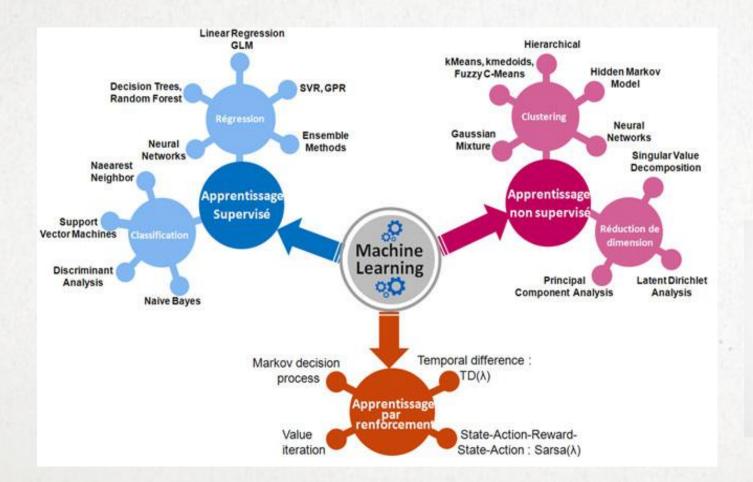
META LEARNING

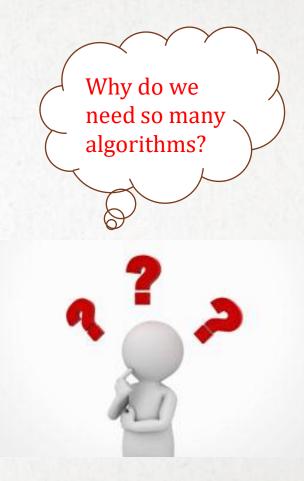
WEI-PENG CAO

2018.6.25

CONTENT

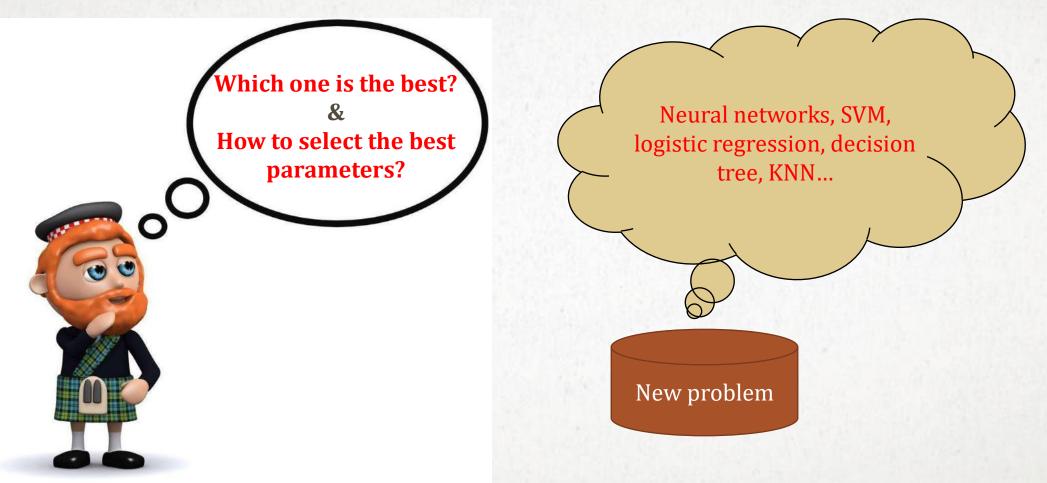
- Background
- Concept of Meta Learning
- A typical case of Meta Learning
- Considerations
- An example: Clustering algorithm selection





Different datasets have different inherent characteristics (e.g., data distribution) and each algorithm can only learn well if its bias matches the learning problem.

A learning algorithm may perform very well in one domain, but not on the next, which leads researchers to create a large number of algorithms.



trial and error a high computational cost

This cost could be reduced if the most suitable algorithm(s) could be recommended.

Meta learning

META LEARNING - CONCEPT

• The core issue of meta learning

to study the relationship between the learning problem and the effectiveness of different learning algorithms.

• Goal

Algorithm Recommendation and Hyperparameter Recommendation

META LEARNING - CONCEPT

•Meta data :

The characterization of the datasets and the performance of the ML algorithms.

