎ1(𝐱𝑖 )−1
]

𝑒−𝛼1ℎ1(𝐱𝑖)

𝑍1

…

[

𝑒−
3
2 𝜂𝑒

−𝑓𝑇−1(𝐱𝑖 )
]

[

𝑒−𝛼𝑇 ℎ𝑇 (𝐱𝑖 )−1
]

𝑒−𝛼𝑇 ℎ𝑇 (𝐱𝑖)

𝑍𝑇

= 1(𝐱𝑖)𝑒−𝑓𝑇 (𝐱𝑖)
∏𝑇

𝑡=1

[

𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱𝑖 )
]

[

𝑒−𝛼𝑡ℎ𝑡 (𝐱𝑖 )−1
]

𝑒−𝛼𝑡ℎ𝑡(𝐱𝑖)

∏𝑇
𝑡=1 𝑍𝑡

. (30)

It is known that 𝜂 > 0 and 𝑒−𝑓𝑡−1(𝐱𝑖) > 0, which leads to 0 <
𝑒−

3
2 𝜂 exp(𝑓𝑡−1(𝐱𝑖)) < 1. Here we assume that 0 ≤ 𝛼𝑡 ≤ 1. This assumption

an be easily obtained through dividing all the weights {𝛼1, 𝛼2,… , 𝛼𝑇 }
by their sum ∑𝑇

𝑡=1 𝛼𝑡. Therefore,

𝑇+1(𝐱𝑖)
𝑇
∏

𝑡=1
𝑍𝑡 = 1(𝐱𝑖)𝑒−𝑓𝑇 (𝐱𝑖)

𝑇
∏

𝑡=1

[

𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱𝑖 )
]

[

𝑒−𝛼𝑡ℎ𝑡 (𝐱𝑖 )−1
]

1(𝐱𝑖)𝑒−𝑓𝑇 (𝐱𝑖)
𝑇
∏

𝑡=1

[

𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱𝑖 )
]

(

1
𝑒 −1

)

> 1(𝐱𝑖) exp(−𝑓𝑇 (𝐱𝑖)). (31)

Since 𝐻(𝐱) = 𝑠𝑖𝑔𝑛(𝑓𝑇 (𝐱)), if 𝐻(𝐱) = −1, then 𝑓𝑇 (𝐱) ≤ 0, which implies
that exp

(

−𝑓𝑇 (𝐱)
)

≥ 1. That is, I(𝐻(𝐱) = −1) ≤ exp
(

−𝑓𝑇 (𝐱)
)

. Hence, the
empirical error is

𝑃𝐱𝑖∼1
[𝐻(𝐱𝑖) = −1] =

𝑁
∑

𝑖=1
1(𝐱𝑖)I(𝐻(𝐱𝑖) = −1) ≤

𝑁
∑

𝑖=1
1(𝐱𝑖) exp

(

−𝑓𝑇 (𝐱𝑖)
)

<
𝑁
∑

𝑖=1
𝑇+1(𝐱𝑖)

𝑇
∏

𝑡=1
𝑍𝑡 =

𝑇
∏

𝑡=1
𝑍𝑡. (32)

The last equality in (32) uses the fact that 𝑇+1 is a distribution (which
sums to 1). Furthermore,

𝑍𝑡 =
E𝐱∼

[

exp
(

− 3
2 𝜂 exp(−𝑓𝑡(𝐱)) − 𝑓𝑡(𝐱)

)]

E𝐱∼

[

exp
(

− 3
2 𝜂 exp(−𝑓𝑡−1(𝐱))

)

− 𝑓𝑡−1(𝐱)
]

=
𝑁
∑

𝑖=1
𝑡(𝐱𝑖)

[

𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱𝑖 )
]

[

𝑒−𝛼𝑡ℎ𝑡 (𝐱𝑖 )−1
]

𝑒−𝛼𝑡ℎ𝑡(𝐱𝑖)

≤
𝑁
∑

𝑖=1
𝑡(𝐱𝑖)

[

𝑒−
3
2 𝜂𝑒

−𝑓𝑡−1(𝐱𝑖 )
](𝑒−1)

𝑒−𝛼𝑡ℎ𝑡(𝐱𝑖) <
𝑁
∑

𝑖=1
𝑡(𝐱𝑖)𝑒−𝛼𝑡ℎ𝑡(𝐱𝑖)

=
∑

𝑖∶ℎ𝑡(𝐱𝑖)=1
𝑡(𝐱𝑖)𝑒−𝛼𝑡 +

∑

𝑖∶ℎ𝑡(𝐱𝑖)=−1
𝑡(𝐱𝑖)𝑒𝛼𝑡

= 𝑒−𝛼𝑡 (1 − 𝜖 ) + 𝑒𝛼𝑡𝜖 ≤ 𝑒−1(1 − 𝜖 ) + 𝑒𝜖 =

(

𝑒2 − 1
)

𝜖𝑡 + 1
. (33)
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𝑡 𝑡 𝑡 𝑡 𝑒
Plugging (33) into (32), we can finally get (29). □

4. Experimental results

In this section, BELF-AEOCSVMs is compared with its relevant
approaches on one artificial data set, sixteen UCI benchmark data sets
and one handwritten digit data set. The base classifiers in the follow-
ing ensemble methods are all OCSVM. The Gaussian kernel function
𝐾(𝐱, 𝐲) = exp{−𝛾‖𝐱 − 𝐲‖2} is chosen. The geometric mean (g-mean) is
adopted to evaluate the performances of the following approaches.

