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Disclaimer: 

Some of the pictures and slides are taken from Xiaojin

Zhu’s(University of Wisconsin, Madison, USA) presentation 

slides.



Introduction to Semi-Supervised Learning
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• Semi-supervised learning is a class of supervised learning tasks 

and techniques that also make use of unlabeled data for training

• 1965, Scudder

The Traditional View:

• Labeled instances are difficult to get

• Expensive and time consuming to obtain. 

• They require the effort of experienced human annotator.  

• Unlabeled data is cheap



Introduction to Semi-Supervised Learning
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 Why Semi-supervised learning?

 The learning problem

 Goal: Using both labeled and unlabeled data to build better 

learners, then using each one alone. 



Introduction to Semi-Supervised Learning
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 The landscape



Introduction to Semi-Supervised Learning
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Semi-Supervised Learning Algorithms-
Self-training 
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 Variations in Self-training



Semi-Supervised Learning Algorithms-Self-
training 
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Semi-Supervised Learning Algorithms-Self-
training 

6/14/201910



Semi-Supervised Learning Algorithms-Self-
training 
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 Advantages of Self-training

 Disadvantages of Self-training
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Co-training

Co-training
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Co-training



14

Co-training
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Co-training
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Co-training
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Co-training



Multiview Learning
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Fuzziness based semi-supervised learning
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EM with generative mixture models



Fuzzy Cluster

◼ In hard clustering methods

◼ Every data object is assigned to exactly one cluster

◼ Some applications may need for fuzzy or soft cluster assignment 

◼ Ex. An e-game could belong to both entertainment and software

◼ Example: Popularity of cameras is defined as a fuzzy mapping 

◼ Then, A(0.05), B(1), C(0.86), D(0.27)
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Fuzzy (Soft) Clustering

◼ Example: Let cluster features be

◼ C1 :“digital camera” and “lens”

◼ C2: “computer“

◼ Fuzzy clustering 

◼ k fuzzy clusters C1, …,Ck ,represented as a partition matrix M = [wij]

◼ P1: for each object oi and cluster Cj, 0 ≤ wij ≤ 1 (fuzzy set)

◼ P2: for each object oi,                , equal participation in the clustering

◼ P3: for each cluster Cj ,                    ensures there is no empty cluster

◼ Let c1, …, ck as the center of the k clusters

◼ For an object oi, sum of the squared error (SSE), p is a parameter: 

◼ For a cluster Ci, SSE:

◼ Measure how well a clustering fits the data:
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Probabilistic Model-Based Clustering

◼ Cluster analysis is to find hidden categories.

◼ A hidden category (i.e., probabilistic cluster) is a distribution over the 

data space, which can be mathematically represented using a 

probability density function (or distribution function).

◼ Ex. 2 categories for digital cameras sold

◼ consumer line vs. professional line

◼ density functions f1, f2 for C1, C2

◼ obtained by probabilistic clustering

◼ A mixture model assumes that a set of observed objects is a mixture 

of instances from multiple probabilistic clusters, and conceptually 

each observed object is generated independently

◼ Our task: infer a set of k probabilistic clusters that is most likely to 

generate D using the above data generation process
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Probabilistic Model-Based Clustering

◼ A set C of k probabilistic clusters C1, …,Ck with probability density 

functions f1, …, fk, respectively, and their probabilities ω1, …, ωk.

◼ Probability of an object o generated by cluster Cj is 

◼ Probability of o generated by the set of cluster C is

◼ Since objects are assumed to be generated 

independently, for a data set D = {o1, …, on}, we have,

◼ Task: Find a set C of k probabilistic clusters s.t. P(D|C) is maximized

◼ However, maximizing P(D|C) is often intractable since the probability 

density function of a cluster can take an arbitrarily complicated form

◼ To make it computationally feasible (as a compromise), assume the 

probability density functions being some parameterized distributions
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Univariate Gaussian Mixture Model

◼ O = {o1, …, on} (n observed objects), Θ = {θ1, …, θk} (parameters of the 

k distributions), and Pj(oi| θj) is the probability that oi is generated from 

the j-th distribution using parameter θj, we have 

◼ Univariate Gaussian mixture model 

◼ Assume the probability density function of each cluster follows a 1-

d Gaussian distribution.  Suppose that there are k clusters.