•Meta dataset:

Each sample corresponds to one of the original datasets;

The attributes of each sample are the meta-features of a dataset;

The label is the predictive performance of the candidate algorithms when applied to a dataset;

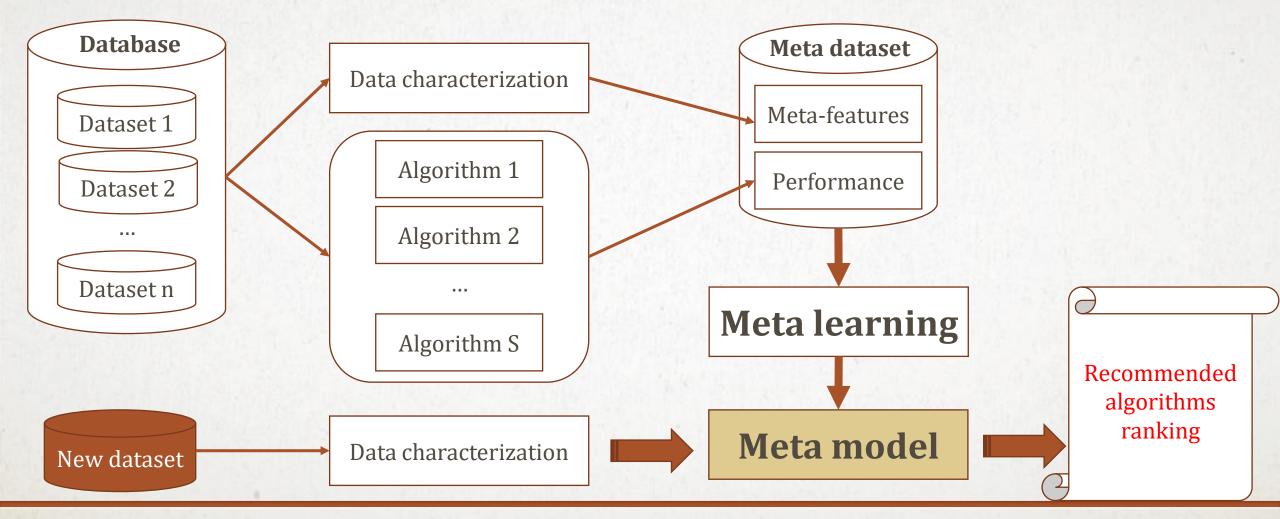
• **Meta features** are able to describe the main aspects of a dataset and usually extracted by two approaches: **Statistics** and **Model-based** properties.

Statistics:

- (1) A function of the dataset size, uses equation LgE = $\log_{10}(n)$, where *n* is the number of samples;
- ② The ration between the number of samples (*n*) and the number of attributes (*p*): LgREA = $\log_{10}(n/p)$;
- ③ The percentage of missing values;
- ④ The complexity of a problem;
- 5 ...

Model-based properties: a set of properties of a model

- For example, if a decision tree algorithm is applied to the dataset, statistics about nodes, leaves and branches can be used to describe the dataset.
- 2 For example, if a neural network algorithm is applied to the dataset, statistics about the number of hidden layer and the number of hidden nodes in each layer can be used to describe the dataset.