4.1. Artificial data set

The description of the artificial data set is given below.
Square-Outlier : 200 target samples are randomly generated in the

square {(𝑥, 𝑦)|𝑥 ∈ [0.4, 2.6], 𝑦 ∈ [0.4, 0.6]∪[2.4, 2.6]}∪{(𝑥, 𝑦)|𝑥 ∈ [0.4, 0.6]∪
[2.4, 2.6], 𝑦 ∈ [0.4, 2.6]}, while 50 outliers are randomly chosen from the
area {(𝑥, 𝑦)|𝑥, 𝑦 ∈ [0, 3]}.

Towards Square-Outlier, the width parameter of the Gaussian ker-
nel function and the trade-off parameter for the single OCSVM are
assigned with 𝛾 = 25 and 𝜈 = 0.2, respectively. The values of 𝛾
nd 𝜎 for the base classifiers in the traditional AdaBoost based en-
emble of OCSVMs (AEOCSVMs), weighted bagging based ensemble
f OCSVMs (WBEOCSVMs) [32], and BELF-AEOCSVMs are all the
ame with their counterparts of the single OCSVM. The number of
CSVMs in AEOCSVMs, WBEOCSVMs and BELF-AEOCSVMs are all
0. For WBEOCSVMs, the width parameter 𝜎 of the weighted kernel

density estimator and the number of iterations for updating the prob-
ability weights of all samples are assigned with 1 and 5, respectively.
Moreover, for BELF-AEOCSVMs, the scale factor 𝜂 and the number of
iterations for updating the weights of base classifiers are taken as 0.1
and 20, respectively. The outcomes of the four methods are illustrated
in Fig. 3.

One can observed from Fig. 3 that BELF-AEOCSVMs achieves the
best anti-outlier ability in comparison with the other three approaches
on Square-Outlier.

4.2. UCI benchmark data sets

Besides OCSVM, AEOCSVMs and WBEOCSVMs, the proposed BELF-
AEOCSVMs is also compared with random subspace method based
ensemble of OCSVMs (RSMEOCSVMs) [33] and clustering based en-
semble of OCSVMs (CEOCSVMs) [34] on the sixteen benchmark data
sets selected from the UCI machine learning repository [35]. However,
all the sixteen data sets are designed for binary classification. To make
them suitable for one-class classification, the samples in one class are
utilized as target samples and the samples in the other class as non-
target samples. Furthermore, 70% of the target samples and 5% of the
non-target samples are randomly selected to generate the training set.
Note that the labels of non-target samples in the training set are altered
from negative to positive to make these non-target samples play the role
of outliers. The rest 30% target samples and 95% non-target samples
are used as the test set. The information of the sixteen data sets is
included in Table 1.

The parameters 𝛾 and 𝜈 for OCSVM are exhaustively searched
within the domains {2−6, 2−5,… , 26} and {0.1, 0.2,… , 1}, respectively.
The optimal values of 𝛾 and 𝜈 for OCSVM on the sixteen UCI bench-
mark data sets are tabulated in Table 2. Towards the five ensemble
methods, 𝛾 and 𝜈 for their base classifiers are all designated with
the same values as those of OCSVM. The width parameter of the
weighted kernel density estimator 𝜎 for WBEOCSVMs is selected in
the domain {1, 2, 4, 8, 16, 32}. The percentage of the remained features
for RSMEOCSVMs is fixed at 75% and the majority voting rule is
adopted. For CEOCSVMs, the fuzzy c-means clustering algorithm is
utilized to partition the input space. The domain of the scale factor 𝜂

for BELF-AEOCSVMs is {0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2}. The number of
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Fig. 3. The outcomes of the four methods upon Square-Outlier. (a) OCSVM with g-mean 0.7060. (b) AEOCSVMs with g-mean 0.7547. (c) WBEOCSVMs with g-mean 0.7669. (d)
BELF-AEOCSVMs with g-mean 0.7931.
.

Table 1
The information of the sixteen UCI benchmark data sets.

