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Disclaimer:

Some of the pictures and slides are taken from Xiaojin
Zhu’s(University of Wisconsin, Madison, USA) presentation

slides.
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Introduction to Semi-Supervised Learning

The Traditional View:
» Labeled instances are difficult to get

« Expensive and time consuming to obtain.

» They require the effort of experienced human annotator.
» Unlabeled data is cheap

« Semi-supervised learning is a class of supervised learning tasks
and techniques that also make use of unlabeled data for training
« 1965, Scudder

I AAA A
A AA AL
e 1 - Initial 2 — Classifying *‘ A
labelled A —_— classifier BN unlabeled data with iy & :A 3 —Re-train the
data nA o optimization the trained classifier A A classifier
A" o o (e-g., CSP+LDA) to label them o

o §°§8@ |
O
Many 8.%
O

unlabeled
Data OW
(acquired during use) o

6/14/2019




Introduction to Semi-Supervised Learning

® Why Semi-supervised learning?
® The learning problem
® Goal: Using both labeled and unlabeled data to build better

learners, then using each one alone.

Notation:
B input features x, label y
W learner f: X — )
m labeled data (X;,Y)) = {(z1.,y14) }
®m unlabeled data X, = {z;1 1.0}
musually [ < n

How can X, help?
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Introduction to Semi-Supervised Learning

® The landscape

supervised learning (classification, regression)
{LrhnfyLn)}
semi-supervised classification /regression
{(Il:ﬁf yl:i)~ Lr'.H—]WL}’
semi-supervised clustering {r;.,, must-, cannot-links}

unsupervised learning (clustering) {z1.,}

transduction (limited to z1,,) <= induction (unseen data)
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Introduction to Semi-Supervised Learning
How can unlabeled data ever help?

g Positive labeled data
MNegative labeled data
. Lnlabeled data

Supervised decision boundary Semi—supervised decision boundary
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@ assuming each class is a coherent group (e.g. Gaussian)

@ with and without unlabeled data: decision boundary shift
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Semi-Supervised Learning Algorithms-
Self-training

Self-training;:

L.
2.
3.

Train f from (X}, Y})
Predict on r € X,
Add (z. f(x)) to labeled data

Repeat

® Variations in Self—training

@ Add a few most confident (z, f(x)) to labeled data
@ Add all (x, f(x)) to labeled data
e Add all (z, f(x)) to labeled data, weigh each by confidence
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Semi-Supervised Learning Algorithms-Self-
training

Self-training example: image categorization

1. Train a naive Bayes classifier on the two initial labeled images

[0) ==

2. Classify unlabeled data, sort by confidence log p(y = sswonomy|x)

12160
13713

10889 -107.91 95,98
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Semi-Supervised Learning Algorithms-Self-
training

Self-training example: image categorization

3. Add the most confident images and predicted labels to labeled data

D

o

4. Re-train the cIassufler and repeat

-194.24

15815
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Semi-Supervised Learning Algorithms-Self-
training

® Advantages of Self—training

@ [he simplest semi-supervised learning method.
e A wrapper method, applies to existing (complex) classifiers.

@ Often used in real tasks like natural language processing.

° Disadvantages of Self—training

@ Early mistakes could reinforce themselves.

» Heuristic solutions, e.g. “un-label” an instance if its confidence falls
below a threshold.

@ Cannot say too much in terms of convergence.

» But there are special cases when self-training is equivalent to the
Expectation-Maximization (EM) algorithm.

» There are also special cases (e.g., linear functions) when the
closed-form solution is known.
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Co-training

Co—training

'0 views of an item: lmage a ML text
Two views of an item: image and HTML text
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Co-training

Feature split

Each instance is represented by two sets of features « = [z(1); x(?)]
e ) = image features
e z'? = web page text
@ This is a natural feature split (or multiple views)
Co-training idea:
@ Train an image classifier and a text classifier

@ [he two classifiers teach each other




Co-training

Co-training assumptions

Assumptions
e feature split = [z(!); ()] exists
o =1 or 212 alone is sufficient to train a good classifier

o r'1) and =(?) are conditionally independent given the class

Xy view
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Co-training

Co-training algorithm

Co-training algorithm
@ Train two classifiers: 1) from (XI{U,Y;), £ from (Xf{gj,}’li).
@ Classify X, with f(1) and f(2) separately.
© Add f")'s k-most-confident (x, f(x)) to f*)'s labeled data.
© Add f?’s k-most-confident (x, f?)(x)) to f1)'s labeled data.
© Repeat.
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Co-training