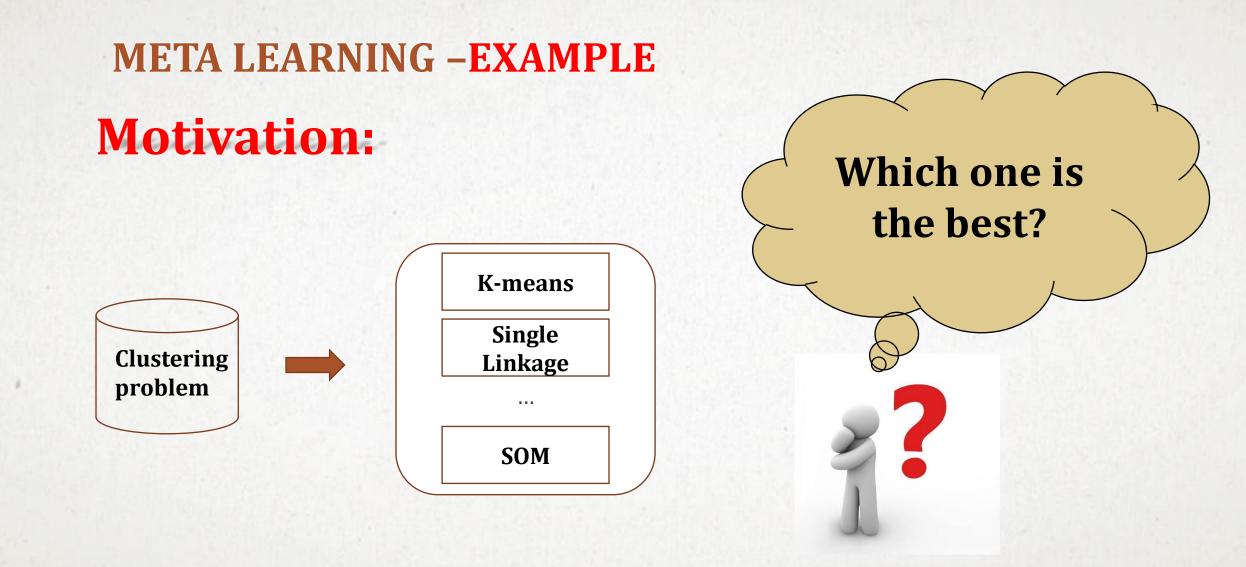
META LEARNING -CONSIDERATIONS

The construction of Meta dataset is the key to

the successful use of meta-learning.

CONTENT

- Background
- Concept of Meta Learning
- A typical case of Meta Learning
- Considerations
- An example: Clustering algorithm selection



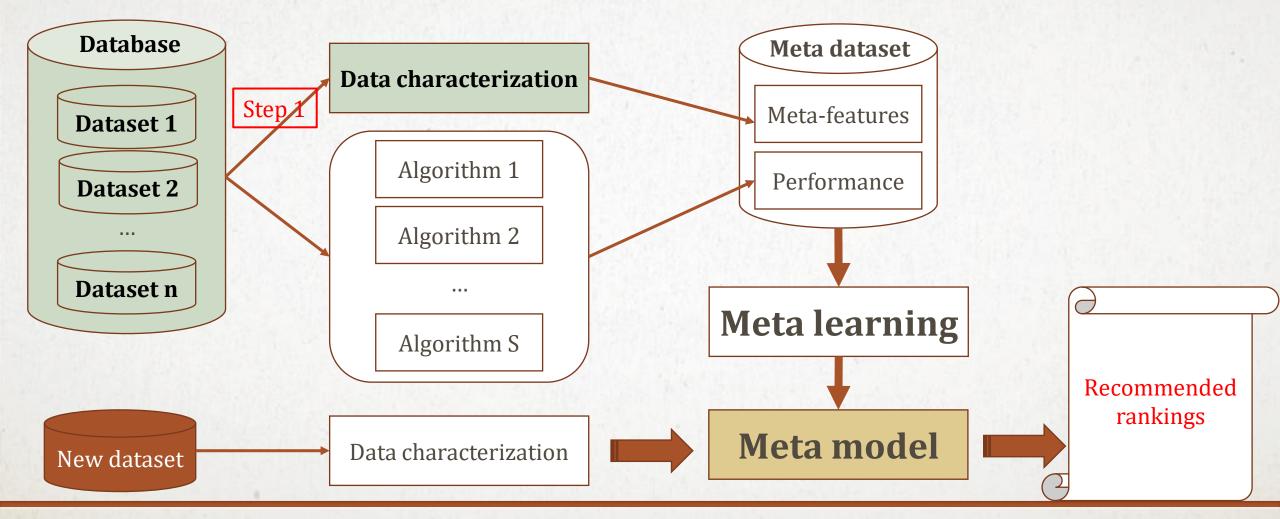
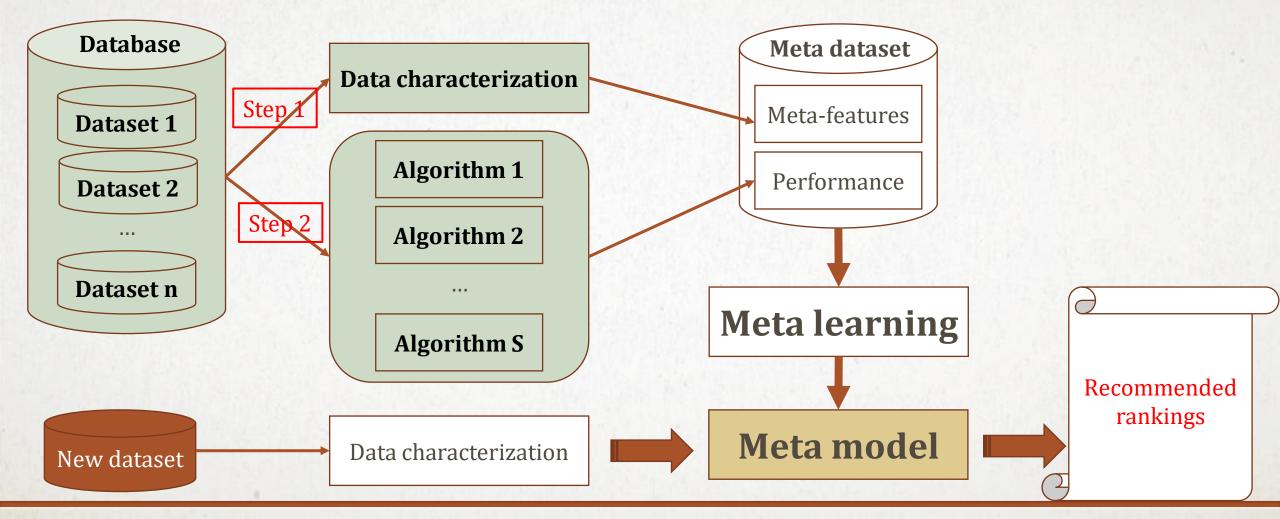
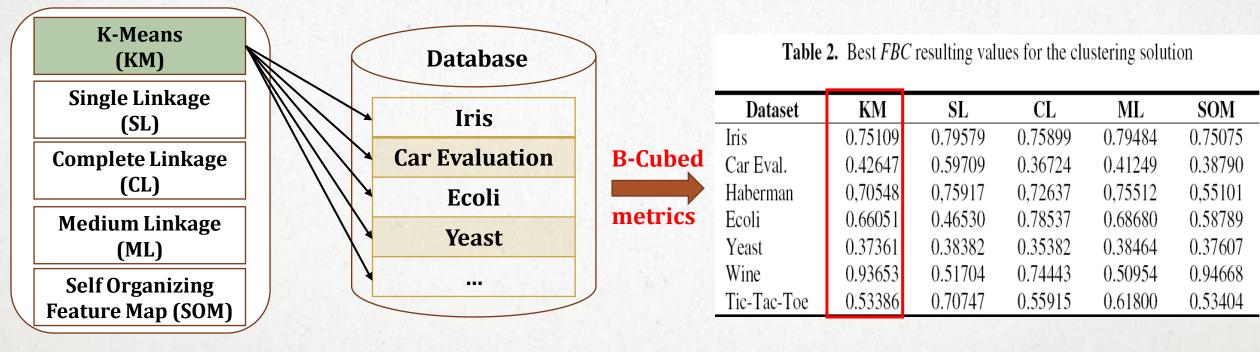