Data sets 𝑁𝑡𝑎𝑟 𝑁𝑛𝑜𝑛−𝑡𝑎𝑟 𝑁𝑓𝑒𝑎 𝑁𝑡𝑟 𝑁𝑡𝑠

Banana 2376 2924 2 1809 3491
Blood Transfusion 178 570 4 154 594
Cancer 239 444 9 189 494
Diabetis 268 500 8 213 555
Flare Solar 94 50 9 71 73
Hepatitis 123 32 19 91 64
Hill Valley 301 305 100 226 380
Housing 245 261 13 185 321
Pima 268 500 8 213 555
Ringnorm 3664 3736 20 2752 4648
Splice 1344 1647 60 1023 1968
Thyorid 65 150 5 54 161
Twonorm 3703 3697 20 2777 4623
Waveform 1647 3353 21 1321 3679
Wdbc 212 357 9 166 403
Wholesale Customers 298 142 7 216 224

Note: 𝑁𝑡𝑎𝑟–Number of target samples; 𝑁𝑛𝑜𝑛−𝑡𝑎𝑟–Number of non-target samples; 𝑁𝑓𝑒𝑎–
umber of features; 𝑁𝑡𝑟–Number of training samples; 𝑁𝑡𝑠–Number of testing

amples.

ase classifiers for the ensemble approaches is 20. The max-epochs for
pdating the probability weights of training samples for WBOCSVMs
nd the weights of base classifiers for BELF-AEOCSVMs are 5 and
0, respectively. Finally, the settings of 𝜎 for WBEOCSVMs and 𝜂
or BELF-AEOCSVMs on the sixteen data sets are also included in
able 2.

It should be mentioned here that there are no non-target data
n the training set for the scenario of one-class classification. Hence,
he traditional strategy of parameter selection for binary or multi-
lass classification, e.g., k-fold cross validation can only perform on
he target data but not on the non-target data. If one chooses the
arameter value to minimize the validation error, the obtained one-
lass classifier may label all the testing samples as the target data.
7

Table 2
The parameter settings of the six approaches upon the sixteen UCI benchmark data sets

Data sets 𝛾 𝜈 𝜎 𝜂

Banana 24 0.3 2 0.05
Blood Transfusion 23 0.3 4 0.05
Cancer 2−5 0.4 16 0.01
Diabetis 2−5 0.5 1 0.2
Flare Solar 2−2 0.3 4 1.5
Hepatitis 2−6 0.4 4 0.01
Hill Valley 25 0.4 1 0.01
Housing 2−5 0.2 2 0.1
Pima 2−1 0.5 16 0.5
Ringnorm 22 0.2 16 0.2
Splice 2−5 0.4 16 0.01
Thyorid 22 0.4 4 0.05
Twonorm 2−6 0.3 32 0.01
Waveform 2−1 0.4 4 0.5
Wdbc 2−6 0.4 8 0.01
Wholesale Customers 22 0.2 1 0.2

Therefore, for the scenario of one-class classification, the researchers
usually split the whole data set into the training and test sets without
the validation set, then exhaustively search for the best parameter
combination values [30,36].

The average testing results of 20 trails for the six methods upon
the sixteen benchmark data sets are tabulated in Table 3. The standard
deviations for the 20 trials upon each data set are included in the table.
The training costs of the six methods in one trial on each data set are
also shown in Table 3. In addition, the paired T-test and Wilcoxon rank-
sum test are utilized to examine whether the performance enhancement
obtained by BELF-AEOCSVMs over the other methods is statistically
significant.

The outcomes in Table 3 show that BELF-AEOCSVMs is statistically
different from its related methods on all the sixteen data sets except Hill
Valley. The generalization ability of BELF-AEOCSVMs is better than the
other five approaches on twelve out of sixteen data sets. Considering
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Table 3
The testing results of the six approaches upon the sixteen UCI benchmark data sets. The best outcomes are emphasized in bold.

Data sets OCSVM WBEOCSVMs RSMEOCSVMs CEOCSVMs AEOCSVMs BELF-AEOCSVMs
G-mean/Time(s) G-mean/Time G-mean/Time G-mean/Time G-mean/Time G-mean/Time
𝑃𝑇 , 𝑃𝑊 𝑃𝑇 , 𝑃𝑊 𝑃𝑇 , 𝑃𝑊 𝑃𝑇 , 𝑃𝑊 𝑃𝑇 , 𝑃𝑊

Banana 0.7300 ± 0.0057/0.06 0.7412 ± 0.0044/23.10 0.7300 ± 0.0057/0.79 0.7162 ± 0.0030/0.73 0.7357 ± 0.0065/1.27 0.7534 ± 0.0053/1.28
5.76E−034,3.65E−008 4.76E−023,3.65E−008 5.76E−034,3.65E−008 1.01E−024,1.15E−009 2.24E−023,3.65E−008

Blood Transfusion 0.5911 ± 0.0107/0.002 0.5847 ± 0.0011/0.30 0.5373 ± 0.0022/0.01 0.5088 ± 0.0092/0.08 0.5958 ± 0.0041/0.03 0.6013 ± 0.0134/0.03
6.66E−013,4.34E−008 7.91E−006,4.34E−008 5.67E−007,3.65E−008 1.28E−024,1.15E−009 0.0148,4.34E−008

