Semi-Supervised Learning: An
Overview

it o X %

SHENZHEN UNIVERSITY

Muhammed Jamshed Alam Patwary
PhD Research Fellow, Big Data Institute
College of Computer Science and Software Engineering
Shenzhen University




Outline

¢ Introduction to Semi—SuperVised Learning

® Semi-Supervised Learning Algorithms
® Self-training
® EM with generative mixture models
® Co-training
® Fuzziness based Semi-Supervised Learning

® Transductive support vector machine
e Which serni—supervised learning method should I use?

® Some Challenges for Future Research

@ 7/3/2018




Disclaimer:

Some of the pictures and slides are taken from Xiaojin
Zhu’s(University of Wisconsin, Madison, USA) presentation
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Introduction to Semi-Supervised Learning

The Traditional View:
» Labeled instances are difficult to get

« Expensive and time consuming to obtain.

» They require the effort of experienced human annotator.
» Unlabeled data is cheap

« Semi-supervised learning is a class of supervised learning tasks
and techniques that also make use of unlabeled data for training
« 1965, Scudder

I AAA A
A AA AL
e 1 - Initial 2 — Classifying *‘ A
labelled A —_— classifier BN unlabeled data with iy & :A 3 —Re-train the
data nA o optimization the trained classifier A A classifier
A" o o (e-g., CSP+LDA) to label them o

o §°§8@ |
O
Many 8.%
O

unlabeled
Data OW
(acquired during use) o

7/3/2018




Introduction to Semi-Supervised Learning

® Why Semi-supervised learning?
® The learning problem
® Goal: Using both labeled and unlabeled data to build better

learners, then using each one alone.

Notation:
B input features x, label y
W learner f: X — )
m labeled data (X;,Y)) = {(z1.,y14) }
®m unlabeled data X, = {z;1 1.0}
musually [ < n

How can X, help?
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Introduction to Semi-Supervised Learning

® The landscape

supervised learning (classification, regression)
{LrhnfyLn)}
semi-supervised classification /regression
{(Il:ﬁf yl:i)~ Lr'.H—]WL}’
semi-supervised clustering {r;.,, must-, cannot-links}

unsupervised learning (clustering) {z1.,}

transduction (limited to z1,,) <= induction (unseen data)
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Introduction to Semi-Supervised Learning

How can unlabeled data ever help?

@ assuming each class is a coherent group (e.g. Gaussian)
=+ with and without unlabeled data: decision boundary shift

Does unlabeled data always help?
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Semi-Supervised Learning Algorithms-
Self-training

Self-training;:

L.
2.
3.

Train f from (X}, Y})
Predict on r € X,
Add (z. f(x)) to labeled data

Repeat

® Variations in Self—training

@ Add a few most confident (z, f(x)) to labeled data
@ Add all (x, f(x)) to labeled data
e Add all (z, f(x)) to labeled data, weigh each by confidence
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Semi-Supervised Learning Algorithms-Self-
training

Self-training example: image categorization

1. Train a naive Bayes classifier on the two initial labeled images

[0) ==

2. Classify unlabeled data, sort by confidence log p(y = sswonomy|x)

12160
13713

10889 -107.91 95,98
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Semi-Supervised Learning Algorithms-Self-
training

Self-training example: image categorization

3. Add the most confident images and predicted labels to labeled data

D

o

4. Re-train the cIassufler and repeat

-194.24

15815
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Semi-Supervised Learning Algorithms-Self-
training

® Advantages of Self—training

@ [he simplest semi-supervised learning method.
e A wrapper method, applies to existing (complex) classifiers.

@ Often used in real tasks like natural language processing.

° Disadvantages of Self—training

@ Early mistakes could reinforce themselves.

» Heuristic solutions, e.g. “un-label” an instance if its confidence falls
below a threshold.

@ Cannot say too much in terms of convergence.

» But there are special cases when self-training is equivalent to the
Expectation-Maximization (EM) algorithm.

