A Brief Introduction to
Generative Adversarial
Networks

Chunru Dong

Content

Generative model & discriminative model

What’s GANs?
Math behind GANs?

Characteristics of GANs
Applications of GANs

Generative model & discriminative model

e Given an observable variable Xand a target variable ¥, a
generative model is a statistical model of the joint
probability distribution on X x ¥, P(X,Y);!]

e A discriminative model is a model of the conditional

probability of the target ¥, given an observation x,
symbolically, P(Y|X = z); and

e Classifiers computed without using a probability model
are also referred to loosely as "discriminative”.

Generative model & discriminative model

* Discriminative models learn the boundary between classes

* Generative models model the distribution of the sample data

Density estimation

T ———— New instance
Observed instances Approximate distribution
from an unknow distribution P.(x) to the real distribution

P data(X) P data(X)

Taxonomy of Generative Models

l Dlrect
Maximum leehhood‘
/ \ GAN
Explicit density Imphc1t denblty

N\ o

. . . Markov Chain‘
Tractable density Approximate density

-Fully visible belief nets GOSN

‘MADE Variational| Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

(Goodfellow 2016)

Generative models

Types of generative models are:

e Gaussian mixture model (and other types of mixture model)

e Hidden Markov model

e Probabilistic context-free grammar

e Bayesian network (e.g. Naive bayes, Autoregressive model)

e Averaged one-dependence estimators

e Latent Dirichlet allocation

e Boltzmann machine (e.g. Restricted Boltzmann machine, Deep belief network)
e Variational autoencoder

e Generative adversarial network

e Flow-based generative model

Discriminative models

e k-nearest neighbors algorithm

e Logistic regression

e Support Vector Machines

e Maximum-entropy Markov models
e Conditional random fields

e Neural networks

What is GAN?

* GANs are generative models devised by Goodfellow et al. in 2014.

Goodfellow I J, Pouget—Abadie J, Mirza M, et al. Generative adversarial

nets[Cl]// International Conference on Neural Information Processing Systems.
2014

 Facebook’s Al research director Yann LeCun called adversarial
training “the most interesting idea in the last 10 years in ML.”

* GANs’ potential is huge, because they can learn to mimic any
distribution of data (such as images, music, speech, prose).

https://arxiv.org/abs/1406.2661
https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning

Cumulative number of named GAN papers by month

Total number of papers

5

0

2014 2015 2016 2017 2018
Year

https://github.com/hindupuravinash/the-gan-zoo Track updates at the GAN Zoo

Generation problem

* Given a sample of x What'’s the distribution of these images?

P,...(X) (unknown)

How to sample a new image from its
distribution?

-
] d

X: an image (a high-
dimensional vector)

Generation

* We want to find data distribution P, (x)

Paata(x) J5 !
'S Y
e % . d;
High
Probability

Image
Space

Probability

Maximum Likelihood Estimation

 There is a data distribution P;.:,(x) (We don’t know, but can sample from it.)

* We have a distribution P;(x; 6) parameterized by 6
* We want to find 8 such that P;(x; 8) close to P ¢q (x)

* E.g. P-(x; 0) is a Gaussian Mixture Model, 8 are means and variances of the
Gaussians

Sample {x1, x4, ..., x™} from Py ¢4 (x)

We can compute P, (xi; 9)

Likelihood of generating the samples oo

m
L = l_[PG(Xi; 8)
=1 O

Find 8 maximizing the likelihood

Maximum Likelihood Estimation
= Minimize KL Divergence

m m
0" =arg meaxl_[PG(xi; 9) = arg max log HPG(xi; 9)
=1 i=1

m

= arg mgaxz logPg(x%0) o, 22, ..o, x™} from Pygza (%)
i=1

~ arg max Ex-p . [logPs(x;0)]

= arg méixj Pigia(x)logP;(x; 0)dx —f Piata(X)ogPiaeq(x)dx

X X

= arg mein KL(P;g4t4|1Pg) How to define a general P;?