Pros and cons of co-training

Pros
@ Simple wrapper method. Applies to almost all existing classifiers
o Less sensitive to mistakes than self-training
Cons
e Natural feature splits may not exist
@ Models using BOTH features should do better




e
Co-training

Variants of co-training

Co-EM: add all, not just top k&
@ Each classifier probabilistically label X,
@ Add (x,y) with weight P(y|x)
Fake feature split
@ create random, artificial feature split
@ apply co-training
Multiview: agreement among multiple classifiers
@ no feature split
@ train multiple classifiers of different types
@ classify unlabeled data with all classifiers

@ add majority vote label

@




Multiview Learning

A regularized risk minimization framework to encourage multi-learner
agreement:

M [ M n
min (Zc%,f@ xmmm) 0 30 Y (ulw) — folw)?

v=1 \i=1 w,wo=11=I+1

M learners. ¢() is the loss function, e.g., hinge loss.
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Fuzziness based semi-supervised learning

/T
,) :




e EM with generative mixture models
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Fuzzy Cluster

In hard clustering methods
= Every data object is assigned to exactly one cluster
Some applications may need for fuzzy or soft cluster assignment
= EX. An e-game could belong to both entertainment and software
Example: Popularity of cameras is defined as a fuzzy mapping

Camera | Sales (units)
A 50
B 1320
C 860
D 270

ot

1 if 1,000 or more units of o are sold
it i (i < 1000) units of o are sold

1000

Then, A(0.05), B(1), C(0.86), D(0.27)
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Fuzzy (Soft) Clustering

Review-id Keywords 10

Example: Let cluster features be Iy digital camera, lens 10

. , . , Ro digital camera 10

= C, "digital camera” and “lens Rs lens M=1|3 ;3

C.: “computer® R, digital camera, lens, computer 0 1

- 2 p R computer, CPU 0 1
Fuzzy Clusterlng Rg computer, computer game )

= kfuzzy clusters C,, ...,C, ,represented as a partition matrix M = [w;]
= P1: for each object o ang cluster C;, 0 = w; = 1 (fuzzy set)
= P2: for each object o, ZJ — 1, equal participation in the clustering
= P3:for each cluster C;, 0 < Z wi; < n@nsures there is no empty cluster
Letc,, ..., C, as the center of the k clusters
For an object o, sum of the squared error (SSE), pis a parameter'
Fora cluster C;, SSE: SSE(C Z u’U(hsf 0; CJ){) SSE(o Z u’”dzsz‘ 0;, CJ)

Measure how well a clusterin flts the data: oo {
J SSE(C) = Z Z wy;dist(0;, c;)?

i=1 j=1

22




Probabilistic Model-Based Clustering

= Cluster analysis is to find hidden categories.

= A hidden category (i.e., probabilistic cluster) is a distribution over the
data space, which can be mathematically represented using a
probability density function (or distribution function).

Prob* Consumer line Professional line

= EX. 2 categories for digital cameras sold
= consumer line vs. professional line
= density functions f, f, for C;, C,
= Obtained by probabillistic clustering

1
I
|
1 .
>
1000 Price

= A mixture model assumes that a set of observed objects is a mixture
of instances from multiple probabilistic clusters, and conceptually
each observed object is generated independently

= Our task: infer a set of k probabillistic clusters that is most likely to
generate D using the above data generation process
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Probabilistic Model-Based Clustering

A set C of k probabilistic clusters C,, ...,C, with probability density
functions f, ..., f,, respectively, and their probabilities w, ..., w,.

Probability of an object o generated by cluster C;is  P(0|C

k
Probability of o generated by the set of cluster Cis  p(,|c) = ijfj (0)

Since objects are assumed to be generated 7=1
independently, for a data set D = {o,, ..., 0.}, we have,

n k
D|C HP O;|C sz}fJ(O?)
i=1j=1
Task: Find a set C of k probabilistic clusters s.t. P(D|C) is maximized

However, maximizing P(D|C) is often intractable since the probability
density function of a cluster can take an arbitrarily complicated form

To make it computationally feasible (as a compromise), assume the
probability density functions being some parameterized distributions
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Univariate Gaussian Mixture Model

O ={o4, ..., 0.} (n observed objects), © = {0, ..., 6,} (parameters of the
k distributions), and P;(o;| 6)) is the probability that o; is generated from
the J-th dlstrlbutlon using parameter 6;, we have

P(0;|®) = Zcu] (0i]©;) P(0O|O®) = HZ@ (0:]©9;)

1—1 7=1
Univariate Gau35|an mixture model

= Assume the probability density function of each cluster follows a 1-
d Gaussian distribution. Suppose that there are k clusters.