» There are also special cases (e.g., linear functions) when the
closed-form solution is known.
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e EM with generative mixture models
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Fuzzy Cluster

In hard clustering methods
= Every data object is assigned to exactly one cluster
Some applications may need for fuzzy or soft cluster assignment
= EX. An e-game could belong to both entertainment and software
Example: Popularity of cameras is defined as a fuzzy mapping

Camera | Sales (units)
A 50
B 1320
C 860
D 270

ot

1 if 1,000 or more units of o are sold
it i (i < 1000) units of o are sold

1000

Then, A(0.05), B(1), C(0.86), D(0.27)
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Fuzzy (Soft) Clustering

Review-id Keywords 10

Example: Let cluster features be Iy digital camera, lens 10

. , . , Ro digital camera 10

= C, "digital camera” and “lens Rs lens M=1|3 ;3

C.: “computer" R, digital camera, lens, computer 0 1

- 2 p R computer, CPU 0 1
Fuzzy Clusterlng Rg computer, computer game )

= kfuzzy clusters C,, ...,C, ,represented as a partition matrix M = [w;]
= P1: for each object o ang cluster C;, 0 = w; = 1 (fuzzy set)
= P2: for each object o, ZJ — 1, equal participation in the clustering
= P3:for each cluster C;, 0 < Z wi; < n@nsures there is no empty cluster
Letc,, ..., C, as the center of the k clusters
For an object o, sum of the squared error (SSE), pis a parameter'
Fora cluster C;, SSE: SSE(C Z U’U(hbf 0; CJ){) SSE(o Z u’”dzsz‘ 0;, CJ)

Measure how well a clusterin flts the data: k
J SSE(C) = Z Z wy;dist(0;, c;)?

i—=1 5=1
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Probabilistic Model-Based Clustering

= Cluster analysis is to find hidden categories.

= A hidden category (i.e., probabilistic cluster) is a distribution over the
data space, which can be mathematically represented using a
probability density function (or distribution function).

Prob* Consumer line Professional line

= EX. 2 categories for digital cameras sold
= consumer line vs. professional line
= density functions f, f, for C;, C,
= Obtained by probabillistic clustering

1
I
|
1 .
>
1000 Price

= A mixture model assumes that a set of observed objects is a mixture
of instances from multiple probabilistic clusters, and conceptually
each observed object is generated independently

= Our task: infer a set of k probabillistic clusters that is most likely to
generate D using the above data generation process
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Probabilistic Model-Based Clustering

A set C of k probabilistic clusters C,, ...,C, with probability density
functions f, ..., f,, respectively, and their probabilities w, ..., w,.

Probability of an object o generated by cluster C;is  P(0|C

k
Probability of o generated by the set of cluster Cis p(,|c) = ijfj (0)

Since objects are assumed to be generated 7=1
independently, for a data set D = {o,, ..., 0.}, we have,

n k
D|C HP O;|C sz}fJ(O?)
i=1j=1
Task: Find a set C of k probabilistic clusters s.t. P(D|C) is maximized

However, maximizing P(D|C) is often intractable since the probability
density function of a cluster can take an arbitrarily complicated form

To make it computationally feasible (as a compromise), assume the
probability density functions being some parameterized distributions
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Univariate Gaussian Mixture Model

O ={o4, ..., 0.} (n observed objects), © = {0, ..., 6,} (parameters of the
k distributions), and P;(o;| 6)) is the probability that o; is generated from
the J-th dlstrlbutlon using parameter 6;, we have

P(0;|®) = Zcu] (0i]©;) P(0O|O®) = HZ@ (0:]©9;)

1—1 7=1
Univariate Gau35|an mixture model

= Assume the probability density function of each cluster follows a 1-
d Gaussian distribution. Suppose that there are k clusters.

= The probability density function of each cluster are centered at
with standard deviation o}, 6;, = (y;, 0;), we have

1 (Oz ﬁj)g (o‘, ;J)Q
P(0;|©;) = \/?J o2 P(0;|®) = Z \/2_
J ’I'O'J,
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Univariate Gaussian Mixture Model

EM: 1-d example

\

B T TR TR TRU PP P RT P(x |b) = | | cxd (x ~ ) J
V2o, 20,
b =P(b|x,) Px, 15)P(0)

77 P(x |b)P(b) + Px, | a)P(a)
a=Plalx)=1-b

L o 0000 ¢ bx, +bx,+..+bx,

b +b,+..+b,

b(x =p) +..+b(x —u)
b +b,+..+b,

ax +a.x,+..+a.x,

a,+a,+..+a,

................... ; UA(-" #‘); * et (‘q ('l\ ”' )'~
iy a,+a,+..+a,

could also estimate priors:
Pb)=(bs;+b,+...b,) /I n
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The EM (Expectation Maximization) Algorithm

= The k-means algorithm has two steps at each iteration:

= Expectation Step (E-step): Given the current cluster centers, each
object is assigned to the cluster whose center is closest to the
object: An object is expected to belong to the closest cluster

= Maximization Step (M-step): Given the cluster assignment, for
each cluster, the algorithm adjusts the center so that the sum of
distance from the objects assigned to this cluster and the new
center is minimized

= The (EM) algorithm: A framework to approach maximum likelihood or
maximum a posteriori estimates of parameters in statistical models.

