0-1 Knapsack Problem (0-175 44] £)

Suppose that there are objects of number n, which has
weight w; and profit p,. We should take some of them with
weight no more than ¢ and make the sum of profit (of
objects we take) as great as possible.

We will discuss some variants of (0-1) knapsack problem:
the set-union knapsack problem (SUKP), the discounted {O-

1} knapsack problem (D{0-1}KP), and the bounded
knapsack problem (BKP).

Set-Union Knapsack Problem (SUKP)

* Let U={1, ... ,m} be the set of objects. Object I Is with
weight wi..
e Let S={S,, ... ,S,}. Each S, is a subset of U, with profit p..

* Choices we can choose Is subsets of S. When we take
S.1h - S, the profit is p,,+...+p,, and the weight Is sum
of weight of objects iIn'S_; U...US_,".

* |If m=n and S={i}, it's a 0-1 knapsack problem.

P =

Discounted {0-1} Knapsack Problem (D{0,1}KP)

e Let U={U,,, U5, U,y, Uy, ... U, UL}, Inwhich U, and U,
are in a group S;, for I=1, ... ,n. Each U; Iis with weight of
w; and profit p;.

* |f we take both U, and U,,, the profit is still p;;+p;,, but the
weight Is wi<w,,+w;,, which reflect the word 'discouted'.

Bounded Knapsack Problem (BKP)

* Let U={1, ... ,n} be the set of objects. Object I is with
weight w; and profit p;.

* What is different from {O-1}KP Is that the number of an
object can be more than one, written b,. That Is to say that
we can take i-th object of number b; at most.

* If b=1 (for all I=1, ... n), it's a 0-1 knapsack problem.

Genetic Algorithm (GA, & HE)

Genetic algorithm can be used in some optimization
problems (ftfkIE &) . When we want to find the optimal
solution (FfLfE) satisfying some limitations, We can

follow these steps.

* Preparations: Generate solutions randomly (or in other
ways) of number NP. Let these solutions are of generation

0. Let t=0. (t is the generation.)

Genetic Algorithm (GA, BALH %

 Step 1: Act the crossover operator (22 X) on some
items (written X, ... , X,) of generation t, and get itemv.

» Step 2: Act the mutation operator (ZZF% 1) ony.

« Step 3: Because the new y may be infeasible, we adjust it
to make it feasible. This step usually use a simple
algorithm, such as greedy algorithm.

Genetic Algorithm (GA, & HE)

« Step 4: Judge whether y Is fit enough (for example,
whether fithess of y Is greater than that of a given item In
generation t), and put a proper one in the t+1 generation.
t=t+1.

* Repeat steps above so that there is NP items in the
generation.

* Make more generation until the fithess of items don't
Increase. Then we get the optimal solution.

=

Genetic Algorithm (GA, BA&EHEIE)

The keys of Genetic algorithm are the crossover operator
and the mutation operator.

T——

Residue Classes of Module n (A&ndE| 425)

* Z,=0], [1], ... ,[n-1]}, and [n]=[0], [n+1]=[1], ..., [k+n]=[K],
for all ke Z.

» [a]+[b]=[a+Db], [a][b]=[ab], and we can proved that Z, Is a
group, even a ring.

« example: n=10,

6]+[7]=[13]=[3], [5]-[9]=[-4]=[6],

8][9] (=[-2][19]) =[72] (=[-38]) =[2]

R
A
Direct Product (BELfl1)

e If G4, ... ,G,, are groups, we can define group
G, X...XG.={(9,, ... ,0,) | 9,€G,, 1=0,1, ... ,n}, In which
(91r - Gn)+(hy, ...\ h)=(g1+hy, .. g, thy).

* Moreover, If G4, ... ,G, are rings, then
(91: -9 (Ny, .. .0R)=(910y, ... ,9,hy).

P e |
Genetic Algorithm Iin SUK

* \WWe use a vector of length of n (equals to the size of S),
whose components are all O or 1. We can regard a vector

as an element in Z, X...XZ,, and use operators in group
or ring on It.

* |f the I-th components is 1, it means we take S;, otherwise
It means we don't take S..

* Preparations: Generate solutions of number NP randomly.
t=0.

———

Group Theory-based Optimization Algorithm (GTOA) in SUKP

» Crossover Operator: C(X,,X,,X3)=X,;+F(X,-X;), In which
X1, X, and X, are input vectors, and F Is a random vector
with compents of 1, O or -1.

* Mutation Operator: SMO(X). Give a probability p (in (0,1)).
For each component in X (written X)), generate a random
number rin (0,1). If r<p, make x=1-x;, else x; doesn't
change.

* Adjustment: S-GROA (greedy algorithm)

.

Group Theory-based Optimization Algorithm (GTOA) in SUKP

« Judgement: Suppose that X Is In the previous generation
and Y Is a new item. If the total profit of Y Is greater than

that of X, put Y into the next generation, otherwise put X
Into the next generation.

Genetic Algorithm in D{0,1}KP

* \WWe use a vector of length n, similar to that in SUKP, but
for which group we have 4 choices, so the vector Is In
Z,X...XZ,Instead of Z, X ... X Z,.

 The 0,1,2,3 value of the I-th components in the vector
separately means taking none (in the I-th group), taking
the first one, taking the second one, and taking both of
them.

* Preparations: Similar to that in SUKP.

P e
GTOA in D{0,1}KP

» Crossover Operator: C(X,,X,,X35)=X,;+F(X,-X3). Or C(X,,
Xoy X3y Xg)=X 1 +X,(X3-Xy).

» Mutation Operator: IRMO(X). Give a probabillity p (in (0,1)).
For each component in X (written X)), generate a random
number rin (0,1). If r<p, half-probability make [x]=[-x],
another half-probability change [x] to a random value (not
equals to [x]). If r=p, x, doesn't change.

* Adjustment: D-GROA (greedy algorithm)
« Judgement: Similar to that of SUKP

Genetic Algorithm in BKP

» Suppose that the number of the I-th object is b..

* We use a vector of lengthnin Z,,,; X...XZ, ;.

* The I-th component is the number of the I-th object we
take.

* Preparations: Similar to that in SUKP.

£ ey
GTOA In BKP

e Crossover Operator: C(X,,X,,X3)=X,;+F(X,-X,).
* Mutation Operator: IRMO(X).

* Adjustment: B-GROA (greedy algorithm)

« Judgement: Similar to that of SUKP