Table 1. Meta-attribute values for some datasets

			Dataset/Value	1	2	3	4	5	6	7	8	9	10
6	Database		Iris	7.23	2.00	0.00	0.00	1.00	0.59	0.07	2.23	0.00	0.00
	Dutubuse		Car Eval.	10.75	2.58	0.00	1.00	0.00	0.00	0.00	0.00	0.00	5.38
I			Ecoli	8.39	2.81	0.00	0.00	1.00	0.18	3.59	54.19	0.00	0.00
2	Iris		Yeast	10.54	3.00	0.00	0.00	1.00	0.09	2.91	31.56	0.00	0.00
	Car Evaluation	1.5 1.6 1.6 1.7 1.7 1.7	Wine	7.48	3.70	0.00	0.00	1.00	0.30	0.35	2.97	0.00	0.00
	Cal Evaluation	Data	Tic-Tac-Toe	9.90	3.17	0.00	1.00	0.00	0.00	0.00	0.00	0.01	3.91
	Ecoli	characterization	Notes:								1.74		
			(1) Log ₂ of the number of samples;										
1	Yeast		(2) Log ₂ of the number of attributes;										
			(3) Proportion of	-						T	ne Stat	Loga	nd
			(4) Proportion of								ETAL p	•	
			(5) Proportion of				A-1			1.1		nojec	
	Total 100		(6) Mean absolute					us attrib	outes;				
	Total: 100		(7) Mean skewne										
			(8) Mean kurtosis										
			(9) Mean absolute				i discret	te attrib	utes;				
			(10) Mean entrop	y of disc	rete attr	lbutes.							