KL divergence & JS Divergence

(1) KL (Kullback-Leibler) divergence measures how one probability
distribution p diverges from a second expected probability distribution q.

p(z)

Dra(ple) = [p(@)los 2>

(2) Jensen—Shannon Divergence is another measure of similarity between

two probability distributions, bounded by [0,1][0,1]. JS divergence is symmetric
and more smooth.

dx

1 »+q 1 |
Djs(pllq) = EDKL(JDH) QDKL(C]H —)

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence

0.4 - 0.4 :
034-—t Dii(pl|q) i
0.3 1 — Drxu(qllp |
0.2
0.2 - i 0.1
0.1 1 ; 0.0 <" -
: —0.1
0.0 - :
0
D10 — Owtpllm) | 0.03{ — Dss(pllq)
' — Dx(q||m
0.05 - 0.02 -
0.00 4 .
0.01 -
—0.05 -
0.00 -

I
-4 2 0 2 4
X

Fig. 1. Given two Gaussian distribution, p with mean=0 and std=1 and q with mean=1 and std=1. The
average of two distributions is labelled as m = (p + q) /2. KL divergence D7, is asymmetric but JS

divergence D jg is symmetric.

JS Divergence

@ Also called as the symmetric KL divergence

Djsplp. q] = % (DKL {p‘ - q} - i [q' MD

2 2

@ Properties
o Dysplp.q] =0
+ DJSD:)U. q —= 0 iff pP=d
o Djsplp.q] = Dysplq. p]
° \/DJSD[P. q] satisfies triangle inequality — Jenson-Shannon Distance

A basic framework for GAN

real image

N M\
¥ SAw Y
)) \ .. o
X\ | 'V 4“//‘— Discriminator Network - Predicted Labels

D-dimensional
noise vector

- Generator Network

J0JO9A

real image

! W‘ \\Ww
i / A / Discriminator Network ‘ | Predicted Labels |

D-dimensional
noise vector

- Generator Network

Here are the steps a GAN takes:

* The generator takes in random numbers and returns an image.

e Th ; 1 stream
0.1
e Th : ‘ Generator ‘ \§ LY : ‘ Generator ‘ Irns
2.4 | . 2.4
pre 1091 gachdimension of input vector L0.9- Longer hair

p I represents some characteristics.

A basic framework for GAN

real image

V" , N\
R
) (4 'V ;ll “'7 ‘_ Discriminator Network ‘ Predicted Labels

D-dimensional
noise vector

JOJO0A

= Generator Network — d & .
f" .v- > ‘. : *

Both nets are trying to optimize a different and opposing
objective function, or loss function, in a zero-zum game.

A basic framework for GAN

real image

iy m N\
¥ &as Y
Y X ¢ ' DZI'A »] ‘— Discriminator Network ‘ Predicted Labels |

D-dimensional
noise vector

‘ Generator Network

J0]O9A

* The game follows with:
* The generator trying to maximize the probability of making the discriminator
mistakes its inputs as real.
* And the discriminator guiding the generator to produce more realistic images.

x: an image (a high- —
GeﬂeratOr dimensional vector) x P— G (Z)

* A generator G is a network. The network defines a
probability distribution P,

Normal
Distribution

as close as possible

G*=arg min Div(Pg, Pigia)
Divergence between distributions P; and P44
How to compute the divergence?

real image

" " " ! h: “ " ‘ '1— .
Discriminator Network - Predicted Labels
DISCI II I IlI IatOI D-dimensional

noise vector

P
BA0E- == — oo

oA

10)0

G* = arg mGin DiU(PG; Pdata)

Although we do not know the distributions of P; and Pj4¢4,
we can sample from them.

Database

Sampllng from Pdata

~ R

Sampling from P

sample from
normal

10109A

10129A

10129A
()

Discriminator G* = arg min Div(Pg, Pygra)

Discriminator

Sigmoid Output
Example Objective Function for D g
V(G,D) = Exp,.. [logD(xX)] + Ex-p_|log(1 — D(x))]
O (G is fixed)

G

* : data sampled from Py,
* : data sampled from P,

* * %
*
** ** train

Training: D* = arg‘mglx V(D, G)‘ The maximum objective value
is related to JS divergence.