Cancer 0.8242 ± 0.0051/0.002 0.8102 ± 0.0049/0.37 0.7575 ± 0.0074/0.02 0.7751 ± 0.0016/0.15 0.8218 ± 0.0039/0.03 0.8319 ± 0.0077/0.03
2.82E−011,4.34E−008 1.65E−018,3.65E−008 9.21E−008,4.34E−008 1.51E−031,1.15E−009 3.17E−010,4.34E−008

Diabetes 0.4656 ± 0.0202/0.002 0.4771 ± 0.0100/0.43 0.5338 ± 0.0088/0.02 0.5043 ± 0.0213/0.17 0.5094 ± 0.0202/0.04 0.5185 ± 0.0299/0.04
0.0001,9.75E−007 0.0002,4.34E−008 3.63E−014,3.65E−008 1.57E−005,9.75E−007 0.0005,4.34E−008

Flare Solar 0.3858 ± 0.0025/0.002 0.4151 ± 0.0046/0.08 0.3496 ± 0.0003/0.01 0.3940 ± 0.0029/0.04 0.3939 ± 0.0020/0.01 0.5275 ± 0.0022/0.01
9.70E−052,1.15E−009 2.55E−033,1.15E−009 3.89E−037,1.15E−009 8.08E−045,1.15E−009 4.08E−057,1.15E−009

Hepatitis 0.5934 ± 0.0196/0.002 0.5810 ± 0.0046/0.12 0.5958 ± 0.0202/0.01 0.4860 ± 0.0096/1.21 0.5940 ± 0.0168/0.02 0.6077 ± 0.0184/0.02
1.92E−022,3.65E−008 4.99E−005,4.34E−008 9.58E−018,3.65E−008 2.42E−023,4.34E−008 3.63E−019,3.65E−008

Hill Valley 0.4735 ± 0.0080/0.01 0.4861 ± 0.0003/0.78 0.4820 ± 0.0065/0.09 0.5189 ± 0.0092/0.22 0.4799 ± 0.0059/0.19 0.4844 ± 0.0048/0.20
3.13E−012,4.34E−008 0.1038,4.34E−008 3.15E−006,4.34E−008 1.07E−009,4.34E−008 8.07E−014,3.98E−008

Housing 0.6187 ± 0.0127/0.002 0.6928 ± 0.0015/0.48 0.6262 ± 0.0046/0.01 0.5447 ± 0.0090/0.10 0.6211 ± 0.0108/0.03 0.6387 ± 0.0136/0.03
4.87E−027,3.65E−008 3.38E−014,3.65E−008 2.38E−011,4.34E−008 8.15E−022,1.15E−009 7.18E−017,3.65E−008

Pima 0.4860 ± 0.0083/0.002 0.4876 ± 0.0027/0.55 0.5001 ± 0.0024/0.02 0.4945 ± 0.0053/0.25 0.5170 ± 0.0009/0.04 0.5213 ± 0.0045/0.04
4.15E−020,1.15E−009 5.40E−026,1.15E−009 2.59E−018,1.15E−009 9.14E−027,1.15E−009 2.78E−005,4.34E−008

Ringnorm 0.9331 ± 0.0007/0.36 0.9299 ± 0.0001/82.53 0.9288 ± 0.0022/5.53 0.9104 ± 0.0074/0.33 0.9468 ± 0.0037/9.98 0.9475 ± 0.0038/10.02
1.38E−048,1.15E−009 1.27E−046,1.15E−009 2.48E−009,4.34E−008 7.71E−045,1.15E−009 1.07E−015,3.65E−008

Splice 0.6682 ± 0.0027/0.06 0.6670 ± 0.0011/11.75 0.6595 ± 0.0008/0.95 0.6603 ± 0.0019/0.19 0.6710 ± 0.0027/2.04 0.6696 ± 0.0024/1.98
6.74E−015,3.65E−008 2.70E−008,4.34E−008 6.83E−027,3.65E−008 1.72E−024,4.34E−008 9.91E−014,4.34E−008

Thyroid 0.3995 ± 0.0154/0.001 0.3644 ± 0.0220/0.04 0.4461 ± 0.0039/0.005 0.4702 ± 0.0340/0.05 0.4988 ± 0.0355/0.01 0.5870 ± 0.0078/0.01
5.48E−019,1.15E−009 2.41E−018,1.15E−009 2.20E−023,1.15E−009 4.72E−019,1.15E−009 1.43E−011,4.34E−008

Twonorm 0.7683 ± 0.0022/0.15 0.7694 ± 0.0030/79.53 0.7700 ± 0.0020/2.59 0.6025 ± 0.0001/0.35 0.7686 ± 0.0026/5.25 0.7709 ± 0.0032/5.26
1.59E−010,4.34E−008 1.19E−019,3.65E−008 0.0022,4.34E−008 3.27E−034,1.15E−009 4.15E−013,4.34E−008