Candidate algorithms



Total: 5

Total: 100

Candidate algorithms

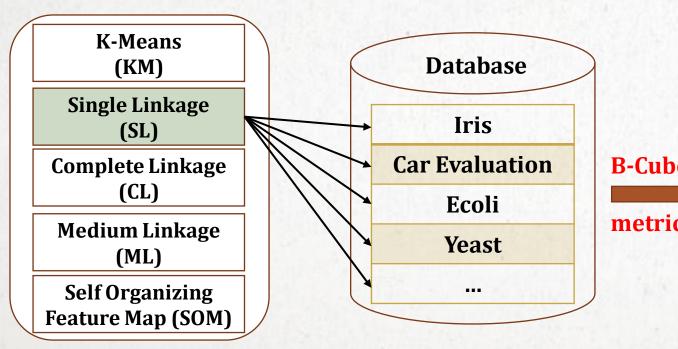


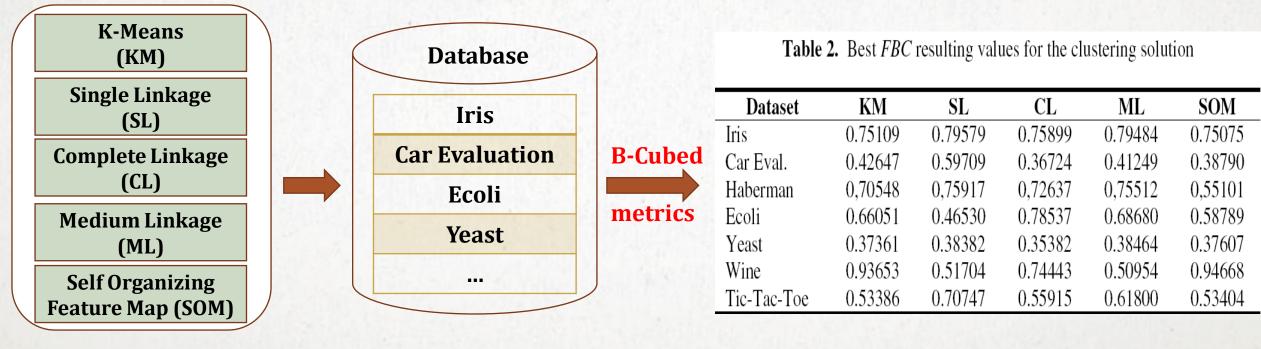
Table 2. Best *FBC* resulting values for the clustering solution

Dataset	KM	SL	CL	ML	SOM
Iris	0.75109	0.79579	0.75899	0.79484	0.75075
Car Eval.	0.42647	0.59709	0.36724	0.41249	0.38790
Haberman	0,70548	0,75917	0,72637	0,75512	0,55101
Ecoli	0.66051	0.46530	0.78537	0.68680	0.58789
Yeast	0.37361	0.38382	0.35382	0.38464	0.37607
Wine	0.93653	0.51704	0.74443	0.50954	0.94668
Tic-Tac-Toe	0.53386	0.70747	0.55915	0.61800	0.53404