[Goodfellow, et al., NIPS, 2014]

Discriminator G* = arg min Div(Pg, Pyarq)

G

* : data sampled from Py,¢4 Training:
: data sampled from P, D* = arg‘mgx V(D, G)‘

* *
* x X
small divergence hard to discriminate

* (cannot make objective large)
* train

large divergence easy to discriminate

train

V = Ex~Pdata [lOgD(X)]

max V(G,D) YE,p,[log(1—D(0)]

* Given G, what is the optimal D* maximizing

V = Exepyyp,[10gD (O] + Ex-p,[log(1 — D(x))]

= f Pgata(x)logD(x) dx + f PG(x)log(l - D(x)) dx

X X

- f [Paata()l0gD (%) + Pe(x)log(1 — D(x))] dx

x Assume that D(x) can be any function

* Given x, the optimal D* maximizing

Paata(x)logD (x) + P;(x)log(1 — D(x))

V= Ex"’Pdata [lOgD (X)]
max V(G,D) +E,p.[log(1— D())]

* Given x, the optimal D* maximizing

Pyata(x)logD (x) + Ps(x)log(1 — D(x))
a D b D

* Find D* maximizing: f(D) = alog(D) + blog(1 — D)

df(D)— ><1+b><
i 7D 1-D

1=b>< 1 ax (1—-D*) =bxD*
D~ 1-D* a—aD*=bD* a=(a+b)D*

a Pdata(x)
‘ D*(x) =
a+b O<() Pdata(x)+PG(x)<1

Xx(—=1) =0

a X

D* =

V =Exp,. . [logD(x)]
mDaX V(G) D) +Ex~PG [lag(l B D(x))]

maxV(G,D) = v(G, D7) D™(x) = Py tpgga"(‘x;c(x)

_ Pdata (x)

= Ex~Pyata [log Pigia(x) + P, (X)]

+E [lo Fe)
1 e J Pyata (X) + Pg (x)
B 2 Pdata(x)
— f Pdata(x)log Pdata(x) + PG (x) dx 1
x 2

2 Pg(x)
+ J P;(x)log P00+ P (x) dx
x 2

1
+2log= —2log2

JSD(P || Q) = 5 D(P || M)+ 5 D(Q || M)

b |

max V (G, D)

I M=Z(P+Q)

b | =

_) Piata(x)
v(G,D) =V(G,D (o) — data
VLG D) SVEDD DY) =

Paata(x) do
(Paata(x) + P (x))/2
Pg(x) do
(Paata () + P (x))/2

= —2log?2 +j Piia(X)log

X

+ j P.(x)log

X

= —2log2 + KL <Pdata|| dataz G) +KL (PGH dataZ G>

= —2log2 + 2JSD(P44tq||P;) Jensen-Shannon divergence

G = arg mGjn mlgiX V(G,D)

D* = arg‘max V(D, G)‘ The maximum objective value
D is related to JS divergence.

V(Gl)D) V(GZ ,D) V(G3 ,D)

Gq

Divergence between P; and P4

[Goodfellow, et al., NIPS, 2014]

G* =arg mGjn max V(G,D)

D* = arg‘maxV(D, G)‘ The maximum objective value
D is related to JS divergence.

* |nitialize generator and discriminator
* In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

Algorithm G* =arg mGjanaxV(G,D)l

L(G)
 To find the best G minimizing the loss function L(G),

O; <« 0; —ndL(G)/08; | B¢ defines G

df (x)
dx

=2 df;(x)/dx
If f;(x) is the
max one

f(x) = max{f;(x), f2(x), f3(x)}

fi(x) f3(x)

dfi(x)/dx df;(x)/dx dfs(x)/dx

Algorithm

* Given G

* Find Dy maximizing V(Gy, D) _

* O, < 0;—n 6V(G,D5‘)/6HG~ Obtain G; Decrease JS
* Find D maximizing V(G4, D) divergence(?)

* O « 6 —ndV(G,D;)/06, mm) Obtain G, Decrease JS
. divergence(?)

Algorithm

* Given G,
* Find Dy maximizing V(Gy, D)

V(Go, D) is the JS divergence between P, (x) and Pg (x)

* O« 0;—n 6V(G,D6‘)/600~ Obtain G; Decrease JS
divergence(?)
V(Gy,D§), smaller
: \ V(Gl ’ DS) A

Assume Dy = Dy

' » Don’tupdate G
V(G,,D) too much

In practice ...