= E-step assigns objects to clusters according to the current fuzzy
clustering or parameters of probabilistic clusters

= M-step finds the new clustering or parameters that maximize the
sum of squared error (SSE) or the expected likelihood
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Fuzzy Clustering Using the EM Algorithm

‘ Iteration ‘ E-step ‘ M-step
® s 11 ) T — | L0 048 042 041 047 1 = (3.47,5.12)
® b (4, 10) 710 1 052 058 059 0.53 co = (10.42,8.99)
® d(14,8 ® L7 5 VT — 0.73 0.49 091 0.26 0.33 0.42 c1 = (8.51,6.11)
® (9 6) ' - ’ 1 027 051 0.09 0.74 0.67 0.58 co = (14.42,8.69)
®:063 ] T = | 080 076 0.99 002 014 0.23 c1 = (6.40.6.24)
o 0.20 0.24 0.01 098 0.86 0.77 co = (16.55,8.64)
X
= [nitially, letc, =aandc,=Db ) )
i . _ dist(o,c1)2 dist(o, co)?
= 1stE-step: assign o to c,,w. wt = — o) to.c2) _
. r+ 7 5 dist(o,c1)? 4 dist(o, c5)?
. * B 11 B O _18 ist(0,c1) ist(o,co) :
Weyer = 5421 — U

= 1St M-step: recalculate the centroids according to the partition matrix,

minimizing the sum of squared error (SSE)
Yoo wio . ( 12 3402 x440.482 x940.422 x 1440.412 x 1840.47% x 21

each point o = L 1ZH+0240.48740.427+0.41740.472
¢j = 2 12 %3407 X 1040487 X 640,427 X8 40,417 x 1 1+0.47% X7
> wl,, 12+02+0.482+0.42240.412+0.472

each point o = (8—1? 512)
= [teratively calculate this until the cluster centers converge or the change
Is small enough




Computing Mixture Models with EM

= Given n objects O ={o,, ..., 0.}, we want to mine a set of parameters O
={06,, ..., 6} s.t.,P(O|O) is maximized, where 6, = (u;, o) are the mean and
standard deviation of the j-th univariate Gaussian distribution

= We initially assign random values to parameters 6, then iteratively
conduct the E- and M- steps until converge or sufficiently small change

= At the E-step, for each object o;, calculate the probability that o, belongs
to each distribution, (0:]0))

P(@j ‘O'i*- @)) — L
> i1 P(0i|01)
= Atthe M-step, adjust the parameters 6, = (l;, 0;) so that the expected
likelihood P(O|®) is maximized

“—-':if" P(©,]0.©) S, 0P(0,]0.0) , _ \/2 (,10.-0) (0, —u,)°
! i—1 ?. ;1:1 P(@j‘of*@) Z?:l Pe _}|O'a D e 11-D 0jlo;, O)



Advantages and Disadvantages of Mixture Models

= Strength

Mixture models are more general than partitioning and fuzzy
clustering

Clusters can be characterized by a small number of parameters

The results may satisfy the statistical assumptions of the
generative models

= Weakness

Converge to local optimal (overcome: run multi-times w. random
Initialization)

Computationally expensive if the number of distributions is large,
or the data set contains very few observed data points

Need large data sets

Hard to estimate the number of clusters
22



EM with generative mixture model

Example: EM for Gaussian mixture models

0 = {plc), n, L}
Start from MLE # on (X, Y;), repeat:

1. E-step: compute the expected labels p(y|z, #) for all
re X,
® assign class 1 to p(y = 1|z, #) fraction of =
® assign class 2 to p(y = 2|z, #) fraction of =
| ...