Total: 5

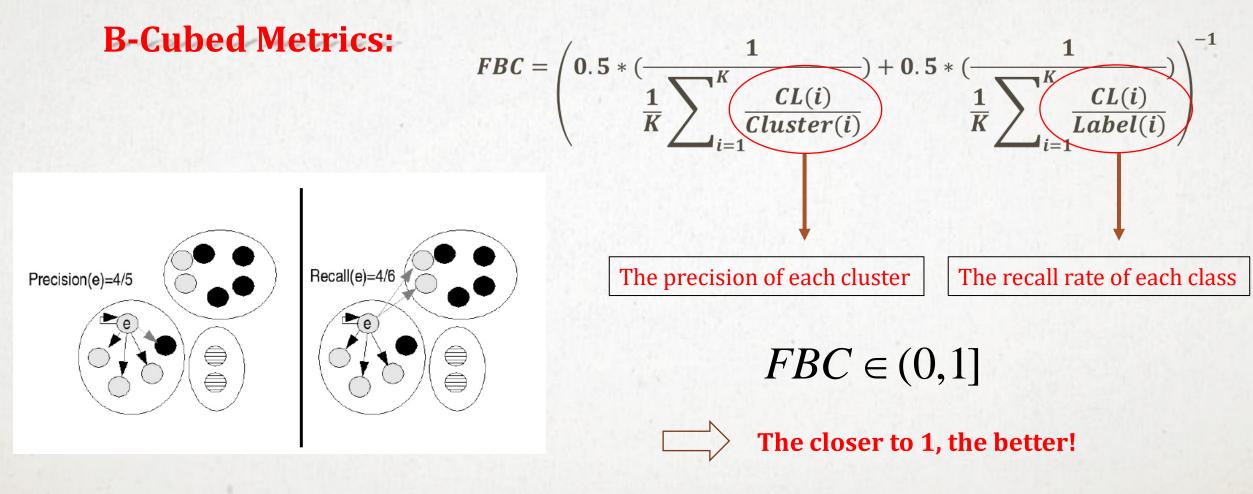
Total: 100

Candidate algorithms



Total: 5

Total: 100



Transfer the FBC resulting values to ranking values

Table 2. Best *FBC* resulting values for the clustering solution

Dataset	KM	SL	CL	ML	SOM
Iris	0.75109	0.79579	0.75899	0.79484	0.75075
Car Eval.	0.42647	0.59709	0.36724	0.41249	0.38790
Haberman	0,70548	0,75917	0,72637	0,75512	0,55101
Ecoli	0.66051	0.46530	0.78537	0.68680	0.58789
Yeast	0.37361	0.38382	0.35382	0.38464	0.37607
Wine	0.93653	0.51704	0.74443	0.50954	0.94668
Tic-Tac-Toe	0.53386	0.70747	0.55915	0.61800	0.53404

Table 3. Predictive table	le built with ranking values
---------------------------	------------------------------

Dataset	KM	SL	CL	ML	SOM
Iris	4	1	3	2	5
Car Eval.	2	1	5	3	4
Haberman	4	1	3	2	5
Ecoli	3	5	1	2	4
Yeast	4	2	5	1	3
Wine	2	4	3	5	1
Tic-Tac-Toe	5	1	3	2	4

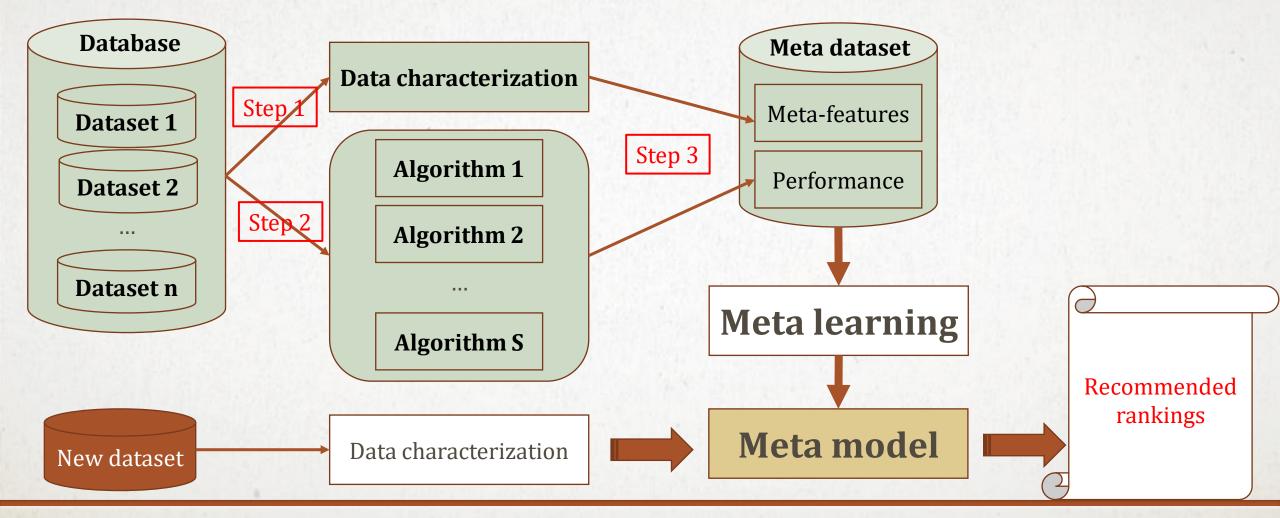
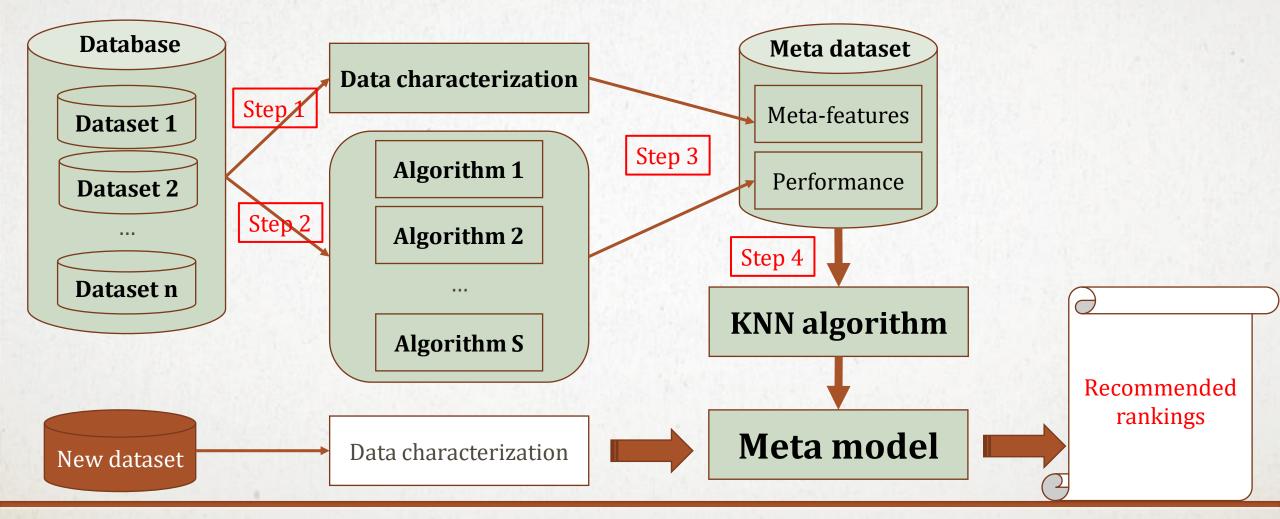
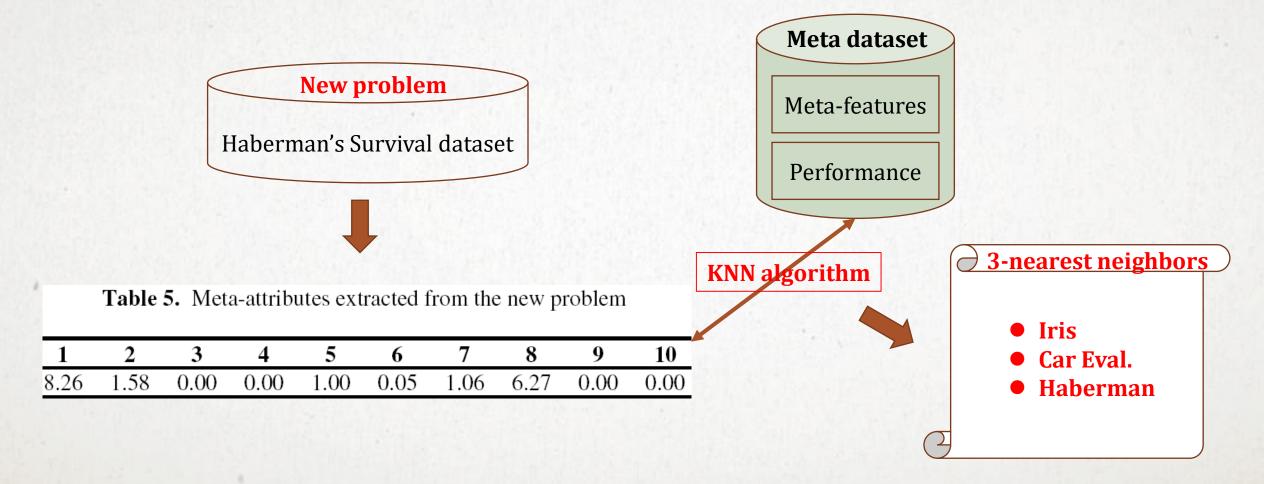