Waveform 0.7516 ± 0.0028/0.05 0.7503 ± 0.0026/17.64 0.7366 ± 0.0013/0.81 0.6448 ± 0.0178/1.10 0.7476 ± 0.0018/1.61 0.7528 ± 0.0037/1.55
7.15E−006,4.34E−008 3.34E−009,4.34E−008 3.36E−038,1.15E−009 4.43E−015,1.15E−009 3.20E−010,4.34E−008

Wdbc 0.7744 ± 0.0075/0.001 0.7539 ± 0.0012/0.28 0.7486 ± 0.0089/0.01 0.5673 ± 0.0085/0.19 0.7734 ± 0.0061/0.03 0.7757 ± 0.0077/0.03
8.07E−014,3.97E−008 5.76E−012,4.34E−008 1.88E−027,3.65E−008 8.90E−048,1.15E−009 1.02E−005,4.34E−008

Wholesale Customers 0.7512 ± 0.0148/0.002 0.7758 ± 0.0156/0.42 0.7064 ± 0.0113/0.02 0.6990 ± 0.0152/0.08 0.7660 ± 0.0138/0.03 0.7910 ± 0.0230/0.03
7.96E−015,3.65E−008 2.20E−010,4.34E−008 2.51E−009,3.65E−008 5.06E−018,1.15E−009 2.20E−010,4.34E−008

Note: s–Second; 𝑃𝑇 –P-value for paired T-test; 𝑃𝑊 –P-value for Wilcoxon rank-sum test.
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the average g-mean values, the values of standard deviation in Table 3
exhibit that BELF-AEOCSVMs is more stable than its related methods
on the foresaid twelve data sets. One can further obtain the following
two observations from the outcomes in Table 3.

• Compared to AEOCSVMs, BELF-AEOCSVMs demonstrates better
generalization performance upon all the sixteen data sets except
Splice. Hence, replacing the conventional exponential loss func-
tion in AEOCSVMs by the proposed bounded exponential loss
function can improve its robustness against outliers.

• In comparison with OCSVM, WBEOCSVMs obtains better perfor-
mance upon eight out of sixteen data sets. AEOCSVMs gets better
performance on thirteen out of sixteen data sets, the average
of all improvement g-mean values upon these thirteen data sets
is 0.0180. RSMEOCSVMs produces better performance on seven
out of sixteen data sets, while CEOCSVMs generates better per-
formance on five out of sixteen data sets. BELF-AEOCSVMs gets
better performance on all the sixteen data sets and the average of
all improvement g-mean values upon all the data sets is 0.0353.
Therefore, WBEOCSVMs, RSMEOCSVMs and CEOCSVMs produce
unsatisfying outcomes mainly because that the training samples
are polluted by outliers. In comparison with AEOCSVMs, BELF-
AEOCSVMs achieves better results. It is thus again verified that
replacing exponential loss function with the proposed bounded
exponential loss function can improve the anti-outlier ability of
AEOCSVMs.

As for the training costs of the six methods, the following ob-
servations can be drawn from Table 3. First, OCSVM is the fastest
on all the sixteen data sets, while WBEOCSVMs is the slowest on
fourteen data sets. Second, RSMEOCSVMs is the fastest among the
five ensemble methods. BELF-AEOCSVMs achieves faster training speed
than CEOCSVMs on eleven data sets, while gets the same training
8

a

time as AEOCSVMs on ten data sets. Third, the training costs of BELF-
AEOCSVMs on Ringnorm and Twonorm are much higher than those
on the other data sets. Hence, the training cost of BELF-AEOCSVMs
increases greatly as the number of training samples increases.

Moreover, the relations between the generalization performance of
the six approaches and the ratios of outliers occupying all the training
samples on the four data sets are shown in Fig. 4. The value of ratio
increases from 5% to 30% with step size 5%. From Fig. 4, we can
deduce the following two outcomes.

• The generalization performances of the six methods decrease
as the value of ratio increases. Compared to the other five ap-
proaches, BELF-AEOCSVMs gets the better outcomes upon the
four data sets.

• In comparison with OCSVM, WBEOCSVMs demonstrates better
performance only on Housing, RSMEOCSVMs and AEOCSVMs
obtain approximate performances on all the four data sets, and
CEOCSVMs achieves worse performances on Banana, Housing, and
Wdbc. In contrast, BELF-AEOCSVMs gets better outcomes upon all
the four benchmark data sets.

Furthermore, the impact of different parameter settings on the
performance of BELF-AEOCSVMs is examined on the four data sets. The
width parameter 𝛾, the trade-off parameter 𝜈, and the scale constant
𝜂 of BELF-AEOCSVMs are investigated. The ranges for 𝛾, 𝜈 and 𝜂 are
respectively {2−6, 2−5,… , 26}, {0.1, 0.2,… , 0.9} and {0.01, 0.05, 0.1, 0.2,
.5, 1, 1.5, 2}. Each parameter varies within the above domain whilst
he rest two parameters remain unchanged with their values directly
erived from Table 2. 20 trials are repeated for each setting of 𝛾, 𝜈,
nd 𝜂. Fig. 5(a) illustrates the effect of 𝛾 on the testing performance of
ELF-AEOCSVMs upon the four data sets when 𝜈 and 𝜂 keep unchanged