V= Ex~Pdam [logD(x)]
+Ex~PG[l0g(1 — D(x))]

* Given G, how to compute max V(G,D)

 Sample {x1,x?,...,x™} from Py, (x), sample
{x1,%2,...,X™} from generator P (x)

m m
-1 . 1 .
. . _ l _ _ ~l
Maximize V = — iil logD(x') + iil log (1 D(%))

D is a binary classifier with sigmoid output (can be deep)
{x%,x2,...,x™} from P;,.,(x) H) Positive examples

{x1, %2, ..,%™} from P;(x) mm) Negative examples
Minimize Cross-entropy

for G

o | Can only find max V(G, D)
* In each training iteration: lower bound of | D

*!Sample m examples {x1, x?, ..., x™} from data distribution

Pyata(x)
*ISample m noise samples {z%, z%, ..., 2™} from the prior

Learning Pprio.r(.z) L o .
D *|Obtaining generated data {¥!, X%, ..., ™}, ¥' = G(z‘)
*|Update discriminator parameters 8, to maximize
-V = %Z}Zl logD(x') + %Z’iﬁl log (1 — D(fi))

* 0g < 0y +1VV(6,)
*|Sample another m noise samples {z-, z
prior Pprior(Z)

Learning . Update generator parameters 6, to minimize

< .V =;—E"éﬁeeﬂéc%+%2?illog(l -0 (6())

Only 3
Once * 0, <0, — nVV(Hg)

Initialize 6,4 for D and 6

Algorithm

Repeat
k times

Objective Function for Generator
in Real Implementation

V = Epep—tdog-bii

\ —liog D(x):
By p, [log(1 = D(O)] Tlog(p®)
Slow at the beginning
Minimax GAN (MMGAN)

V= ExNPG[—log(D(x))]

Real implementation:
label x from P as positive

Non-saturating GAN (NSGAN)

log(1-D@) |

. .

: .| \.
' L] '...' LI -,
' "

/(i NN

(a) (b) (¢) (d)

* In the perfect equilibrium, the generator would capture the general
training data distribution. As a result, the discriminator would be
always unsure of whether its inputs are real or not.

Advantages of GANS

e Markov chain is not needed.

* In theory, as long as differentiable functions can be used to
construct D and G, it can be combined with deep learning to learn
deep production networks.

* From a statistical point of view, the parameter updating of G does
not come directly from the data sample, but from the
backpropagation gradient of D.

e Various loss functions can be used in the GAN model.

Disadvantages of GANs

Hard to achieve Nash equilibrium

Vanishing gradient

Mode collapse

During the training, the generator may collapse to a setting where it
always produces same outputs.

‘\' - .
- e 13 3 .‘ | I
- - "- " - ".
1 - ‘-’ ’,-lc ‘
' . - -

i 1
! [agm.

—

!

E

Disadvantages of GANS

Lack of a proper evaluation metric

No good sign to tell when to stop; No good indicator to compare
the performance of multiple models.

The distributed P.(x) of the generator is not represented.

It's difficult to train. D and G need good synchronization, such
as D update K times and G update 1 time.

Tips and tricks to make GANs work

1. Normalize the inputs

* normalize the images between -1 and 1

* Tanh as the last layer of the generator output

2: A modified loss function

In GAN papers, the loss function to optimize G is min (log 1-D) , but in practice folks practically use max log D

* because the first formulation has vanishing gradients early on
e Goodfellow et. al (2014)

In practice, works well:

* Flip labels when training generator: real = fake, fake = real

Tips and tricks to make GANs work

3: Use a spherical Z

¢ Dont sample from a Uniform distribution

e Sample from a gaussian distribution

4: BatchNorm

¢ Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all
generated images.

e when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard
deviation).

Tips and tricks to make GANs work
5: Avoid Sparse Gradients: ReLU, MaxPool

¢ the stability of the GAN game suffers if you have sparse gradients
¢ LeakyRelLU = good (in both G and D)
e For Downsampling, use: Average Pooling, Conv2d + stride

e For Upsampling, use: PixelShuffle, ConvTranspose2d + stride
o PixelShuffle: https://arxiv.org/abs/1609.05158

6: Use Soft and Noisy Labels

e Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then
replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for
example).

o Salimans et. al. 2016

* make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator

Tips and tricks to make GANs work

7: DCGAN / Hybrid Models

e Use DCGAN when you can. It works!
e if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN

8: Use stability tricks from RL

e Experience Replay
o Keep a replay buffer of past generations and occassionally show them

o Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
e All stability tricks that work for deep deterministic policy gradients
e See Pfau & Vinyals (2016)

Tips and tricks to make GANs work

9: Use the ADAM Optimizer

e optim.Adam rules!
o See Radford et. al. 2015

e Use SGD for discriminator and ADAM for generator

11: Dont balance loss via statistics

12: If you have labels, use them
13: Add noise to inputs, decay over time

14: [notsure] Train discriminator more (sometimes)

Tips and tricks to make GANs work

15: [notsure] Batch Discrimination

16: Discrete variables in Conditional GANSs

17: Use Dropouts in G in both train and test phase

DCGAN

1024

4
100 z = .

Code Project and
reshape

Deconv 1

Deconv 3

Deconv 4
Image

Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks[J]. Computer Science, 2015.

Wasserstein GAN (WGAN)

* Even when two distributions are located in lower dimensional
manifolds without overlaps, Wasserstein distance can still provide
a meaningful and smooth representation of the distance in-
between.

D g gives us inifity when two distributions are disjoint. The value of D j¢ has sudden jump, not
differentiable at @ = 0. Only Wasserstein metric provides a smooth measure, which is super

helpful for a stable learning process using gradient descents.

Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. 2017.

Wasserstein GAN (WGAN)

* The last layer of the discriminator removes sigmoid
* Loss of generator and discriminator does not take log

* After updating the discriminator parameters each time,
truncate their absolute values to no more than a fixed
constant C

* Instead of using momentum-based optimization algorithms
(including momentum and Adam), recommend RMSProp
and SGD.

Advantages of WGAN

* Greatly improve the problem of GAN training instability, no longer need to
carefully balance the training level of generator and discriminator.

* The collapse mode problem is basically solved and the diversity of
generated samples is ensured.

* At last, there is a value such as cross-entropy and accuracy to indicate the
training process. The smaller the value, the better the GAN is trained and
the higher the image quality produced by the generator is represented (as
shown in the title chart).

* All the above benefits can be achieved without elaborate network
architecture. The simplest multi-layer fully connected network can be
achieved.

Wasserstein estimate

e

3.0

0.0

— MLP 512

0

|
100000

| | 1 1
200000 300000 400000 500000 600000

Generator iterations

BIGAN

features

.

@-

data

()

~

Opd

7

©

’L)_}
Gy

https://arxiv.org/pdf/1605.09782.pdf

https://arxiv.org/pdf/1605.09782.pdf

DCGAN

* Here is the summary of DCGAN:
* Replace all max pooling with convolutional stride
* Use transposed convolution for upsampling.
* Eliminate fully connected layers.

* Use Batch normalization except the output layer for the generator and the
input layer of the discriminator.

* Use RelU in the generator except for the output which uses tanh.
* Use LeakyRelLU in the discriminator.

Applications of GANS

* Generating
high-quality
Images

[Unsupervised Representation Learning with Deep Convolutional Generative

Adversarial Networks] (Gan with convolutional networks)(ICLR)
[Generative Adversarial Text to Image Synthesis]
[Improved Techniques for Training GANs] (Goodfellow’s paper)

[Plug & Play Generative Networks: Conditional Iterative Generation of Images

in Latent Space]

[StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative

Adversarial Networks]
[Improved Training of Wasserstein GANs]

[Boundary Equibilibrium Generative Adversarial Networks Implementation in

Tensorflow]

[Progressive Growing of GANs for Improved Quality, Stability, and Variation]

Applications of GANS

[Adversarial Training Methods for Semi-Supervised Text Classification]

° Mmi-
S€ . (lan Goodfellow Paper)
supervised
. * [Improved Techniques for Training GANs Goodfellow’s paper

learning Limp I g GANSs] (paper)

* [Unsupervised and Semi-supervised Learning with Categorical Generative
Adversarial Networks] (ICLR)

* [Semi-Supervised QA with Generative Domain-Adaptive Nets] (ACL

2017)

Applications of GANS

Fnsembles
» [AdaGAN: Boosting Generative Models] [[Code]] (Google Brain)
Clustering
e [Unsupervised and Semi-supervised Learning with Categorical Generative
Adversarial Networks] (ICLR)