Table 1. Meta-attribute values for some datasets

	Dataset/Value	1	2	3	4	5	6	7	8	9	10
	Iris	7.23	2.00	0.00	0.00	1.00	0.59	0.07	2.23	0.00	0.00
	Car Eval.	10.75	2.58	0.00	1.00	0.00	0.00	0.00	0.00	0.00	5.38
	Ecoli	8.39	2.81	0.00	0.00	1.00	0.18	3.59	54.19	0.00	0.00
Mata datagat	Yeast	10.54	3.00	0.00	0.00	1.00	0.09	2.91	31.56	0.00	0.00
Meta dataset	Wine	7.48	3.70	0.00	0.00	1.00	0.30	0.35	2.97	0.00	0.00
	Tic-Tac-Toe	9.90	3.17	0.00	1.00	0.00	0.00	0.00	0.00	0.01	3.91
Meat-features	Table 3. Predictive table built with ranking values										
Defense	Dataset	KM		SL		CL		ML	S	OM	
Performance	Iris	4		1		3		2		5	
	Car Eval.	2		1		5		3		4	
	Haberman	4		1		3		2		5	
	Ecoli	3		5		1		2		4	
	Yeast	4		2		5		1		3	
	Wine	2		4		3		5		1	
	Tic-Tac-Toe	5		1		3		2		4	