s their values derived from Table 2. Fig. 5(b) demonstrates the impact
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Fig. 4. The outcomes of the six methods for the different ratio of outliers occupying all the training samples on the four benchmark data sets. (a) Banana. (b) Housing. (c) Splice.
(d) Wdbc.
Fig. 5. Performances of BELF-AEOCSVMs with different values of 𝛾, 𝜈, and 𝜂 on the four data sets. (a) The effect of different values of 𝛾, (b) The impact of different values of 𝜈,
c) The influence of different values of 𝜂.
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f 𝜈 when 𝛾 and 𝜂 remain unchanged. Furthermore, Fig. 5(c) illustrates
he impact of 𝜂 when 𝛾 and 𝜈 keep unchanged.

It is shown in Fig. 5 that when the values of the three parameters
et close to their corresponding values in Table 2, the average g-mean
alues of BELF-AEOCSVMs change slightly. However, when the values
f the three parameters are far away from their corresponding values in
able 2, the average g-mean values of BELF-AEOCSVMs drop quickly.
ence, the performance of BELF-AEOCSVMs definitely depends on the
alues of 𝛾, 𝜈, and 𝜂. The suitable parameter setting makes BELF-
EOCSVMs obtain higher performance, while the unsuitable parameter
etting certainly make BELF-AEOCSVMs achieve comparatively poor
erformance.

.3. Handwritten digit data set

The efficiency of BELF-AEOCSVMs is further verified on MNIST [37].
he information of this handwritten data set is briefly introduced
elow.
9
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MNIST: It consists of 60000 training images and 10000 testing
mages of the handwritten digits 0∼9 in gray scale with 28 × 28
ixels. These images are blurred and sub-sampled down to 8 × 8 pixels.
he images of one certain digit are used as target samples, whilst the

mages of the rest nine digits are used as non-target samples. 2000
amples are randomly selected from the target samples in the training
mages to compose the unpolluted training set, while 100 samples are
andomly selected from the non-target samples in the training images
o generate the outliers. The remain target samples and the first 109
on-target samples from each digit in the testing images are utilized for
esting.

The parameter settings of the six methods contain 𝛾 = 2−3, 𝜈 = 0.1,
= 1, and 𝜂 = 0.1. The testing results of the 20 trials are summarized

n Table 4. One can observe from Table 4 that BELF-AEOCSVMs is
tatistically different from its related approaches. Furthermore, the
eneralization performance of BELF-AEOCSVMs is better than the other
ive methods upon all the data sets except MNIST(2), MNIST(3), and
NIST(5). Hence, BELF-AEOCSVMs has better anti-outlier performance
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Table 4
The testing results of the six different methods on the handwritten digit data set. The best outcomes are emphasized in bold.

Data sets OCSVM WBEOCSVMs RSMEOCSVMs CEOCSVMs AEOCSVMs BELF-AEOCSVMs
G-mean G-mean G-mean G-mean G-mean G-mean
𝑃𝑇 , 𝑃𝑊 𝑃𝑇 , 𝑃𝑊 𝑃𝑇 , 𝑃𝑊 𝑃𝑇 , 𝑃𝑊 𝑃𝑇 , 𝑃𝑊

MNIST(0) 0.7269 ± 0.0003 0.8182 ± 0.0004 0.7362 ± 0.0010 0.6343 ± 0.0020 0.7444 ± 0.0021 0.8331 ± 0.0006
1.33E−041,1.15E−009 1.79E−024,1.15E−009 1.43E−046,1.15E−009 1.12E−037,1.15E−009 3.46E−035,1.15E−009

MNIST(1) 0.8893 ± 0.0007 0.8754 ± 0.0018 0.8755 ± 0.0002 0.8893 ± 0.0007 0.8955 ± 0.0022 0.9109 ± 0.0001
3.66E−032,1.15E−009 4.34E−027,1.15E−009 3.47E−041,1.15–009 3.66E−032,1.1eE-009 2.10E−018,1.15E−009

MNIST(2) 0.5713 ± 0.0017 0.7131 ± 0.0063 0.5556 ± 0.0026 0.5713 ± 0.0017 0.5893 ± 0.0016 0.6595 ± 0.0017
3.42E−059,1.15E−009 2.10E−017,1.15E−009 1.85E−041,1.15E−009 3.42E−059,1.15E−009 9.28E−055,1.15E−009

MNIST(3) 0.6377 ± 0.0037 0.7234 ± 0.0004 0.6258 ± 0.0072 0.6412 ± 0.0120 0.6448 ± 0.0039 0.7141 ± 0.0039
1.15E−052,1.15E−009 2.32E−010,1.15E−009 9.60E−029,1.15E−009 1.96E−014,1.15E−009 1.17E−058,1.15E−009