= The probability density function of each cluster are centered at
with standard deviation o}, 6;, = (y;, 0;), we have

1 (Oz ﬁj)g (o‘, ;J)Q
P(0;|9,) = \/?J o2 P(0;|®) = Z \/2_
J ’I'O'J,
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Univariate Gaussian Mixture Model

EM: 1-d example

\

B T TR TR TRU PP P RT P(x |b) = | | cxd (x ~ ) J
V2o, 20,
b =P(b|x,) Px, 15)P(0)

77 P(x |b)P(b) + Px, | a)P(a)
a=Plalx)=1-b

L o 0000 ¢ bx, +bx,+..+bx,

b +b,+..+b,

b(x =p) +..+b(x —u)
b +b,+..+b,

ax +a.x,+..+a.x,

a,+a,+..+a,

................... ; UA(-" #‘); * et (‘q ('l\ ”' )'~
iy a,+a,+..+a,

could also estimate priors:
Pb)=(bs;+b,+...b,) /I n
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The EM (Expectation Maximization) Algorithm

= The k-means algorithm has two steps at each iteration:

= Expectation Step (E-step): Given the current cluster centers, each
object is assigned to the cluster whose center is closest to the
object: An object is expected to belong to the closest cluster

= Maximization Step (M-step): Given the cluster assignment, for
each cluster, the algorithm adjusts the center so that the sum of
distance from the objects assigned to this cluster and the new
center is minimized

= The (EM) algorithm: A framework to approach maximum likelihood or
maximum a posteriori estimates of parameters in statistical models.

= E-step assigns objects to clusters according to the current fuzzy
clustering or parameters of probabilistic clusters

= M-step finds the new clustering or parameters that maximize the
sum of squared error (SSE) or the expected likelihood

27



Fuzzy Clustering Using the EM Algorithm

‘ Iteration ‘ E-step ‘ M-step
® - (15 1) ) T — | L0 048 042 041 047 1 = (3.47,5.12)
® v (4, 10) 710 1 052 058 059 0.53 co = (10.42,8.99)
® d (14,8 ® 217 5 VT — 0.73 0.49 091 0.26 0.33 0.42 cp = (8.51,6.11)
® (9 6) ' - ’ 1 027 051 0.09 0.74 0.67 0.58 co = (14.42,8.69)
®:063 ] A7 — | 080 0.760.90 0.02 0.14 0.23 c1 = (6.40,6.24)
o 0.20 024 0.01 098 0.86 0.77 co = (16.55, 8.64)
X
= [nitially, letc, =aandc,=Db ) )
i . _ dist(o,c1)2 dist(o, co)?
= 1stE-step: assign o to c,,w. wt = — o) to.c2) _
. r+ 7 5 dist(o,c1)? 4 dist(o, c5)?
. * B 11 B O _18 ist(0,c1) ist(o,co)
Weyer = 5421 — U

= 1St M-step: recalculate the centroids according to the partition matrix,
minimizing the sum of squared error (SSE)
Yoo wio . ( 12 3402 x440.482 x940.422 x 1440.412 x 1840.47% x 21

each point o = L 1ZH+0240.48740.427+0.41740.472
¢j = 2 12 %3407 X 1040487 X 640,427 X8 40,417 x 1 1+0.47% X7
> wl,, 12+02+0.482+0.42240.412+0.472

each point o = (8—1? 512)
= [teratively calculate this until the cluster centers converge or the change
Is small enough




Computing Mixture Models with EM

= Given n objects O ={o,, ..., 0.}, we want to mine a set of parameters O
={06,, ..., 6} s.t.,P(O|O) is maximized, where 6, = (u;, o) are the mean and
standard deviation of the j-th univariate Gaussian distribution

= We initially assign random values to parameters 6, then iteratively
conduct the E- and M- steps until converge or sufficiently small change

= At the E-step, for each object o;, calculate the probability that o, belongs
to each distribution, (0:]0))

P(@j ‘O'i*- @)) — L
> i1 P(0i|01)
= Atthe M-step, adjust the parameters 6, = (l;, 0;) so that the expected
likelihood P(O|®) is maximized

'u__.:io' P(©lo;, ®) :ZELIOEP( iloi, © - \/Z ( O;0:.©)(0; — u;)?
! i=1 | ?le(@j‘()g,@) Z?:lp( _}|01 Zz IP J‘O? )