◼ The probability density function of each cluster are centered at μj

with standard deviation σj, θj, = (μj, σj), we have
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Univariate Gaussian Mixture Model



The EM (Expectation Maximization) Algorithm

◼ The k-means algorithm has two steps at each iteration: 

◼ Expectation Step (E-step): Given the current cluster centers, each 

object is assigned to the cluster whose center is closest to the 

object: An object is expected to belong to the closest cluster

◼ Maximization Step (M-step): Given the cluster assignment, for 

each cluster, the algorithm adjusts the center so that the sum of 

distance from the objects assigned to this cluster and the new 

center is minimized

◼ The (EM) algorithm: A framework to approach maximum likelihood or 

maximum a posteriori estimates of parameters in statistical models.

◼ E-step assigns objects to clusters according to the current fuzzy 

clustering or parameters of probabilistic clusters

◼ M-step finds the new clustering or parameters that maximize the 

sum of squared error (SSE) or the expected likelihood
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Fuzzy Clustering Using the EM Algorithm

◼ Initially, let c1 = a and c2 = b

◼ 1st E-step: assign o to c1,w. wt =

◼

◼ 1st M-step:  recalculate the centroids according to the partition matrix, 

minimizing the sum of squared error (SSE)

◼ Iteratively calculate this until the cluster centers converge or the change 

is small enough
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Computing Mixture Models with EM

◼ Given n objects O = {o1, …, on}, we want to mine a set of parameters Θ

= {θ1, …, θk} s.t.,P(O|Θ) is maximized, where θj = (μj, σj) are the mean and 

standard deviation of the j-th univariate Gaussian distribution 

◼ We initially assign random values to parameters θj, then iteratively 

conduct the E- and M- steps until converge or sufficiently small change

◼ At the E-step, for each object oi, calculate the probability that oi belongs 

to each distribution,

◼ At the M-step, adjust the parameters θj = (μj, σj) so that the expected 

likelihood P(O|Θ) is maximized



Advantages and Disadvantages of Mixture Models

◼ Strength

◼ Mixture models are more general than partitioning and fuzzy 

clustering 

◼ Clusters can be characterized by a small number of parameters

◼ The results may satisfy the statistical assumptions of the 

generative models

◼ Weakness

◼ Converge to local optimal (overcome: run multi-times w. random 

initialization)

◼ Computationally expensive if the number of distributions is large, 

or the data set contains very few observed data points

◼ Need large data sets

◼ Hard to estimate the number of clusters
30
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EM with generative mixture model
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Semi-supervised Support Vector Machines
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Semi-supervised Support Vector Machines



Advantages and Disadvantages of S3VMs

◼ Advantages

◼ Applicable wherever SVMs are applicable.

◼ Clear mathematical framework. 

◼ Disadvantages

◼ Optimization is difficult.

◼ Can be trapped in bad local optima.

◼ More modest assumption than generative model or graph-based 

methods, potentially lesser gain. 
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Entropy Regularization
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Graph-based semi-supervised learning

◼ Assumption

◼ A graph is given on the labeled and unlabeled data. Instances 

connected by heavy edge tend to have the same label.
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Graph-based semi-supervised learning

◼ Some graph-based algorithms

◼ Mincut

◼ Harmonic

◼ Local and global consistency

◼ Manifold regularization
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Graph-based semi-supervised learning

◼ The mincut algorithm
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The harmonic function
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An algorithm to compute harmonic function
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Problems with harmonic function
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Local and global consistency
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Manifold regularization
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Manifold regularization algorithm
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Pros and Cons of Graph-based SSL

◼ Pros

◼ Clear mathematical framework. 

◼ Performance is strong if the graph happens to fit the task

◼ The (pseudo) inverse of the Laplacian can be viewed as a kernel 

matrix

◼ Can be extended to directed graphs

◼ Cons

◼ Performance is bad if the graph is bad

◼ Sensitive to graph structure and edge weights
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Ideally, one should use a method whose assumptions fit the problem 

structure. 

❑ Do the classes produce well clustered data? 

If yes, EM with generative mixture models may be a good 

choice.

❑ Do the features naturally split into two sets? 

If yes, co-training may be appropriate. 

❑ Is it true that two points with similar features tend to be in the 

same class? 

If yes, graph-based methods can be used.

❑ Already using SVM?

Transductive SVM is a natural extension.

❑ Is the existing supervised classifier complicated and hard to 

modify?

Self-training is a practical wrapper method.

Which semi-supervised learning method 
should I use?
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• Real SSL tasks

• What tasks can be dramatically improved by SSL, so that 

new functionalities are enabled?

• New SSL assumptions

Future Direction
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Future Direction
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Future Direction

• Efficiency on huge unlabeled datasets

Some recent SSL datasets as reported in research papers:
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Future Direction

Safe SSL
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