MNIST(4) 0.7474 ± 0.0045 0.7933 ± 0.0008 0.7655 ± 0.0010 0.7474 ± 0.0045 0.7690 ± 0.0013 0.8471 ± 0.0013
4.45E−025,1.15E−009 3.76E−039,1.15E−009 6.99E−031,1.15E−009 4.45E−025,1.15E−009 3.08E−065,1.15E−009

MNIST(5) 0.5908 ± 0.0053 0.6757 ± 0.0015 0.5701 ± 0.0056 0.5908 ± 0.0053 0.5979 ± 0.0064 0.6566 ± 0.0028
1.00E−028,1.15E−009 1.33E−023,1.15E−009 4.01E−030,1.15E−009 1.00E−028,1.15E−009 6.44E−025,1.15E−009

MNIST(6) 0.7162 ± 0.0031 0.7608 ± 0.0004 0.7163 ± 0.0027 0.7162 ± 0.0031 0.7272 ± 0.0019 0.8174 ± 0.0021
2.04E−039,1.15E−009 1.69E−027,1.15E−009 3.16E−043,1.15E−009 2.04E−039,1.15E−009 3.78E−053,1.15E−009

MNIST(7) 0.7065 ± 0.0022 0.7773 ± 0.0015 0.6868 ± 0.0008 0.7087 ± 0.0119 0.7177 ± 0.0015 0.7865 ± 0.0007
1.68E−034,1.15E−009 5.59E−022,1.15E−009 4.86E−061,1.15E−009 1.00E−017,1.15E−009 8.93E−044,1.15E−009

MNIST(8) 0.6851 ± 0.0026 0.7624 ± 0.0029 0.6809 ± 0.0054 0.6851 ± 0.0026 0.7032 ± 0.0013 0.7751 ± 0.0009
2.14E−034,1.15E−009 5.16E−012,1.15E−009 6.79E−027,1.15E−009 2.14E−034,1.15E−009 1.06E−045,1.15E−009

MNIST(9) 0.7464 ± 0.0023 0.8071 ± 0.0030 0.7475 ± 0.0012 0.7464 ± 0.0023 0.7623 ± 0.0007 0.8446 ± 0.0004
1.38E−034,1.15E−009 1.73E−021,1.15E−009 2.29E−035,1.15E−009 1.38E−034,1.15E−009 4.96E−037,1.15E−009
Fig. 6. The 100 best and 100 worst target samples in the testing images identified by BELF-AEOCSVMs. (a) The 100 best target samples recognized by BELF-AEOCSVMs. (b) The
100 worst target samples recognized by BELF-AEOCSVMs.
than its related methods on MNIST. The reasons for BELF-AEOCSVMs
obtaining inferior performances on the above three data sets may be as
follows.

• In comparison with the other seven digits, the digits 2, 3 and
5 are more easily effected by outliers, which can be deduced
from Table 4 that the average g-mean values of almost all the
six methods on the three data sets are smaller than those upon
the rest seven data sets.

• The parameter settings of BELF-AEOCSVMs on all the ten data sets
are fixed to avoid the tedious search process of the optimal pa-
rameter combination. Assigning different values to the parameters
of BELF-AEOCSVMs on different data sets surely can enhance its
generalization performance. However, the fixed parameter values
are utilized for BELF-AEOCSVMs on all the data sets to save time.

• Compared to the other seven digits, the handwritten digits 2, 3
and 5 are more likely to be incorrectly recognized as the other
digits.

In addition, Fig. 6 illustrates the 100 best and 100 worst target
samples in the testing images identified by BELF-AEOCSVMs. One can
find from Fig. 6 that BELF-AEOCSVMs can assign bigger decision func-
tion values to the regular samples and smaller values to the irregular
samples.
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5. Conclusion

To enhance the anti-outlier performance of the traditional AdaBoost
based ensemble of OCSVMs, the bounded exponential loss function is
proposed to replace the exponential loss function in AdaBoost. Several
properties of the proposed bounded exponential loss function are inves-
tigated. Furthermore, the update formulae for weights of base classifiers
and probability distribution of training samples within the proposed
ensemble method, i.e., BELF-AEOCSVMs are designed. In addition, the
empirical error upper bound of BELF-AEOCSVMs is deduced from the
theoretical point of view. In comparison with OCSVM and its perti-
nent ensemble methods, BELF-AEOCSVMs exhibits better anti-outlier
performance upon the artificial and benchmark data sets.

The anti-outlier and generalization abilities of BELF-AEOCSVMs
may be further enhanced by choosing different parameter values for
different OCSVMs in the ensemble. Nevertheless, choosing the suitable
parameter values is time-consuming. In the further, we will attempt to
devise a heuristic approach for selecting suitable parameter values for
each OCSVMs in the ensemble. Moreover, the training complexity of
BELF-AEOCSVMs is high on large-scale data set mainly due to the iter-
ative update of weights for its base classifiers. We will consider other
optimization methods rather than the Newton–Raphson approach. In
addition, BELF-AEOCSVMs is designed for one-class classification. The
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bounded exponential loss function based AdaBoost ensemble of binary
or multi-class classifiers will be investigated.
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Appendix A. Proof of Proposition 4

One can easily obtain that

1. For ∀𝑢, 𝓁𝑏𝑒𝑥𝑝(𝑢) < 𝓁𝑏𝑒𝑥𝑝(−𝑢) holds, and,
2. 𝓁′

𝑏𝑒𝑥𝑝(𝑢) = −𝜉𝜂 exp (−(𝜂 exp(−𝑢) + 𝑢)), which leads to 𝓁′
𝑏𝑒𝑥𝑝(0) ≠ 0

exists.