Advantages and Disadvantages of Mixture Models

= Strength

Mixture models are more general than partitioning and fuzzy
clustering

Clusters can be characterized by a small number of parameters

The results may satisfy the statistical assumptions of the
generative models

= Weakness

Converge to local optimal (overcome: run multi-times w. random
Initialization)

Computationally expensive if the number of distributions is large,
or the data set contains very few observed data points

Need large data sets

Hard to estimate the number of clusters
30



EM with generative mixture model

The MLE of € without and with X, i1s different.

labeled data only labeled and unlabeled
1 ¥ Y .ﬂ lﬂgp(Xﬂﬂ}/E:‘Yum) —
ogp( X, Y1/6) 31 log p(yil0)p(;ly;. 6)

= Zi’:l log p(y;|0)p(zily:, 0)

B 4 a3 =2 E @ t * 3 4 5 = - 1 2 # @ 1 ¥ 5 4 &

In principle X, i1s useful for other generative models too.

31



Generative model for semi-supervised learning

Assumption
knowledge of the model form p(X,Y'|?).

@ joint and marginal likelihood

p(X1, Y1, Xo|0) = (X1, Y1, Xy, Yal0)
Y

@ find the maximum likelihood estimate (MLE) of €, the maximum a

posteriori (MAP) estimate, or be Bayesian
@ common mixture models used in semi-supervised learning:
» Mixture of Gaussian distributions (GMM) — image classification
» Mixture of multinomial distributions (Naive Bayes) — text
categorization
» Hidden Markov Models (HMM) — speech recognition

@ Learning via the Expectation-Maximization (EM) algorithm
(Baum-Welch)

32



Semi-supervised Support Vector Machines

SVMs
:

¢ ®

| - ©

Semi-supervised SVMs (S3VMs) = Transductive SVMs (TSVMs)

e - : ,."I.. oo ° S
Assumption: Unlabeled data from different clas
margin.

ses are separated with large

33



Semi-supervised Support Vector Machines

S3VMs

Assumption }

Unlabeled data from different classes are separated with large margin.

S3VM idea:
@ Enumerate all 2" possible labeling of X,

@ Build one standard SVM for each labeling (and X;)
@ Pick the SVM with the largest margin

34



Advantages and Disadvantages of $3VMs

Advantages
= Applicable wherever SVMs are applicable.
= Clear mathematical framework.
Disadvantages
= Optimization is difficult.
= Can be trapped in bad local optima.

= More modest assumption than generative model or graph-based
methods, potentially lesser gain.
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Entropy Regularization

Assumption: if the two classes are well-separated, then p(y|x) on any

unlabeled instance should be close to 0 or 1.

Entropy H(p) = —plogp — (1 — p) log(1 — p) should be small

[+

entropy regularizer Q(f) = > .0,y H(p(y = 1|x;,w, b))

semi-supervised logistic regression

l

w.b

i=1
[+u

+ A9 Z H(1/ (1 +exp(—
7=l+1

The probabilistic counter part of S3VMs.

min Zlog (I +exp(—y; f(x;))) + )\1HWH2

F(x))))
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Graph-based semi-supervised learning

Assumption

= A graph is given on the labeled and unlabeled data. Instances
connected by heavy edge tend to have the same label.

The graph

@ Nodes: X; U X,
@ Edges: similarity weights computed from features, e.g.,

» k-nearest-neighbor graph, unweighted (0, 1 weights)
» fully connected graph, weight decays with distance
w = exp (—||z; — z;||*/o?)

@ Want: implied similarity via all paths

37



Graph-based semi-supervised learning

Some graph-based algorithms

= Mincut

= Harmonic

= Local and global consistency
= Manifold regularization

38



Graph-based semi-supervised learning

The mincut algorithm

The graph mincut problem:
o Fix Y}, find ¥, € {0.1}"~! to minimize > i WijlYi — Yjl-

@ Equivalently, solves the optimization problem

[
min oo v — Y )2 - we (1 — )2
Ye{o1yn ;(Js ls.) %: 1] (Jz Jj)

@ Combinatorial problem, but has polynomial time solution.

@ Mincut computes the modes of a Boltzmann machine

@ There might be multiple modes

@ One solution is to randomly perturb the weights, and average the
results.