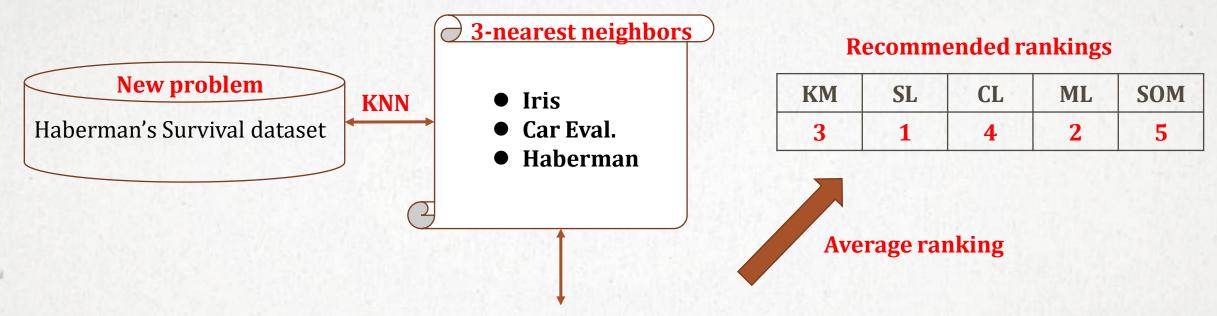
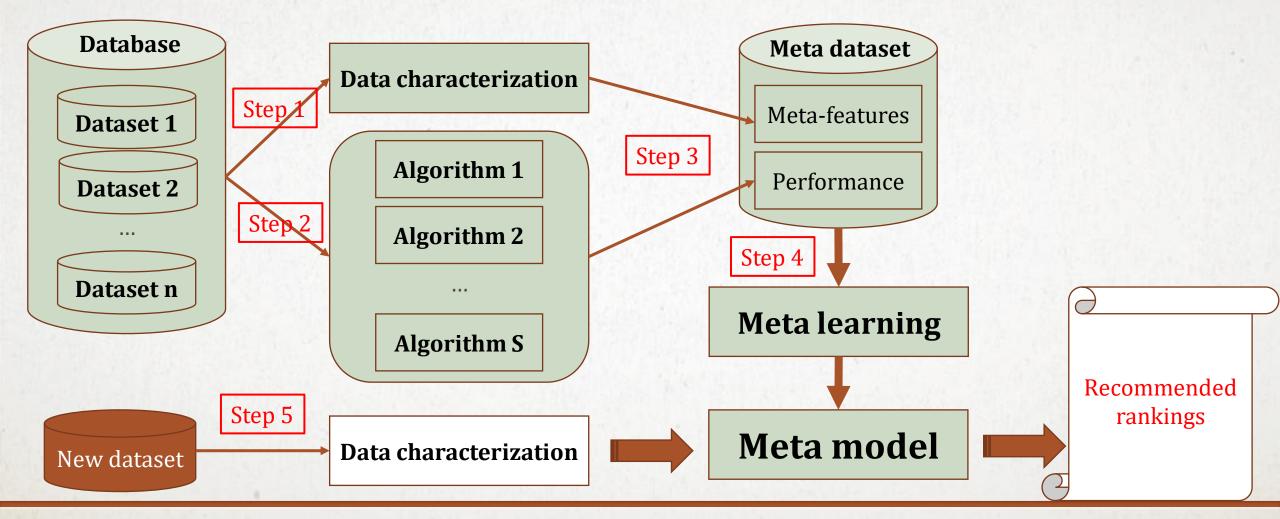


Table 3. Predictive table built with ranking values

Dataset	KM	SL	CL	ML	SOM
Iris	4	1	3	2	5
Car Eval.	2	1	5	3	4
Haberman	4	1	3	2	5



META LEARNING

References:

[1] Giraud-Carrier, et al. "Introduction to the special issue on meta-learning." Machine learning 54, no. 3 (2004): 187-193.

[2] De Souto, et al. "Ranking and selecting clustering algorithms using a meta-learning approach." In Neural Networks, 2008. IJCNN 2008.

[3] Amigó, et al. "A comparison of extrinsic clustering evaluation metrics based on formal constraints." *Information retrieval* 12, no. 4 (2009): 461-486.

[4] Ferrari, et al. "Clustering algorithm recommendation: a meta-learning approach." In International Conference on Swarm, Evolutionary, and Memetic Computing, pp. 143-150, 2012.

[5] Bruno, et al. "A New Data Characterization for Selecting Clustering Algorithms Using Meta-Learning." Information Sciences, unpublished, 2018.

META LEARNING