2. M-step: update MLE # with the original labeled and
(now labeled) unlabeled data
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EM with generative mixture model

The MLE of € without and with X, i1s different.

labeled data only labeled and unlabeled
1 ¥ Y .ﬂ lﬂgp(Xﬂﬂ}/E:‘Yum) —
ogp( X, Y1/6) 31 log p(yil0)p(;ly;. 6)

= Zi’:l log p(y;|0)p(zily:, 0)

B 4 a3 =2 E @ t * 3 4 5 = - 1 2 # @ 1 ¥ 5 4 &

In principle X, i1s useful for other generative models too.
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Co-training

Co-training

0 views of an item: image a ML text
Two views of an item: image and HTML text

W Go Bocleds  Tooks  Hep
- 5 10 ) |11 tetmdhomes 4131 barm 312 4. coboftad: b Hnl ¥ Ba Gl

What is the sun?

The sun 1 a star. 1t 13 only one of the billion of stars i the wverse. The sun 1 extremely hot, It
15 10 mulhion degrees i the center The suiis about 23 mullion miles are from the Earth. The
Sun's age 15 abont 4,600,000.000 years old The sun 12 necessary to life on Earth It gives us food.

energy, weather. light, air and fuel. Thexe would be no Living things on emth without the sun. v

Core

o Page - Nezita Firefax
Yew G0 Eooknads  [ook  Heb

- g § r’l\ Fo: ) frgfmchpse tard Fland,hind v Qe |G

=
Here is some car pic’s some are from people | know and some are no!

Score the

Ultimate

Job at the

All-Star B2
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Co-training

Feature split

Each instance is represented by two sets of features « = [z(1); x(?)]
e ) = image features
e z'? = web page text
@ This is a natural feature split (or multiple views)
Co-training idea:
@ Train an image classifier and a text classifier

@ [he two classifiers teach each other
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Co-training

Co-training assumptions

Assumptions
e feature split = [z(!); ()] exists
o =1 or 212 alone is sufficient to train a good classifier

o r'1) and =(?) are conditionally independent given the class

Xy view
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Co-training

Co-training algorithm

Co-training algorithm
@ Train two classifiers: 1) from (XI{U,}’}), £ from (XE{QJ,}’E).
@ Classify X, with f(1) and f(2) separately.
© Add f")'s k-most-confident (x, f(x)) to f*)'s labeled data.
© Add f?’s k-most-confident (x, f?)(x)) to f1)'s labeled data.
© Repeat.
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Co-training

Pros and cons of co-training

Pros
@ Simple wrapper method. Applies to almost all existing classifiers
o Less sensitive to mistakes than self-training
Cons
e Natural feature splits may not exist
@ Models using BOTH features should do better
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Fuzziness based semi-supervised learning

1 30% ' S
—e— =
Data S Testing Data Fuzziness of
Each Sample

2 — Model Splitting Algorithm |
Division in 3
Training Data ———»- aassmer (¥;mr Output of {Division |)n
/ 4 N
iLMIF KNN 6
Combine ’ru.mng Testing Sample \ :
samples and samples | Low Fuzziness Group) High Fuzziness Group )
with Low fuzziness (8) ; ~
Testing Sample \ Mid Fuzziness Group)
Combine Training N
samples and samples (8a)
with Mid fuzziness
o) |4 7 7

v

Awerage ' Accuracy on
w Individual Group
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Semi-supervised Support Vector Machines

Semi-supervised Support Vector Machines

@ Semi-supervised SVMs (S3VMs) = Transductive SVMs (TSVMs)

e Maximizes “unlabeled data margin”
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Semi-supervised Support Vector Machines

S3VMs

Assumption }

Unlabeled data from different classes are separated with large margin.

S3VM idea:
@ Enumerate all 2" possible labeling of X,

@ Build one standard SVM for each labeling (and X;)
@ Pick the SVM with the largest margin
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Which semi-supervised learning method
should I use?

|deally, one should use a method whose assumptions fit the problem
structure.
* Do the classes produce well clustered data?
If yes, EM with generative mixture models may be a good
choice.
* Do the features naturally split into two sets?
If yes, co-training may be appropriate.
 Is it true that two points with similar features tend to be in the same
class?
If yes, graph-based methods can be used.
« Already using SVM?
Transductive SVM is a natural extension.
 Is the existing supervised classifier complicated and hard to
modify?
Self-training is a practical wrapper method.
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Future Direction

First: We need guarantees that semi-supervised learning will
outperform supervised learning.

Second: We need methods that benefit from unlabeled data when
the size of the labeled data is large.

Third: We need good ways to combine semi-supervised learning
and active learning.

Finally: We need methods that can efficiently process massive

unlabeled data, especially in an online setting.
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