O O O O O O O

+ -
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The harmonic function

Relaxing discrete labels to continuous values in R, the harmonic function f
satisfies

o f(o;)=y;fori=1...1

@ f minimizes the energy

D wij(f(x) = f(x;)?

i~j

@ the mean of a Gaussian random field

o average of neighbors f(x;) = E"”g Jw”{j_(frj ),‘v’:r,,f c Xu
i Wij

40



An algorithm to compute harmonic function

One way to compute the harmonic function is:
Q Initially, set f(x;) =y; fori=1...1, and f(z;) arbitrarily (e.g., 0)
for ; € X,,.

@ Repeat until convergence: Set f(x;) = ijzw;ﬁ?j),“v’mi c X, ie.,

the average of neighbors. Note f(X;) is fixed.

This can be viewed as a special case of self-training too.

41



Problems with harmonic function

Harmonic solution has two issues

o It fixes the given labels Y]

» What if some labels are wrong?
» Want to be flexible and disagree with given labels occasionally

@ It cannot handle new test points directly

» fis only defined on X,
» \We have to add new test points to the graph, and find a new harmonic
solution

42



Local and global consistency

o Allow f(X;) to be different from Y, but penalize it

@ Introduce a balance between labeled data fit and graph energy

mmz flx;) —vyi) +)\fTAf
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Manifold regularization

Manifold regularization solves the two issues

o Allows but penalizes f(X;) # Y; using hinge loss

o Automatically applies to new test data
» Defines function in kernel /' induced RKHS:
f(z) =h(x)+ b h(x) € Hk
o Still prefers low energy fEnAflzn
[

Illfiﬂ Z(l o ’_lj@f(T«;))—F T /\1“}?“%{3 T /\Qfl—[nAfli-n
1=1
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Manifold regularization algorithm

Q Input: kernel K, weights Ay, o, (X;.Y)), X,

@ Construct similarity graph W from X;. X u, compute graph Laplacian
A

© Solve the optimization problem for f(x) = h(x) + b, h(z) € Hg

[
mfin Y (U —yif @)+ + MllhlFy + A2 filn A fin
=1

© Classify a new test point x by sign(f(x))
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Pros and Cons of Graph-based $SL

Pros
= Clear mathematical framework.
= Performance is strong if the graph happens to fit the task

= The (pseudo) inverse of the Laplacian can be viewed as a kernel
matrix

= Can be extended to directed graphs
Cons
= Performance is bad if the graph is bad

= Sensitive to graph structure and edge weights
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Which semi-supervised learning method
should I use?

|deally, one should use a method whose assumptions fit the problem
structure.

O Do the classes produce well clustered data?
If yes, EM with generative mixture models may be a good
choice.
O Do the features naturally split into two sets?
If yes, co-training may be appropriate.
O Is it true that two points with similar features tend to be in the
same class?
If yes, graph-based methods can be used.
O Already using SVM?
Transductive SVM is a natural extension.
O Is the existing supervised classifier complicated and hard to
modify?
Self-training is a practical wrapper method.
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Future Direction

 Real SSL tasks
 What tasks can be dramatically improved by SSL, so that
new functionalities are enabled?

« New SSL assumptions

Generative models, multiview, graph methods, S3VMs

1 r [
> log p(ui0)p(wilyi.0) + X > log (Z p(.ue‘::m.f-;_u.H‘:a>
=1

i=I1+1 y=1

M l M n
mfmz (Z c(yi- fo(xi)) + Alf%{) + A2 > D (fulwi) = fola:)’

v=1 i=1 w,o=1i=I4+1
[ "
min 3 ey F@0) + Ml FI + % D2 wii (£ — F,))
=1 t,7=1

T

[
min Y (1= wif (#0)+ + Ml fllic + X2 D0 (1= [F(w))+
i—1

i=Il+1
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Future Direction

What other assumptions can we make on unlabeled data? For example:

o label dissimilarity y; # y;

Z wii(f(xi) = siif(x5))?
i

w;; edge confidence; s;; = 1: same label, -1: different labels

@ order preference y; — y; > d for regression

(d = (f(2i) = f(x;))+

New assumptions may lead to new SSL algorithms.
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Future Direction

Efficiency on huge unlabeled datasets

Some recent SSL datasets as reported in research papers:

0

unlabeled data size

10’

10

10

10

10

world population

internet users in the US

people in full stadium

®
° o":

10°
labeled data size

10
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Future Direction

Safe SSL
@ How do we know that we are making the right model assumptions?

@ Which semi-supervised learning method should | use?
@ If | have labeled AND unlabeled data, | should do at least as well as

only having the labeled data.

How can we make sure that SSL is “safe”?
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