Image blending

» [GP-GAN: Towards Realistic High-Resolution Image Blending]

Applications of GANs

Image Inpainting
 [Semantic Image Inpainting with Perceptual and Contextual Losses]
(CVPR 2017)

[Context Encoders: Feature Learning by Inpainting]

[Semi-Supervised Learning with Context-Conditional Generative Adversarial

Networks]
e [Generative face completion] (CVPR2017)
* [Globally and Locally Consistent Image Completion] (SIGGRAPH

2017)

Applications of GANS

Semantic Segmentation

» [Adversarial Deep Structural Networks for Mammographic Mass Segmentation]

* [Semantic Segmentation using Adversarial Networks] (Soumith’s

paper)

Object Detection

* [Perceptual generative adversarial networks for small object detection]

(CVPR 2017)

* [A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection]
(CVPR2017)

Applications of GANS

Conditional Adversarial Nets

e [Conditional Generative Adversarial Nets]

* [INfOGAN: Interpretable Representation Learning by Information Maximizing

Generative Adversarial Nets]

* [Conditional Image Synthesis With Auxiliary Classifier GANs]
(GoogleBrain ICLR 2017)

e [Pixel-Level Domain Transfer]
* [Invertible Conditional GANs for image editing]

o [Plug & Play Generative Networks: Conditional Iterative Generation of Images

in Latent Space]

Applications of GANs

Video Prediction & Generation

o [Deep multi-scale video prediction beyond mean square error]

(Yann LeCun’s paper)
e [Generating Videos with Scene Dynamics]

e [MoCoGAN: Decomposing Motion and Content for Video Generation]

Texture Synthesis & Style Transter

 [Precomputed real-time texture synthesis with markovian generative
adversarial networks] (ECCV 2016)

Image Translation

[Unsupervised cross-domain image generation]

[Image-to-image translation using conditional adversarial nets]

[Learning to Discover Cross-Domain Relations with Generative Adversarial

Networks]

[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial

Networks]
[CoGAN: Coupled Generative Adversarial Networks] (NIPS 2016)

[Unsupervised Image-to-Image Translation with Generative Adversarial

Networks]
[Unsupervised Image-to-Image Translation Networks]

[Triangle Generative Adversarial Networks]

GAN Theory

* [Energy-based generative adversarial network] [Paper][Code](Lecun paper)

* [Improved Techniques for Training GANs] [Paper][Code](Goodfellow’s paper)

* [Mode Regularized Generative Adversarial Networks] [Paper](Yoshua Bengio, ICLR 2017)

. I[ETlgrzoa/llr; Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio,

e [Sampling Generative Networks] [Paper][Code]

* [How to train Gans] [Docu]

* [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)
* [Unrolled Generative Adversarial Networks] [Paper][Code](ICLR 2017)

» [Least Squares Generative Adversarial Networks] [Paper][Code](ICCV 2017)

* [Wasserstein GAN] [Paper][Code]

* [Improved Training of Wasserstein GANs] [Paper][Code](The improve of wgan)

* [Towards Principled Methods for Training Generative Adversarial Networks] [Paper]
* [Generalization and Equilibrium in Generative Adversarial Nets] [Paper] (ICML 2017)

https://arxiv.org/pdf/1609.03126v2.pdf
https://github.com/buriburisuri/ebgan
https://arxiv.org/abs/1606.03498
https://github.com/openai/improved-gan
https://openreview.net/pdf?id=HJKkY35le
https://openreview.net/pdf?id=S1X7nhsxl
https://github.com/hvy/chainer-gan-denoising-feature-matching
https://arxiv.org/abs/1609.04468
https://github.com/dribnet/plat
https://github.com/soumith/ganhacks#authors
http://openreview.net/forum?id=Hk4_qw5xe
https://arxiv.org/abs/1611.02163
https://github.com/poolio/unrolled_gan
https://arxiv.org/abs/1611.04076
https://github.com/pfnet-research/chainer-LSGAN
https://arxiv.org/abs/1701.07875
https://github.com/martinarjovsky/WassersteinGAN
https://arxiv.org/abs/1704.00028
https://github.com/igul222/improved_wgan_training
https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1703.00573

Thanks & questions?