Moreover,

𝐸[𝓁𝑏𝑒𝑥𝑝(𝑦𝑓 (𝐱))|𝐱] = 𝐸
{

𝜉
[

1 − 𝑒−𝜂𝑒
−𝑦𝑓 (𝐱)

]

|𝐱
}

= 𝜉
[

1 − 𝑒−𝜂𝑒
−𝑓 (𝐱)

]

𝑝(𝐱) + 𝜉
[

1 − 𝑒−𝜂𝑒
𝑓 (𝐱)

]

[1 − 𝑝(𝐱)]. (A.1)

Hence,

𝜕𝐸[𝓁𝑏𝑒𝑥𝑝(𝑦𝑓 (𝐱))|𝐱]
𝜕𝑓 (𝐱)

= −𝜉𝑝(𝐱)𝜂𝑒
[

−𝜂𝑒−𝑓 (𝐱)−𝑓 (𝐱)
]

+ 𝜉[1 − 𝑝(𝐱)]𝜂𝑒
[

−𝜂𝑒𝑓 (𝐱)+𝑓 (𝐱)
]

(A.2)

and
𝜕2𝐸[𝓁𝑏𝑒𝑥𝑝(𝑦𝑓 (𝐱))|𝐱]

𝜕𝑓 2(𝐱)
= 𝜉𝑝(𝐱)𝜂𝑒

[

−𝜂𝑒−𝑓 (𝐱)−𝑓 (𝐱)
]

[

1 − 𝜂𝑒−𝑓 (𝐱)
]

+

𝜉[1 − 𝑝(𝐱)]𝜂𝑒
[

−𝜂𝑒𝑓 (𝐱)+𝑓 (𝐱)
]

[

1 − 𝜂𝑒𝑓 (𝐱)
]

. (A.3)

Unfortunately, setting the partial derivative in (A.2) to zero, we cannot
get the explicit expression of the global extremum 𝑓 ∗(𝐱). Instead, the
following relation can be obtained.

𝑒
[

−𝜂𝑒−𝑓 (𝐱)−𝑓 (𝐱)
]

=
1 − 𝑝(𝐱)
𝑝(𝐱)

𝑒
[

−𝜂𝑒𝑓 (𝐱)+𝑓 (𝐱)
]

. (A.4)

ubstituting (A.4) into (A.3), we get

𝜕2𝐸[𝓁𝑏𝑒𝑥𝑝(𝑦𝑓 (𝐱))|𝐱]
𝜕𝑓 2(𝐱)

= 𝜉[1 − 𝑝(𝐱)]𝜂𝑒
[

−𝜂𝑒𝑓 (𝐱)+𝑓 (𝐱)
]

[

−𝜂𝑒−𝑓 (𝐱) − 𝜂𝑒𝑓 (𝐱) + 2
]

.

(A.5)

It is easy to examine that 𝜉[1 − 𝑝(𝐱)]𝜂𝑒
[

−𝜂𝑒𝑓 (𝐱)+𝑓 (𝐱)
]

> 0. Moreover, one
can find that −𝜂𝑒−𝑓 (𝐱) − 𝜂𝑒𝑓 (𝐱) + 2 > 0 if the condition 𝑒−𝑓 (𝐱) + 𝑒𝑓 (𝐱) < 2

𝜂
holds.

Therefore, if the conditions 𝑝(𝐱) ≠ 1 and 𝑒−𝑓 (𝐱) + 𝑒𝑓 (𝐱) < 2
𝜂 meet, we

can obtain 𝜕2𝐸[𝓁𝑏𝑒𝑥𝑝(𝑦𝑓 (𝐱))|𝐱]
𝜕𝑓2(𝐱) > 0. Let 𝑓 ∗(𝐱) be the global extremum of

𝐸[𝓁𝑏𝑒𝑥𝑝(𝑦𝑓 (𝐱))|𝐱]. Since 𝜕2𝐸[𝓁𝑏𝑒𝑥𝑝(𝑦𝑓 (𝐱))|𝐱]
𝜕𝑓2(𝐱) > 0, 𝑓 ∗(𝐱) must be the global

inimizer of 𝐸[𝓁𝑏𝑒𝑥𝑝(𝑦𝑓 (𝐱))|𝐱]. Thus, according to the above outcomes
nd Lemma 1, we know that the bounded exponential loss function

(𝑢) is Fisher consistent.
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